

Suitability of the Weibull 4-parameters model to predict the induction phase of α -amylase production during red sorghum malting when steeping in dilute NaOH is used prior to resteeeping in *Bacillus subtilis*-S499 based treatment

Journal:	<i>Journal of the Institute of Brewing</i>
Manuscript ID:	JIB.20130072.R1
Wiley - Manuscript type:	Original Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Bwanganga, Jean-Claude; Ulg, Gembloux Agrobiotech, Bioindustries; University of Kinshasa, Chemistry and Food Industries Kouadio, Benjamin; Université de Liège, Malumba, Paul Destain, Jacqueline BERA, François; University of Liege, Food Technology, Gembloux AgroBioTech Thonart, Philippe; University of Liege, Bioindustries
Keywords:	Bacillus subtilis biocontrol, α -amylase synthesis, Weibull 4-parameter model, red sorghum malting
Abstract:	In previous studies <i>Bacillus subtilis</i> has been used to control mould growth during red sorghum malting. The use of this biocontrol in steeping liquor has been optimized with some success and the combined use of 0.2% NaOH steeping followed by resteeeping in a <i>Bacillus subtilis</i> -based biocontrol has been proposed. The sharpness and variability of the β -amylase peak and the higher levels of β -glucanase obtained in the presence of <i>B. subtilis</i> cells were highlighted. In this work the suitability of the Weibull 4 Parameters Model to predict sorghum malt α -amylase activity during the enzyme induction stage of red sorghum germination has been compared with those of 2nd Order Polynomial Model and General Linear Model. Results obtained show that the Weibull 4 Parameters Model can be used to predict α -amylase synthesis with significant goodness of fit when compared to the 2nd Order Polynomial Model and General Linear Model. The effect of steeping treatment (combined use of 0.2% NaOH and <i>Bacillus subtilis</i> S499 starters) and the germination temperature is highlighted. In fact, when the <i>Bacillus subtilis</i> culture used as starters is diluted, the treatment efficacy is lost. This study also shows that the germination temperature affects the α -amylase synthesis rate during the induction phase.

SCHOLARONE™
Manuscripts

For Review Only

1 **Suitability of the Weibull 4-parameters model to predict the induction phase of α -amylase
2 production during red sorghum malting when steeping in dilute NaOH is used prior to
3 resteepering in *Bacillus subtilis*-S499 based treatment**

4

5 Jean-Claude Bwanganga Tawaba^{1,2,3*}, Benjamin Pondo Kouadio¹, Paul Malumba Kamba¹,
6 Jacqueline Destain², François Béra¹, Philippe Thonart²

7 ¹Department of Food Technology, Gembloux AgroBioTech, University of Liege, Passage des
8 Déportés 2, B-5030 Gembloux (Belgium).

9 ²Department of Bioindustries, Gembloux AgroBioTech, University of Liege, Passage des Déportés
10 2, B-5030 Gembloux (Belgium).

11 ³University of Kinshasa, Agricultural Faculty, BP 14071 Kinshasa 1 (D.R. Congo).

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 *Corresponding author: Jean-Claude Bwanganga Tawaba

28 Department of Bioindustries, Gembloux AgroBioTech,

29 University of Liege,

30 Passage des Déportés 2,

31 B-5030 Gembloux (Belgium).

32 Tel: +32 (0) 81 62 21 11; Fax: +32 (0) 81 61 45 44

33 e-mail: jcbwanganga@doct.ulg.ac.be

34

35 **Abstract**

36 In previous studies *Bacillus subtilis* has been used to control mould growth during red sorghum
37 malting. The use of this biocontrol in steeping liquor has been optimized with some success and the
38 combined use of 0.2% NaOH steeping followed by resteepering in a *Bacillus subtilis*-based biocontrol
39 has been proposed. The sharpness and variability of the β -amylase peak and the higher levels of β -
40 glucanase obtained in the presence of *B. subtilis* cells were highlighted. In this work the suitability
41 of the Weibull 4 Parameters Model to predict sorghum malt α -amylase activity during the enzyme
42 induction stage of red sorghum germination has been compared with those of 2nd Order Polynomial
43 Model and General Linear Model. Results obtained show that the Weibull 4 Parameters Model can
44 be used to predict α -amylase **activity** with significant goodness of fit when compared to the 2nd
45 Order Polynomial Model and General Linear Model. The effect of steeping treatment (combined
46 use of 0.2% NaOH and *Bacillus subtilis* S499 starters) and the germination temperature is
47 highlighted. In fact, when the *Bacillus subtilis* culture used as starters is diluted, the treatment
48 efficacy is lost. This study also shows that the germination temperature affects the α -amylase
49 activity increase rate during the induction phase.

