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Abstract 
Introduction 

Thiamine (vitamin B1) is mainly known for its diphosphorylated derivatives (ThDP), an 

essential coenzyme in energy metabolism. However non-coenzyme roles have been suggested 

for this vitamin for many years. Such roles have remained hypothetical, but recent data from 

various sources have shed a new light on this hypothesis. First, the existence of other 

phosphorylated thiamine derivatives, most prominently thiamine triphosphate (ThTP) and 

adenosine thiamine triphosphate (AThTP) can reach significant levels in E. coli, respectively 

during amino acid starvation and energy stress. Though much less is known about these 

compounds in animals, mammalian cells contain a highly specific soluble thiamine 

triphosphatase controlling cytosolic ThTP concentrations. Second, there is now growing 

evidence in favour of the existence of thiamine-binding proteins with specific roles in the 

nervous system, possibly in the regulation of in neurotransmitter release. Thiamine and some 

of its synthetic precursors with higher bioavailability have beneficial effects in several models 

of Alzheimer’s disease and may be beneficial for patients suffering from Alzheimer's or 

Parkinson's diseases. These effects might be related to non-coenzyme roles of thiamine, 

possibly involving thiamine-binding proteins. 

 

Conclusion 

A hundred years ago, the discovery of thiamine opened the way to the vitamin era of 

biochemistry, leading to the discovery of the importance of pyruvate oxidation in energy 

metabolism. This vitamin still has not revealed all of its secrets at a time when metabolomics 

is emerging as a new powerful tool to refine our knowledge of cellular reactions. 
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Introduction 
Like other B vitamins, thiamine (vitamin B1, Fig. 1A) is an indispensable molecule for 

all known organisms. This is mainly because, in mammalian cells, its diphosphorylated form, 

thiamine diphosphate (ThDP), is the coenzyme for five key metabolic enzymes (Fig.1B)1; the 

most important being mitochondrial pyruvate and oxoglutarate dehydrogenase complexes as 

well as the cytosolic transketolase. Therefore, it is generally believed that thiamine deficiency 

leads to decreased oxidative metabolism, which eventually causes cell death. In animals, the 

brain heavily relies on oxidative metabolism for the synthesis of ATP, making this organ 

particularly sensitive to thiamine deficiency. In humans, nutritional thiamine deficiency leads 

to beriberi, a polyneuritic condition, rapidly reversed after thiamine administration. In 

alcoholics, but also in children, thiamine deficiency can lead to typical selective diencephalic 

brain lesions2 generally referred to as Wernicke-Korsakoff syndrome. The reason why some 

brain regions are more sensitive to thiamine deficiency remains unknown3 and it was 

suggested that this selective vulnerability could be due to a coenzyme-independent role of 

thiamine or one of its derivatives4. 

Indeed, in addition to ThDP and free thiamine, several other phosphorylated and 

adenylated derivatives are observed (Fig. 2): thiamine monophosphate (ThMP), thiamine 

triphosphate (ThTP), adenosine thiamine triphosphate (AThTP) and adenosine thiamine 

diphosphate5,6. The existence of such forms in many living cells would suggest that they also 

have some biological role(s). It is indeed worth wondering why the diphosphorylated form of 

thiamine is the coenzyme, when the monophosphorylated form would do just as well, as is the 

case for pyrodoxal-phosphate for instance. It is indeed true that the diphosphate contributes to 

the binding energy to apoenzymes, but the catalytic properties of thiamine solely rely on the 

thiazolium ring able to lose a proton and form a reactive ylide (Fig. 1C). Ylide formation is 

not influenced by the presence of phosphate groups on the hydroxyethyl arm and there is no 

obvious advantage to use ThDP (rather than ThMP or ThTP) as coenzyme. 

A recent study emphasizes beneficial effects of benfotiamine (a thiamine precursor) in a 

transgenic mouse model of Alzheimer’s disease, though only levels of unphosphorylated 

thiamine were increased in the brain of the animals. Levels of thiamine phosphorylated 

derivatives, including ThDP were unaffected7. Moreover, it was recently suggested that the 

antinociceptive effects of thiamine in humans and animals could be mediated by the non-

phosphorylated form of the vitamin8, raising the possibility that free thiamine has 

pharmacological effects independent  of ThDP. 
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Nearly 20 years ago, we have reviewed data concerning a possible non-coenzyme role 

of thiamine or its derivatives, particularly in relation to nerve function9. Here, we want to 

critically examine the new data that have been obtained since then. 

