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Single point incremental forming

A sheet metal is deformed by a small tool.

The tool could be guided by a CNC (milling machine, robot).

[Henrard et al., 2010]

4



Single point incremental forming

Dieless, with high sheet formability.

Easy shape generation.

For rapid prototypes, small batch productions, etc.

Challenges

Geometrical
inaccuracy.

Process
mechanics.

Increased
formability.

Motivations

Through the thickness gradient
are important.

2D constitutive laws cannot be
used.

New advances on element
formulation in FE codes.
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Goals and cooperations

Improve the FEM simulations for SPIF.

Solid Shell element (A. Ben Bettaieb thesis, ULg).
Remeshing method (J. Sena thesis, UAveiro, Portugal).
Validations (Joost Duflou team, KULeuven).

Understand the rupture mechanism during SPIF process.

Metallurgical study, porosity and texture (A. Mertens, ULg).
Extended Gurson model.

Reach a better understanding of the process.

Deformation mechanisms (A. Kumar Behera thesis, KULeuven).
Formability analysis.
Texture evolution and damage.
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SPIF simulations

FE code: LAGAMINE (implicit).

Element type: COQJ4 (shell) and SSH3D (solid-shell).

Sheet material: AA3003-O and DC01 steel (new).

Tests:

(a) Line test

φ182mm

x

y

(b) Cone

182mm

18
2m

m

x

y

(c) Pyramid
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Simulations

Material: DC01 ferritic steel (1 mm thickness).

Two slope pyramid:
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Constitutive modeling

Isotropic elasto-plastic constitutive law.

Voce (isotropic) and Armstrong-Frederick (kinematic) mixed
hardening.

σY = σY 0 + K
(
1− exp

(
−nεP

))
Ẋ = Cx

(
Xsat ε̇P − ˙εPX

)

Material parameters:

σY 0 = 158 MPa Cx = 257
K = 255 MPa Xsat = 4 MPa
n = 13

Identification through classical (tensile, monotonic/Bauschinger
shear) tests.
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Solid-shell element

SSH3D

Enhanced assumed strain (EAS).

Assumed natural strain (ANS).

In-plane full integration and 5 IP through-the-thickness.
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Assumed natural strain

U εcom

εANS

B

linear interpolation
BANS

Sampling points (transverse shear and transverse normal strains):

r

st

A•

C•
r

st
B•D• r

st

E•

F•

G•

H•
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Enhanced assumed strain

Enhanced strain field

ε = εcom + εEAS

εcom = ∆su = B(r , s, t)U

εEAS = G(r , s, t)α =
|J0|

|J(r , s, t)|F
−T
0 M(r , s, t)α

[M] =
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Shape results

Numerical/experimental (DIC) comparison Y = 0
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EAS and mesh influence

Strong EAS mode influence.

Small mesh influence.
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Force evolution

Both EAS modes and mesh influence.
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Ductile fracture

The stress state has a strong influence on damage development and
fracture.
Triaxiality has been used to evaluate the stress state effect on
damage/fracture.

[Pineau and Pardoen, 2007]

T (I1, J2) =
σm
σeq

=
1

3
√

3

I1√
J2

T ratio between volumetric
I1 and distorsion J2 effects.

T → 0 =⇒ εf →∞
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Ductile fracture

Forming processes are characterized by low triaxialities.
The failure mode (coalescence) is different at high/low triaxialities:

Cavity controlled (Dimples)
T = 1.10

Shear controlled
T = 0.47

[Barsoum and Faleskog, 2007a]

Frequently these mechanisms compete between each other.
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Gurson model

Given the Gurson [1977] model:

F =
σ2
eq

σ2
Y

− 1 + 2f cosh
3

2

σm
σY
− f 2︸ ︷︷ ︸

Damage

= 0

No damage is predicted when T = 0. Further extensions are
required.

Gologanu et al. [1996] note that the void expansion can vary at
same triaxialities.

At low triaxiality, void shape evolution becomes more important
than void growth.
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Lode angle influence

Triaxiality is not able to account the shape effects on voids.

Solution: fully account the stress state with the set (I1, J2, J3).

A physical meaning can be asigned to J3 through the Lode angle θ. σ1

σ2

σ3

 =
I1
3

 1
1
1

+
2√
3

√
J2

 cos θ
cos (120− θ)
cos (120 + θ)


Stress state:

θ = 0: uniaxial tension plus hydrostatic pressure (triaxial tension).
θ = 30: pure shear plus hydrostatic pressure.
θ = 60: uniaxial compression plus hydrostatic pressure.

The relation between θ and J3 is given by:

X (J2, J3) = cos 3θ =
27

2

J3

σ3
eq
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Micromechanics

Unit cell deformation at constant triaxiality T = 1.

[Zhang et al., 2001]
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Influence on fracture strain

The strain at fracture is not monotonically decreasing function of
the triaxiality.
Note that the peaks are at different triaxialities.

[Bao and Wierzbicki, 2004]
[Barsoum and Faleskog, 2007b]
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Influence on fracture strain

They are lode angle independent materials.

Aluminum 2024-T351 1045 steel

[Bai and Wierzbicki, 2008; Malcher et al., 2012]
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Shear extension
Nahshon and Hutchinson [2008]

Void growth:

ḟ = (1− f )tr
(
ε̇P
)︸ ︷︷ ︸

Classical

+ kωf ω(s)
sε̇P

σ̂eq︸ ︷︷ ︸
Shear

(kω is a material constant)

Where:

ω = 1−
(

27

2

J3

σeq

)2

0 ≤ ω ≤ 1
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Material parameters identification

Characterization of a DC01 ferritic steel sheet (1 mm thickness).

Test performed in the Laboratoire de Mécanique des Matériaux et
Structures, ULg.

Classical tests

Tensile test (RD, TD, 45◦)

Monotonic shear test (RD).

Bauschinger shear test (RD).

Plane strain tests (RD, TD, 45◦).
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Microphotographs
By Anne Mertens

Void volume fraction measurements in the cracked specimens.

f = 0.4− 0.5%

f = 0.04− 0.07%

Small void size, concentrated near the crack.

For the shear tests, no voids growth is observed.
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Microphotographs
By Anne Mertens
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Current work

Numerical: Gurson model extended to shear.

Experimental: Test campaign to characterize Gurson.

Conference: NUMISHEET14 article and benchmark.
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Conferences and articles

Conferences articles

ESAFORM12: Evaluation of the Enhanced Assumed Strain and
Assumed Natural Strain in the SSH3D and RESS3 Solid Shell
Elements

SheMet13: Numerical simulation of a pyramid steel sheet formed
by single point incremental forming using solid-shell finite elements.

ESAFORM13: Towards fracture prediction in single point
incremental forming.

Articles

Study of the geometrical inaccuracy on a SPIF two-slope pyramid by
finite element simulations. International Journal of Solids and
Structures, 2011.
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