50 **Keywords:** *Bacillus subtilis* biocontrol, α -amylase **activity**, Weibull 4-parameter model, red
51 sorghum malting

52 **Introduction**

53 Sorghum is often malted for use in industrial food processes such as the production of various
54 beverages or weaning foods. Sorghum malt is notably used in brewing. The main purpose of the
55 malting step is to favor the production of enzymes which will render the grain constituents (starch,
56 proteins) more digestible. The effect of the grain microbial ecosystem on barley malt quality has
57 been clearly discussed by Laitila et al. (1). Biocontrol treatments are often used during malting to
58 control mould growth and to improve malt quality (2-5). In fact, plant-bacteria interactions have

59 been widely studied in recent years and it is known that the grain microbial ecosystem affects the
60 germination process. So, when harmless microbes are used as a biocontrol of pathogens and
61 spoilage microbes, these interactions are complex (plant-microbes interactions and microbes-
62 microbes interactions) and difficult to describe accurately.

63 Diastatic power (DP) is often used as a measure of malt quality. It is an expression of the collective
64 activity of the following enzymes: α -amylase, β -amylase, α -glucosidase, and limit dextrinase (6).

65 When *Bacillus subtilis* is used during the steeping step, malt α -amylase is significantly improved
66 compared to steeping in distilled water (4). As the predominant starch-hydrolyzing activity in
67 sorghum is usually α -amylase activity (although in some varieties the β -amylase activity is higher
68 (7)), it can be useful, when one wants to optimize the malting process, to have a good model of its
69 development in the course of germination. During the germination step of the malting process, malt
70 α -amylase activity, reaches a maximum, and then finally drops (8). A key question to be addressed
71 is: how long should germination be allowed to proceed for taking the maximum advantage of the
72 underlying phenomenon (8)?

73 In the present study we have focused specifically on red sorghum malt α -amylase **activity** in the
74 context of a combined steeping treatment (steeping in dilute alkaline followed by resteeeping in
75 biocontrol treatment). Our aim was to model the time course of the development of this enzyme
76 activity during red sorghum germination, as affected by the steeping and germination conditions.
77 For this, we have examined the performance of three models: the 2nd order polynomial model (2nd
78 OPM) (the only model proposed to date for α -amylase **activity** during sorghum malting by Egwim
79 and Adenomon (9)), the Weibull 4-parameter model (W-4-PM) chosen according to the individual
80 distribution of experimental data using Minitab 16 software, and the general linear model (GLM)
81 constructed using stepwise regression.

82 **Materials and methods**

83 **Choice of variables**

84 **Malt enzymes activities** during the sorghum malting process may be affected by several factors
85 including: the nature of the steeping liquor (10-12), the steeping temperature and time, aeration
86 during steeping (13,4), the final warm water steep and air rest cycles (14), the steep-out moisture
87 (13), the use of microbial starters: lactic acid bacteria and yeasts (3), *Bacillus subtilis* (4),
88 germination temperature (15,16) and germination time (8,17).

89 Therefore in this study, we set the following steeping conditions: aeration, temperature, time, nature
90 of the steeping solution for the initial 8 h steeping. The difference between steeping treatments has
91 been made by varying the dilution of the *Bacillus subtilis* S499 culture (ln *BSP*: natural logarithm of
92 the *Bacillus subtilis* S499 population) used as the biocontrol during the last 8 h steeping. For the
93 germination conditions, two factors were manipulated; germination temperature (*GT*) and
94 germination time (*GD*).

95 **Red sorghum malting**

96 *Bacillus subtilis* strain S499 was obtained from the Walloon Center of Industrial Biology (CWBI)
97 and grown on Luria broth agar at 37°C for 24 h. An inoculating loopful was transferred to 100 ml
98 Landy broth optimized for *B. subtilis* S499 lipopeptide production and incubated for 16 h. Finally,
99 10 ml was transferred to 350 ml optimized Landy broth and incubated at 30°C (with rotary shaking
100 at 130 rpm) for 72 h. The culture (containing approximately 10^{11} cells/ml) was diluted with distilled
101 water to 10^8 and 10^4 cells/ml used to obtain the steep liquors employed during the biocontrol step of
102 the steeping process (5).