Thiamine derivatives other than thiamine diphosphate 
Thiamine is transported into mammalian cells by specific transporters and immediately 

phosphorylated to ThDP by cytosolic thiamine pyrophosphokinase (Fig. 2). ThDP can then be 

phosphorylated to ThTP or transformed to adenylated derivatives. However, the most obvious 

fate for cytosolic free ThDP is hydrolysis to ThMP, which is recycled to thiamine. No specific 

enzymes have been identified for the latter reactions and there is no known role for ThMP. 

Intracellular ThMP levels are generally much lower than ThDP levels. However, ThMP 

seems to be excreted, probably by a process involving the reduced folate carrier (RFC1 or 

SLC19A1)10, a transporter closely related to thiamine transporters, and it is present in 

extracellular fluids such as blood plasma, cerebrospinal fluid and breast milk. 

 

The case of thiamine triphosphate 

ThTP is a particularly intriguing molecule. It is found in nearly all organisms and is the only 

known triphosphorylated compound that is not a nucleotide. With two phosphoanhydride 

bonds, it is an energy-rich compound and as such it has been shown to be able to 

phosphorylate proteins11, though it is not clear whether such phosphorylation is of 

physiological significance. While ThTP seems to be constitutively synthesized in animal 

cells, in E. coli it accumulates only in the absence of amino acids and therefore could be a 

signalling molecule involved in the adaptation to amino acid starvation12. While it was long 

thought that ThTP is synthesized by a ATP:ThDP phosphotransferase, the existence of such a 

mechanism has never been unambiguously demonstrated. It appears now that two ATP-

synthesizing mechanisms may be diverted towards the synthesis of ThTP: adenylate kinase 

isoform 1 (AK1) (ThDP + ADP  ThTP + AMP)13 and FoF1-ATP synthase by a 

chemiosmotic mechanism (ThDP + Pi  ThTP)14-16 in intact E. coli cells and isolated brain 

mitochondria. Interestingly both mechanisms are conserved from bacteria to mammals. 

However, while the synthesis by adenylate kinase seems to be constitutive and is probably 

merely a side-reaction, the synthesis by FoF1-ATP synthase is strongly dependent on 

metabolic conditions. While on one hand there is presently no evidence for a specific enzyme 

involved in ThTP synthesis, on the other hand mammalian cells contain a highly specific 

thiamine triphosphatase (ThTPase)17-19. This 25-kDa cytoplasmic protein is a highly efficient 

ThTPase ubiquitously expressed in adult mammalian tissues. However, it seems to be most 
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abundant in highly differentiated cells while it is hardly detectable in cultured cells, 

suggesting that the expression of this enzyme is linked to the degree of cellular 

differentiation20,21. 

 It was suggested that ThTPase is a repair enzyme whose role is to remove potentially toxic 

ThTP produced as a by-product of the above-mentioned reactions22. However, in those 

organisms where 25-kDa ThTPase is absent (chicken) or catalytically inefficient (fish, pig), 

cytosolic ThTP indeed accumulates and, in skeletal muscles and electric organs its levels can 

even exceed those of ThDP, but without apparent toxic effect21. It is possible that ThTP has 

mainly a mitochondrial role, i. e., intramitochondrial ThTP synthesized by FoF1-ATP 

synthase is the physiologically relevant pool, while cytosolic ThTP synthesized by adenylate 

kinase would be only a by-product of this enzyme activity. In this respect cytosolic ThTP 

concentrations might just reflect the abundance of AK1 in the absence of 25-kDa ThTPase. 

 

Adenylated thiamine derivatives 

AThTP (or thiaminylated ATP, Fig. 2) was first discovered in E. coli, where it accumulates in 

response to carbon starvation or uncoupling5,23. While other B vitamins have long been 

known to form coenzymes by combination with adenylate (riboflavin in FAD, nicotinic acid 

in NAD+, pantothenic acid in CoA for instance) this was the first time that such a 

condensation product was demonstrated for thiamine. AThTP exists in small amounts in 

animals and plants (mainly in roots) but also in many cultured mammalian cells21. AThTP 

was shown to be an inhibitor of poly(ADP-ribose) polymerase-1 in vitro24. Moreover, small 

amounts of AThDP were also discovered in various organisms6. 

