Local time variations of the main auroral emission at Jupiter

Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, Liège, Belgium (*) benjamin.palmaerts@student.ulg.ac.be

Main auroral emission at Jupiter

Université

de Liège

Main emission

 \rightarrow magnetosphereionosphere coupling current system associated with the breakdown of corotation \rightarrow ionospheric footprint of the upward **field aligned** currents (FAC, red dashed lines), carried by downward

Local time variation of the intensity

of the main emission

Brightness profile \rightarrow discontinuity 08:00 – 12:00 LT \rightarrow localised peak 11:00 – 14:00 LT

Large scale variations of the main emission in terms of : \rightarrow brightness \rightarrow width \rightarrow position Analyses of **local time variations** based on polar projection of series of FUV images obtained with HST between 1997 and 2007 (51 observation days).

Grodent et al. (2008)

Local time variation of the mapped location of the main emission : indication of the corotation

Comparison with MHD simulation (Chané et al., 2013). \rightarrow same trend in variation of intensity \rightarrow discontinuity caused by a thermal pressure decrease around 09:00 LT due to the interaction between rotating plasma and the magnetopause. \rightarrow localised peak is not obvious in the simulation

 $j_{\parallel}/B (A/m^2/T)$

breakdown location

Statistical location of the main emission on the equatorial plane (magnetic field model of Vogt et al., 2011) :

 \rightarrow closer in dawn-noon than noon-dusk.

Comparison with Galileo measurements of plasma flow velocity distribution (Krupp et al., 2001).

 $0.2 < v_{cor} < 0.8$

 $< 0.2 v_{\rm cor}$

Local time variation of the width of the main emission

Galileo measurements \rightarrow downward FAC in the prenoon and early noon sector (Khurana, 2001) where the equatorial source of the discontinuity is located

Conclusion

The width (FWHM) of the main emission varies slightly in local time \rightarrow due to asymmetry in the component of the magnetic field normal to the current sheet.

Vogt et al. (2011)

Main emission shows local time variations of : • brightness → discontinuity associated with downward FAC due to a thermal pressure decrease \rightarrow localised peak so far unexplained mapped location of the main emission on the equatorial plane \rightarrow indication of the corotation breakdown location \rightarrow closer in the dawn-to-noon quadrant than in the noon-to-dusk • width \rightarrow asymmetry in the component of the magnetic field normal to the current sheet

Chané et al. (2013), J. Geophys. Res., 118, doi:10.1002/jgra.50258 Grodent et al. (2008), J. Geophys. Res., 113, A01206, doi:10.1029/2007JA012601 Khurana (2001), J. Geophys. Res., 106, A11, doi:10.1029/2000JA000352 Krupp et al. (2001), J. Geophys. Res., 116, A11, doi:10.1029/2000JA900138 Vogt at al. (2011), J. Geophys. Res., 116, A03220, doi:10.1029/2010AJ016148