Direct Use of MACE EBV in the Walloon Single-Step Bayesian Genomic Evaluation System

J. Vandenplas¹,², F. Colinet¹, P. Faux¹, S. Vanderick¹, N. Gengler²,¹
¹ University of Liege, Gembloux Agro-Bio Tech, Animal Science Unit, Gembloux, Belgium
² National Fund for Scientific Research, Brussels, Belgium

Genomic Selection 101

- Common perception
 - Very simple
 - Easy to explain
- But
 - Is this correct?

Reality obviously much more complex!
Reference Population

Phenotypes:
- limited availability
- can not be used directly
- rely on external sources (MACE EBV* for dairy)

Genotypes:
- limited availability
- often not on same animals as phenotypes

Methods need to be adapted

* Estimated breeding values (EBV) obtained from INTERBULL Multiple Across Country Evaluation (MACE) procedure based on EBV provided by partner countries

Multi-Step Methods

Estimated Breeding Values (including MACE EBV)

Phenotypes

Pseudo-phenotypes (deregressed proofs)

Genotypes

Prediction equation

Direct Genomic Values (DGV)

Pedigree

Genomically Enhanced Breeding Values (GEBV)

* If polygenic effect included

Single-Step Methods

Phenotypes

Pedigree

Genotypes

Single-Step Genomic Evaluation (ssGBLUP)
- replacing pedigree information in mixed models by combined pedigree and genomic information

Genomically Enhanced Breeding Values (GEBV)
Innovations Needed!

- Considering simultaneously
 - Genotypes
 - Pedigree
 - Phenotypes
 - but all local and foreign information simultaneously
- Avoiding
 - Deregression
 - Multiple considerations of contributions
- Maximum flexibility
 - Allowing to add and to subtract contributions from different information sources (e.g., local, MACE)
 - Avoiding double counting (e.g., local information already contributing to MACE EBV)

Bayesian Integration

- Creating system equivalent to mixed model equations
 - Integration of external information
 - Avoids deregression
- Adaptation to include multiple sources of information
 - E.g., adding MACE EBV, subtract local EBV included in MACE EBV

Context of Single-Step Genomic Prediction

- Replacing pedigree information in mixed models by combined pedigree and genomic
- Can therefore be applied to Bayesian models

Single-Step Bayesian Method

Estimated Breeding Values (including MACE EBV) → Phenotypes → Pedigree → Genotypes

Single-Step Bayesian Genomic Evaluation (ssBAYES) (reconstructing mixed model equations also using combined pedigree and genomic information) → Genomically Enhanced Breeding Values (GEBV)

Proof of Concept

Walloon Genomic Evaluation System

- Small population (southern part of Belgium)
- Few genotypes
- Phenotypes use of MACE EBV + local EBV
 ⇒ ssBAYES: optimal use of available data (including MACE EBV)

Local test-run ⇒ GMACE test-run

- 02/2013: passed the GEBV tests for yields + most type traits
- Results using data for 06/2013:
 - 16,234 animals
 - 12,046 Walloon EBV added
 - 1981 MACE EBV added (601 bulls sent, EBV subtracted)
 - 1909 cows and bulls with genotypes
Proof of Concept – Results for Milk Yield

Increase in average reliabilities REL (SD) through the incorporation of MACE EBV into the Walloon genomic evaluation system

<table>
<thead>
<tr>
<th>REL< 0.50</th>
<th>0.50-0.74</th>
<th>≥ 0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>629</td>
<td>163</td>
</tr>
<tr>
<td>EBV<sub>W</sub></td>
<td>0.24 (0.12)</td>
<td>0.63 (0.07)</td>
</tr>
<tr>
<td>GEBV<sub>W</sub></td>
<td>0.43 (0.10)</td>
<td>0.69 (0.06)</td>
</tr>
<tr>
<td>GEBV<sub>W+M</sub></td>
<td>0.82 (0.04)</td>
<td>0.88 (0.02)</td>
</tr>
</tbody>
</table>

ssBAYES

- allowed optimal use of MACE EBV
- all sires (also REL< 0.50) becoming publishable