 

Thiamine-binding proteins 
We refer here to proteins that specifically bind thiamine or one of its phosphorylated 

derivatives, but the bound thiamine compound is not supposed to act as a coenzyme. 

Likewise, we shall not consider enzymes using thiamine derivatives as substrates (i.e. 

enzymes involved in the metabolism of phosphoryl derivatives, see Fig. 2) nor thiamine 

transporters. 

Several proteins that specifically bind the unphosphorylated form of the vitamin have been 

described. Some are thiamine-storage proteins and they were characterized mainly in plant 

tissues. In mammals, a few thiamine-binding proteins have been described, but their possible 

roles remain unclear. Such a protein has been purified from rat erythrocytes25. It is a soluble 
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32 kDa protein binding unphosphorylated thiamine. It is not clear whether it also binds 

phosphate esters, or whether it is specific. The group of Yulia Parkhomenko in Kiev 

extensively studied thiamine-binding proteins from brain. By affinity chromatography 

(thiamine covalently bound to a Sepharose 4B matrix), they isolated a thiamine-binding 

protein from a synaptosomal acetone powder26. This 103 – 107 kDa protein also binds ThMP 

and ThTP and to a lesser extent ThDP. The same group later showed that the thiamine-

binding activity is mainly associated with synaptic vesicles and synaptosomal membranes26. It 

was also claimed that this thiamine-binding proteins had ThTPase activity27, but this has not 

yet been proven using a purified homogenous protein preparation. If this synaptosomal 

thiamine-binding protein is indeed a membrane-associated membrane protein, it could act as a 

presynaptic “thiamine receptor”. There is some evidence that thiamine can act as a 

neuromodulator at some synapses, regulating neurotransmitter release (see next section). It is 

also worth pointing out that the antinociceptive effect of thiamine seems to require prostatic 

acid phosphatase, which could act as or be part of a thiamine receptor8. 

Synaptosomes prepared from Torpedo electric organ are enriched in thiamine and its 

phosphate esters, while synaptic vesicle are not, suggesting that they are localized in the 

axoplasm28. Another study suggested that thiamine is an integral component of synaptomal 

membranes29. A role of thiamine in mammalian neuromuscular transmission has also been 

suggested in other studies30. Taken together, all those data suggest that thiamine may have a 

specific, coenzyme-independent role in synapses. The existence of ThDP-binding proteins 

other than apoenzymes using ThDP as coenzyme has long been debated. Cooper and 

associates claimed that protein-bound ThDP, isolated from a soluble liver fraction, was the 

substrate for ThTP synthesis31, but it was later shown that the only ThDP-binding protein in 

liver cytosol was transketolase32. In rat brain, Yoshioka et al. described the 

immunohistochemical localization of a 68-kDa ThDP-binding protein33. In this case too, the 

protein probably corresponds to transketolase as the molecular mass is about the same. 

 

Thiamine in neurotransmitter release 
A specific neuroactive role of thiamine in relation to nerve excitability has been postulated as 

early as the 1940s and these data have been previously reviewed9. While there is presently no 

convincing evidence that thiamine has physiologically relevant effects on axonal 

conductance, it has been reported consistently that thiamine (and/or some of its phosphate 

esters) facilitates neurotransmission in various preparations, probably by potentiation of the 

release of the neurotransmitters acetylcholine28,34,35, dopamine36 and noradrenaline35. Here, 
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we are exclusively interested in direct (rapid) effects on neurotransmission, as in chronic 

experiments (for instance after administration of thiamine for several weeks in animals) it is 

very difficult to discriminate between putative coenzyme-independent and coenzyme-

dependent effects: for instance, increased pyruvate dehydrogenase activity could lead to 

increased acetyl-CoA production which in turn could increase acetylcholine synthesis. 