103 The red sorghum cultivar used was obtained from the D.R. Congo and has been described
104 previously (4,5). Sorghum malts were obtained as described by Bwanganga et al. (4) and
105 Bwanganga et al. (5) by manual sorting, steeping at 30°C for 8 h in 0.2% NaOH and then for 8 h in
106 the biocontrol steep liquor (B1 and B2 refer, respectively, to the treatments containing 10^8 and 10^4

107 cells/ml and C refers to the treatment with distilled water alone in the second phase of steeping),
108 germination in the dark at 25°C (T1), 30°C (T2), or 35°C (T3) for 6, 12, 24, 36, 48, 60, 72, 84, 96,
109 or 108 h, and kilning for 48 h at 40°C.

110 Alpha-amylase assays were performed on extracts of sorghum malt flour obtained by grinding
111 kilned malt in an IKA mill followed by sieving (mesh size: 0.5 mm). The activity was extracted and
112 assayed using Megazyme methods (Ceralpha Method K-CERA 08/05): sodium maleate (100 mM,
113 pH 6.0) plus CaCl₂ (5 mM) and sodium azide (0.02%) as the extraction buffer, azurine cross-linked
114 amylose as the substrate, incubation at 40°C for exactly 10 min and 2% (w/v) Trizma base as the
115 stopping solution. The absorbance was read at 590 nm against the reaction blank.

116 Modelling the α -amylase increase during germination

117 The first function used to represent the α -amylase activity data collected for the above-mentioned
118 steeping and germination conditions was the 2nd order polynomial model as proposed by Egwim
119 and Adenomon (9).

$$120 AA = a + b(GD) + c(GD)^2 \quad (1)$$

121 where AA is the α -amylase activity. Parameters a, b, and c were fitted by stepwise regression
122 performed with Minitab 16 software.

123 The second model was a classical general linear model obtained after stepwise regression of α -
124 amylase experimental values using ln *BSP*, *GT* and *GD* with their 1st and 2nd order interaction.

125 The third model tested was the W-4 PM

$$126 AA = AA_0 + (AA_\infty - AA_0) \exp(-\alpha \times GD^\beta) \quad (2)$$

127 where AA_0 is the α -amylase activity at the start of germination and AA_∞ is the value towards which
128 the activity tends during the induction phase of the α -amylase activity.

129 Equation (1) can be written as:

130 $\ln[\ln((AA_{\omega}-AA_0)/(AA-AA_0))] = \ln\alpha + \beta \ln GD$ (3)

131 This is the equation of a straight line with slope (β) and x-intercept $-(\ln \alpha)/\beta$. The parameters α and
132 β were obtained by plotting experimental data according to equation (3) and for each case the
133 smallest and the highest value were first considered respectively as AA_0 and AA_{ω} . The true values of
134 AA_0 and AA_{ω} were obtained using the Gauss-Newton algorithm and a convergence tolerance of
135 0.00001, after fixing the values of α and β equal to those obtained with experimental data (straight
136 line of Eq. 3) using Minitab software. $AA_{\#} = [((AA_{\omega}-AA_0)/(AA-AA_0))]$ is dimensionless and tends to
137 one at the maximum activity. β is the expression of the speed at which the maximum activity is
138 achieved [$\beta = \partial \ln(\ln AA_{\#}) / \partial \ln GD$], and $-(\ln \alpha)/\beta$ is the starting point, i.e., the advantage offered by
139 the steeping treatment or the expression of the capacity of the treatment to improve α -amylase
140 activity (Bwanganga et al., 2013). Minitab 16 software was used for statistical analyses: analysis of
141 variance, goodness of fit, stepwise regression, general linear model, fitted line plot and scatterplot.

142 **Results**

143 **1. Modelling α -amylase activity during germination**

144 Three-way ANOVA was applied to the experimental data obtained with different steeping
145 treatments after different germination times; temperatures and results are presented in Table 1. All
146 the main effects and their 1st and 2nd order interactions were significant ($p < 0.05$).