<table>
<thead>
<tr>
<th>REL< 0.50</th>
<th>0.50-0.74</th>
<th>≥ 0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>629</td>
<td>163</td>
</tr>
<tr>
<td>EBV<sub>W</sub></td>
<td>0.43 (0.10)</td>
<td>0.69 (0.06)</td>
</tr>
<tr>
<td>GEBV<sub>W+M</sub></td>
<td>0.82 (0.04)</td>
<td>0.88 (0.02)</td>
</tr>
</tbody>
</table>

Proof of Concept – Results for Milk Yield

Recovery of large amounts of foreign phenotypic information (expressed as daughter equivalents) through the incorporation of MACE EBV into the Walloon genomic evaluation system

<table>
<thead>
<tr>
<th>REL< 0.50</th>
<th>0.50-0.74</th>
<th>≥ 0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>629</td>
<td>163</td>
</tr>
<tr>
<td>EBV<sub>W</sub></td>
<td>3.5</td>
<td>17.5</td>
</tr>
<tr>
<td>GEBV<sub>W</sub></td>
<td>7.8</td>
<td>22.6</td>
</tr>
<tr>
<td>GEBV<sub>W+M</sub></td>
<td>45.9</td>
<td>73.0</td>
</tr>
</tbody>
</table>

ssBAYES

- recovered on average at least 38 daughter equivalence from MACE

<table>
<thead>
<tr>
<th>REL< 0.50</th>
<th>0.50-0.74</th>
<th>≥ 0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>629</td>
<td>163</td>
</tr>
<tr>
<td>EBV<sub>W</sub></td>
<td>7.8</td>
<td>22.6</td>
</tr>
<tr>
<td>GEBV<sub>W+M</sub></td>
<td>45.9</td>
<td>73.0</td>
</tr>
</tbody>
</table>
Conclusions

Single-Step Bayesian Genomic Evaluation (ssBAYES)
- Bayesian approach integrates well MACE results into ssGBLUP
 - Recovers indirectly large amount of phenotypic information
- Improved genomic prediction strategy in dairy cattle
 - Especially for small population
- Optimal approach in many situations:
 - Deregression should (needs to) be avoided
 - Limited local, but extensive external phenotypic information
 - Optimal combination of different sources needed
 - Easy to deal with double counting (allows to + or – information)

Conclusions

Extension to Other Settings and Species
- Developed for dairy cattle (for a small population)
- Multi-trait version under development
 - Adding to local (novel) trait external EBV for other, correlated, trait(s)
- Approach could also be of interest for (some examples)
 - Beef: integration of external EBV (EPD) into limited genotyped populations
 - Swine: use of field data EBV in genomic evaluations using station data
- Bayesian priors on every type of effect
 - “Fixed” and random effects: genetic (e.g., additive, non-additive, SNPs), non genetic

Conclusions

Extension to Other Settings and Species
- Developed for dairy cattle (for a small population)
- Multi-trait version under development
 - Adding to local (novel) trait external EBV for other, correlated, trait(s)
- Approach could also be of interest for (some examples)
 - Beef: integration of external EBV (EPD) into limited genotyped populations
 - Swine: use of field data EBV in genomic evaluations using station data
- Bayesian priors on every type of effect
 - “Fixed” and random effects: genetic (e.g., additive, non-additive, SNPs), non genetic

Conclusions

Extension to Other Settings and Species
- Developed for dairy cattle (for a small population)
- Multi-trait version under development
 - Adding to local (novel) trait external EBV for other, correlated, trait(s)
- Approach could also be of interest for (some examples)
 - Beef: integration of external EBV (EPD) into limited genotyped populations
 - Swine: use of field data EBV in genomic evaluations using station data
- Bayesian priors on every type of effect
 - “Fixed” and random effects: genetic (e.g., additive, non-additive, SNPs), non genetic

Maximum flexibility
(cf origin of Bayesian method for beef evaluations)

If interested in collaborations
Do not hesitate to contact us!
Acknowledgements

E-mail of presenting author:
nicolas.gengler@ulg.ac.be