In addition to thiamine, several thiamine antimetabolites, the most widely used being 

pyrithiamine and oxythiamine (Fig. 3) have been tested. These structural analogues of 

thiamine are called antimetabolites, as when administered to animals they produce signs of 

thiamine deficiency, pyrithiamine acting primarily centrally and oxythiamine acting 

peripherally as it presumably does not cross the blood-brain barrier. Both compounds 

competitively inhibit thiamine transport37 and ThDP synthesis by thiamine 

pyrophosphokinase38,39 (though pyrithiamine is more effective). 

The fact that they are antimetabolites does not preclude the possibility that they may also act 

as thiamine agonists when thiamine acts as a non-coenzyme modulator. Indeed, oxythiamine 

stimulates potassium-evoked acetylcholine release in the presence of Ca2+ in isolated brain 

slices 40. 

These results suggest a coenzyme-independent effect of thiamine on neurotransmitter release, 

affecting at least three different neurotransmitters (acetylcholine28,34,35, dopamine36 and 

noradrenaline35) in different preparations ranging from fish electric organ to mammalian 

brain. This suggests a rather conserved mechanism. Conversely, thiamine deficiency leads to 

synaptic vesicle dysfunction with decreased release of dopamine41, glutamate42 or 

acetylcholine43. Moreover, episodes of pyrithiamine-induced thiamine deficiency in the rat 

lead to a significant reduction in phosphosynapsin I44. Interestingly, in these experiments, the 

animals were treated with thiamine after appearance of thiamine deficiency symptoms (loss of 

righting reflex and seizures) for three weeks before sacrifice, suggesting that the reduction of 

phosphosynapsin cannot be readily reversed by thiamine treatment and is an epigenetic 

phenomenon. It can indeed not be explained by a decrease in ThDP-dependent enzyme 

activities, as brain thiamine and ThDP levels have presumably been restored. It is thought that 

phosphorylation of synapsin I leads to a detachment of synapsin from the synaptic vesicles 

allowing their fusion with the presynaptic membrane and neurotransmitter release. An 

interesting hypothesis would be that thiamine, directly or indirectly, acts on synapsin I 

thereby promoting neurotransmitter release. This effect could be antagonized by pyrithiamine. 
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Thiamine in stress, diabetes and neurodegenerative diseases 
In many instances, beneficial and probiotic effects of thiamine (and/or pharmaceutical 

preparations of thiamine precursors with higher bioavailability) have been demonstrated. In 

these cases, we are most likely dealing with pharmacological effects as therapeutic 

(superphysiological) doses were used. Indeed, under laboratory conditions, either animals or 

cultured cells are generally in a thiamine-rich environment: animal chows as well as cell 

culture media are enriched in vitamins. 

According to some reports, thiamine increases disease resistance in plants45,46. Moreover, 

intracellular thiamine and thiamine phosphate pools are regulated by various stress conditions 

in Z. mays and A. thaliana seedlings; it was suggested that thiamine is a signalling molecule 

important for the adaptation to various stress conditions47,48. Interestingly, such a signalling 

role is assigned to unphosphorylated thiamine in plants, while it should be assigned to ThTP 

and AThTP in E. coli5,6,12 (see above). Note that in Arabidopsis leaves, ThTP accumulates 

during withering49. Protective effects of thiamine have also been described in mammalian 

cells: thiamine protects retinal neurons against glutamate toxicity50 and promotes the survival 

of hippocampal neurons in high cell density culture51. 

Thiamine requires specific transporters to enter cells52. As the rate of transport by these 

transporters is relatively slow, membrane transport is a rate-limiting step in thiamine 

homeostasis. For that reason, synthetic thiamine precursors were developed. These molecules 

are either relatively hydrophobic (sulbutiamine, fursultiamine) or are converted to a 

hydrophobic precursor (benfotiamine) allowing them to cross membranes relatively freely 

(Fig. 3). The general effect of these derivatives is to rapidly increase circulating thiamine to 

levels higher than those obtained by an equivalent dose of thiamine. It must be emphasized 

than none of these precursors has ever been demonstrated to reach the brain parenchyma. 

They are all converted to thiamine either during the passage from intestine to blood or in the 

liver. As the blood-brain barrier strongly limits thiamine uptake by the brain (thiamine entry 

could be limited by a self-exchange), no important increase in brain thiamine levels are 

observed even with these derivatives7,53-55. It would therefore be interesting to synthesize 

derivatives that have a half-life sufficiently long to reach significant blood levels to cross the 

blood-brain barrier. 