147 The kinetic parameters of the 2nd OPM and W-4-PM obtained with experimental data are presented
148 in Table 2. The equation of the GLM obtained using Minitab software after stepwise regression was:

149 $AA = -9.97 + 0.107 GT*GD + 0.174 \ln BSP*GD - 0.00455 GT*\ln BSP*GD - 0.00967 GD^2$ (4)

150 The regression analysis of the 3 models is presented as supplementary data in Tables S2, S3 and S4.

151 Predicted and experimental data scatterplots are presented in Fig. 1.

152 **2. Goodness of fit**

153 The goodness of fit of all 3 models obtained using the decomposition of the residual error is
154 presented as supplemental data Tables S2, S3 and S4 respectively for the 2nd OPM, W-4-PM and
155 GLM. The mean square error [MSE = $n^{-1}(SSE)$] and its root (RMSE) are presented in Table 3. SSE
156 (sum of square error) = $\sum(\text{experimental data}-\text{predicted data})^2$. When we consider only the values of
157 R-sq (adj) obtained: 86.3 - 96.2% for the 2nd OPM and 82.8% for the GLM one may be tempted to
158 consider these two models as good fits. However, the decomposition of the residual error associated
159 to the fits (Tables 2, S2, S3 and S4) and the RMSE (Table 3) clearly show that neither the 2nd OPM
160 nor the GLM give good fits (the lack of fit being significant for these two models). From this point
161 of view, the W-4-PM can be considered as a good fit: RMSE = 0.95 and for all fits obtained, except
162 for the steeping in control and germination at 35°C, where the lack of fit wasn't significant.

163 **3. The effect of germination temperature and steeping treatment on α -amylase activity**

164 The question to be asked is: how does each of the malting factors affect α -amylase activity?

165 To answer this question, two approximations were made according to the results obtained with the
166 experimental data (Table 2):

- 167 1. Parameter β varies very little with steeping treatments for a given temperature so that it can be
168 considered as a constant regardless of the steeping treatment. This parameter is a function of
169 germination temperature and the effect of germination temperature on β is shown in Fig. 2a.
- 170 2. $\ln \alpha$ varies minimally for a given treatment regardless of the temperature so that it can be
171 considered as a constant in this study. The effect of steeping treatment on this parameter is
172 presented in Fig. 2b.

173 So, from equation (3) to be combined with the regression equations of Fig. 2 (a and b) we obtained

174 the following model:

$$175 \ln(\ln AA_{\#}) = 14.20 - 0.08306 \ln(BSP) - (0.02775 GT + 2.677) \ln GD \quad (5)$$

176 **Discussion**

177 **Seed germination is well documented. It is known that sorghum germination is under hormonal**
178 **control (18).** In addition, when germination is well advanced, the seed in contact with the external
179 environment can synthesize ABA, known to be involved in stress responses to changing
180 environmental conditions (19). The role of carbohydrates in the regulation of plant hormone action
181 has been extensively discussed (20-23). The steeping and germination conditions can improve, to a
182 greater or lesser extent, the release of absorbable simple sugars and induce ABA synthesis and/or
183 activation. Excess glucose during seedling development, for example, induces growth arrest and
184 differentiation, which some authors attribute to the biosynthesis of the ABA and ABA signaling
185 (19). The ABA is important in the blockage of germination by reducing the permeability of
186 membranes and its action is highly modulated by the concentration of glucose (19). So, it is clear
187 that when using a model to predict enzyme **activity**, steeping and germination conditions have to be
188 taken into account. The effect of steeping conditions on α -amylase **activity** during sorghum malting
189 is well known. Steeping conditions are known to be able to affect grain moisture (4,13), phenolic
190 content (12), cell walls degradation (11), protein matrix hydrolysis (24) and α -amylase **activity**
191 (4,11-13). It is also known that during germination, α -amylase activity rises, reaches a maximum,
192 and then finally drops (9,25). Everything that happens after the peak (maximum α -amylase activity)
193 - despite the effect of germination conditions - is strongly related to the underlying phenomenon,
194 the growth of the seedling. The 2nd OPM or the GLM can be used in modelling α -amylase activity
195 during the red sorghum germination step. When such models are used, R-square, Chi-square, F-test
196 and/or the root mean square error (RMSE) are often used to evaluate the goodness of fit. The basis
197 of these statistics is the sum of square total (SST) (deviation from the average) and the sum of
198 square error (deviation from the model's predicted values). Egwim and Adenomon (9) obtained an