Nonetheless, thiamine and/or thiamine precursors have been shown to have beneficial effects 

in diabetes and an animal model of Alzheimer’s disease7,56,57. One study has shown improved 

cognitive functions and a striking decrease in charge of ß-amyloid plaques in a mouse model 

of Alzheimer’s disease58. This study, however, needs confirmation. 
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A relationship between thiamine and Parkinson’s disease has recently been suggested59,60. It 

had previously been shown that free thiamine levels are decreased in the cerebrospinal fluid 

of patients with Parkinson’s disease compared to control patients61. Moreover, a very recent 

preliminary clinical study reported the beneficial effects on thiamine treatment (100 - 200 mg 

daily doses of parenteral thiamine) on a limited number of patients62. This again needs 

confirmation. 

Concluding remarks 
Thiamine, by the number of its derivatives, is certainly one of the most diverse B vitamins. 

By virtue of the role of ThDP as coenzyme of several key enzymes it is involved in nearly all 

aspects of cell metabolism: energy production, ribose and nucleic acid synthesis, lipid 

biosynthesis and neurotransmitter synthesis to name only the most important. Therefore 

thiamine is particularly important for the nervous system, which is highly sensitive to 

thiamine deficiency. However, the existence of potential non-coenzyme roles, summarized in 

Figure 4 remains a puzzling issue. First, the existence of triphosphorylated derivatives, unable 

to replace the coenzyme ThDP, is highly suggestive of such roles. ThTP and AThTP may be 

involved in some signalling processes under specific conditions of cellular stress. Second, 

thiamine itself, possibly through specific thiamine-binding proteins, may regulate processes 

such as neurotransmitter release and, in plants, protect against disease and stress. Though 

there is still no direct evidence for a physiologically important non-coenzyme role of 

thiamine, in view of the potential therapeutic interest of thiamine in Alzheimer’s and 

Parkinson’s diseases, this may become a key issue in the future. 
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Legend to Figures 
 
Figure 1: Thiamine diphosphate as a coenzyme. (A) Structural formula of thiamine with both 

heterocycles numbered according to the usual conventions. (B) Enzyme-catalysed proton loss 

at the C2 of the thiazolium ring and ylide formation are at the molecular basis of the catalytic 

properties of thiamine. (C) ThDP-dependent enzymes in a mammalian cell and subcellular 

localization (TK, transketolase, PDHC, pyruvate dehydrogenase complex, OGDHC, 

oxoglutarate dehydrogenase complex, BCODC, branched chain 2-oxo acid dehydrogenase 

complex, HACL1, 2-hydroxyacyl-CoA lyase 1) (modified from 1). 

 

Figure 2: Thiamine derivatives observed in living organisms. (Adapted from 1,63). ThDP is 

synthesized from thiamine and ATP by thiamine pyrophosphokinase (1). Hydrolysis of ThDP 

by thiamine pyrophosphatases (2) yields ThMP, which in turn can be hydrolysed to thiamine 

by thiamine monophosphatases (3). ThDP can be phosphorylated to ThTP by two 

mechanisms: mitochondrial FoF1-ATP synthase (4) and cytosolic adenylate kinase (5). ThTP 

can be hydrolysed to ThDP by a very specific cytosolic 25-kDa thiamine triphosphatase (6). 

ThDP can also be converted to AThTP by a ThDP adenylyl transferase (7). AThTP can be 

hydrolysed to ThDP and AMP by a putative AThTP hydrolase (8). AThDP has been shown to 

exist in prokaryotes and eukaryotes but its mechanism of synthesis has not yet been 

demonstrated in vitro. 

 

Figure 3: Thiamine provitamins and antimetabolites. Fursultiamine (Thiamine 

tetrahydrofurfuryl disulfide) and sulbutiamine (O-isobutyrylthiamine disulfide) are disulfides 

while benfotiamine (S-benzoylthiamine O-monophosphate) is a thioester. The most common 

thiamine antimetabolites are oxythiamine and pyrithiamine. 

 

Figure 4: Potential non-coenzyme roles of thiamine and its phosphorylated derivatives. For 

explanations see text. 
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