199 R-sq value between 67 to 90% using the 2nd OPM to model α -amylase activity during sorghum
200 malting and suggested that the model can be used to predict future values. It is known that when a
201 lack of fit exists, standard deviations for regression coefficients are overestimated, and this gives
202 rise to confidence intervals that are too large (26). As it can be seen in Table 3, Suppl. Tables S2 and
203 S4, in such a situation the acceptable values of R-sq and the R-sq (adj) do not guarantee the
204 goodness of the fit. The advantage of such models is to cover the whole process and therefore can
205 afford to give an idea of the germination time corresponding to the maximum for this enzyme
206 activity. We obtain an R-sq (adj) = 86.3 - 96.0% using the 2nd OPM but the p-value for the lack of
207 fit was less than 0.05 (Table 2). The same observation is made with the GLM which gave an R-sq
208 (adj) = 82.82% but the lack of fit was not significant. From this point of view, W-4-P M presented
209 significant goodness, the lack of all fits was not significant except for the model obtained from the
210 steeping treatment C followed by germination at 35°C (see Table 2).

211 During the malting process the effect of conditions created by the maltster must be evaluated
212 correctly to be sure whether or not malting conditions have to be improved because during
213 germination, on the one hand there are a series of reactions that take place in the non-living part of
214 the grain (endosperm), which can be controlled by the maltster and on the other hand all reactions
215 taking place in the living part of the grain are highly regulated (27). The sensitivity of enzyme
216 synthesizing cells varies, so that the aleurone layer cells are not affected by the level of sugars while
217 in the embryo; the repression of the enzymes synthesis is effective (28). In sorghum, it has been
218 reported that the synthesis of enzymes during germination is mainly achieved in the scutellum
219 (29,30) and therefore more sensitive to repression by sugars. The conditions affecting the
220 occurrence of these two phases are strongly influenced by the conditions of malting (effect of
221 malting conditions on the hydrolysis of the endosperm reserve, etc.). From this point of view the W-
222 4-PM clearly highlights the effect of steeping and germination conditions on α -amylase activity
223 during malting. The ST affects the grain capacity ($\partial \ln \alpha / \partial \ln BSP = 0.08306$) and the germination
224 temperature affects the rate of the α -amylase increase ($\partial \beta / \partial GT = -0.02775$) as shown in Fig. 2.

225 Contrary to α -amylase activity, it had been shown that GT affects negatively the rate of the β -
226 amylase increase (5, 15).

227 It is therefore understandable that the value of $AA\omega$ estimated in this study is only a potential value.
228 This model is cut by the curve of the repression phase of the α -amylase activity (see Fig. 1c.
229 experimental values). The true maximum is found at the intersection of the two models with two
230 different bases: that is to say the junction of the induction phase and that of the repression phase. It
231 explains the peak obtained early (around 72 h germination) with a germination temperature of 35°C
232 (Fig. 1c.). Knowledge of this phenomenon is crucial. Indeed, when comparing two steeping
233 treatments one tends to fix conditions for germination. However, the steeping treatment and
234 germination temperature have an effect over time after which this maximum is reached. Thus we
235 perceive that two treatments should not be compared on this basis. This is one of the advantages of
236 the W-4-PM; taking into account the effect of steeping conditions on the one hand and that of
237 germination conditions on the other hand.

238 Conclusion

239 The α -amylase activity time course during the first germination phase, characterized by the
240 induction of the α -amylase activity, can be suitably modelled using the W-4-PM with significant
241 goodness of fit (all models obtained haven't presented significant lack of fit except the fit obtained
242 with the control (C) when the germination temperature was 35°C). The advantage of such a model
243 is to highlight the effect of steeping and germination conditions. The W-4-PM hasn't been used to
244 model the entire germination step as the second phase of this process is highly regulated and should
245 be approached differently. This limitation of the model isn't a problem when the objective is the
246 monitoring of the malting process. In fact, despite the importance of α -amylase during malting,
247 what is sought is not always the maximum of this activity, but a compromise between a range of
248 characteristics: the other enzymatic activity levels (β -amylase, α -glucosidase, limit dextrinase, β -
249 glucanase, endo- and exo-peptidases, etc.), the reduction of the Total Malting Loss, the achievement

250 of good grain modification level, reduced phenolic compounds content, etc.

251 **Acknowledgments**

252 The authors gratefully acknowledge the financial support from the “Conseil de Recherche of
253 Gembloux Agrobiotech”.

254 **References**

- 255 1. Laitila, A. (2007) Microbes in the tailoring of barley malt properties, *Academic dissertation in*
256 *microbiology, University of Helsinki.*
- 257 2. Lowe, D.P. and Arendt, E.K. (2004) The use and effects of lactic acid bacteria in malting and
258 brewing with their relationships to antifungal activity, mycotoxins and gushing: A Review. *J. Inst.*
259 *Brew.*, 110(3), 163–180.
- 260 3. Lefyedi, M.L. and Taylor, J.R.N. (2007) Control of the growth of coliforms and moulds in Sorghum
261 malting by bacterial and yeast cultures. *J. Inst. Brew.*, 113(2), 123–129.
- 262 4. Bwanganga, T.J-C., Béra, F. and Thonart, P. (2012) Optimizing red sorghum malt quality when
263 *Bacillus subtilis* is used during steeping to control mold growth. *J. Inst. Brew.* 118 (3), 295-304.
- 264 5. Bwanganga, T.J-C., Béra, F. and Thonart, P. (2013) Modelling the β -amylase activity during red
265 sorghum malting when *Bacillus subtilis* is used to control mould growth. *Journal of Cereal*
266 *Science* 57, 115-119.
- 267 6. Evans, D.E., Wegen, B.V., Eglinton, J., Collins, H., McCafferty, C. and Barr, A.R. (n.d.) Potential
268 to modify wort fermentability by the thermostability of the α -amylase, β -amylase and limit
269 dextrinase diastatic power enzymes, TIAR, University of Tasmania, Sandy Bay, Tas 7005,
270 Australia; Dept of Plant Science, Waite Campus, University of Adelaide, Glen Osmond, SA 5064,
271 Australia.

272 7. Letsididi R., Bulawayo B., Kebakile M., Ezeogu L.I. (2008) Evaluation of indigenous Botswana
273 sorghum cultivars with respect to their diastatic power, α -amylase, β -amylase, and limit dextrinase
274 potentials for malting. *J. Am. Soc. Brew. Chem.*, 66, 29-36.

275 8. De Clerck, J. (1962) Cours de brasserie, 2ème Ed., Vol.I : « Matières premières, Fabrication,
276 Installations » ; Université Catholique de Louvain – Institut Agronomique, Section Brasserie,
277 Belgique.

278 9. Egwim, C.E., Adenomon, O.M. (2009) Predicting α -amylase yield and malt quality of some
279 sprouting cereals using 2nd order polynomial model. *African Journal of Biochemistry Research* 3
280 (8), 288–292.

281 10. Ezeogu, L.I. and Okolo, B.N. (1996) Enhancement of amylolytic potential of sorghum malts by
282 alkaline steep treatment. *J. Inst. Brew.*, 102, 79–85.

283 11. Dewar, J. and Orovan, E. (1997) Effect of alkaline steeping on water uptake and malt quality in
284 sorghum. *J. Inst. Brew.*, 103, 283–285.

285 12. Beta, T., Rooney, L.W., Marovatsanga, L.T. and Taylor, J.R.N. (2000) Effect of chemical
286 treatment on polyphenols and malt quality in sorghum. *J. Cereal Sci.*, 31, 295–302.

287 13. Dewar, J., Taylor, J.R.N. and Berjak, P. (1997) Determination of improved steeping conditions
288 for sorghum malting. *J. Cereal Sci.*, 26, 129–136.

289 14. Ezeogu, L.I. and Okolo, B.N. (1994) Effect of final warm water steep and air rest cycles on
290 malt properties of three improved Nigerian sorghum cultivars. *J. Inst. Brew.*, 100, 335–338.

291 15. Taylor, J.R.N. and Robbins, D.J. (1993) Factors influencing β -amylase activity in sorghum
292 malt. *J. Inst. Brew.*, 99, 413–416.

293 16. Taylor, J.R.N., Schober, T.J. and Bean, S.R. (2006) Novel food and non-food uses for sorghum
294 and millets. *J. Cereal Sci.* 44, 252–271.

295 17. Bekele, A., Bultosa, G. and Belete, K. (2012) The effect of germination time on malt quality
296 of six sorghum (*Sorghum bicolor*) varieties grown at Melkassa, Ethiopia. *J. Inst. Brew.*, 118,
297 76–81.

298 18. Pagano, E.A., Benech-Arnold, R.L., Wawrzkiewicz, M. and Steinbach, H.S. (1997) α -Amylase
299 activity in developing sorghum caryopses from sprouting resistant and susceptible varieties. The
300 role of ABA and GAs on its regulation. *Annals of Botany*, 79 (1), 13–17.

301 19. León, P. and Sheen, J. (2003) Sugar and hormone connections. *TRENDS in Plant Science*, 8,
302 110–116.

303 20. Koch, K.E. (1996) Carbohydrate modulated gene expression in plants. *Annu. Rev. Plant
304 Physiol. Plant Mol. Biol.* 47, 509–540.

305 21. Sheen, J., Zhou, L. and Jang, J.C. (1999) Sugars as signaling molecules. *Curr. Opin. Plant
306 Biol.*, 2, 410–418.

307 22. Ohto, M., Onai, K., Furukawa, Y., Aoki, E., Araki, T. and Nakamura, K. (2001) Effects of
308 sugar on vegetative development and floral transition in *Arabidopsis*. *Plant Physiol.*, 127, 252–261.

309 23. Koch, K. (2004) Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar
310 sensing and plant development. *Curr. Opin. Plant Biol.*, 7, 235–246.

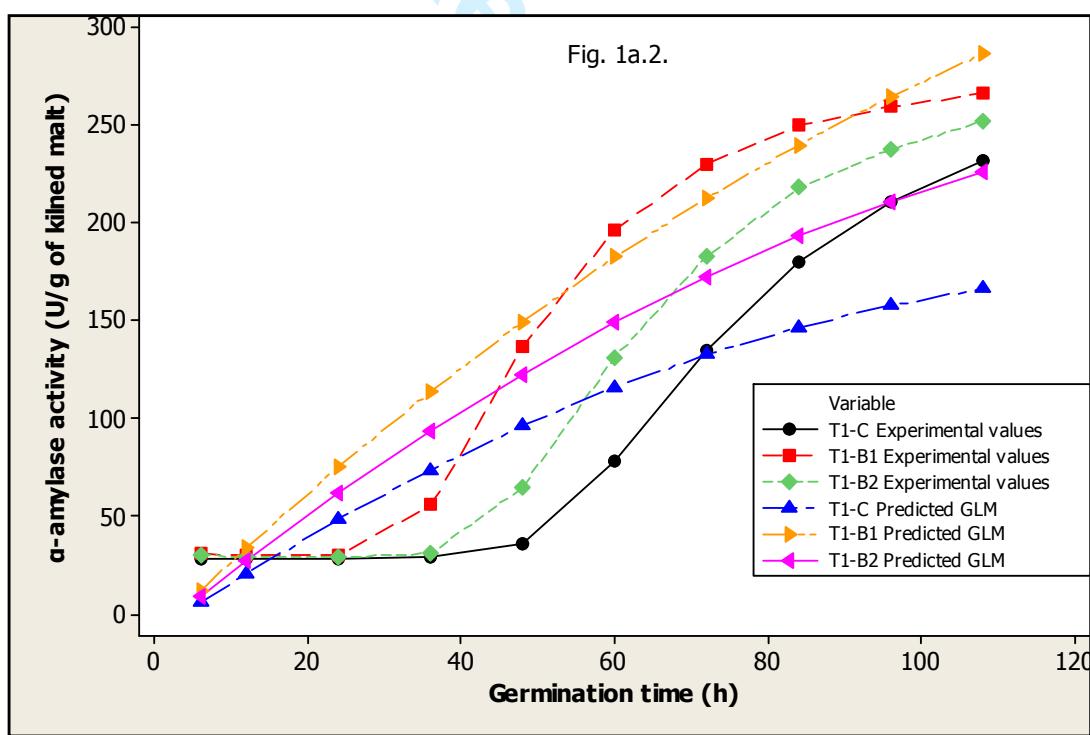
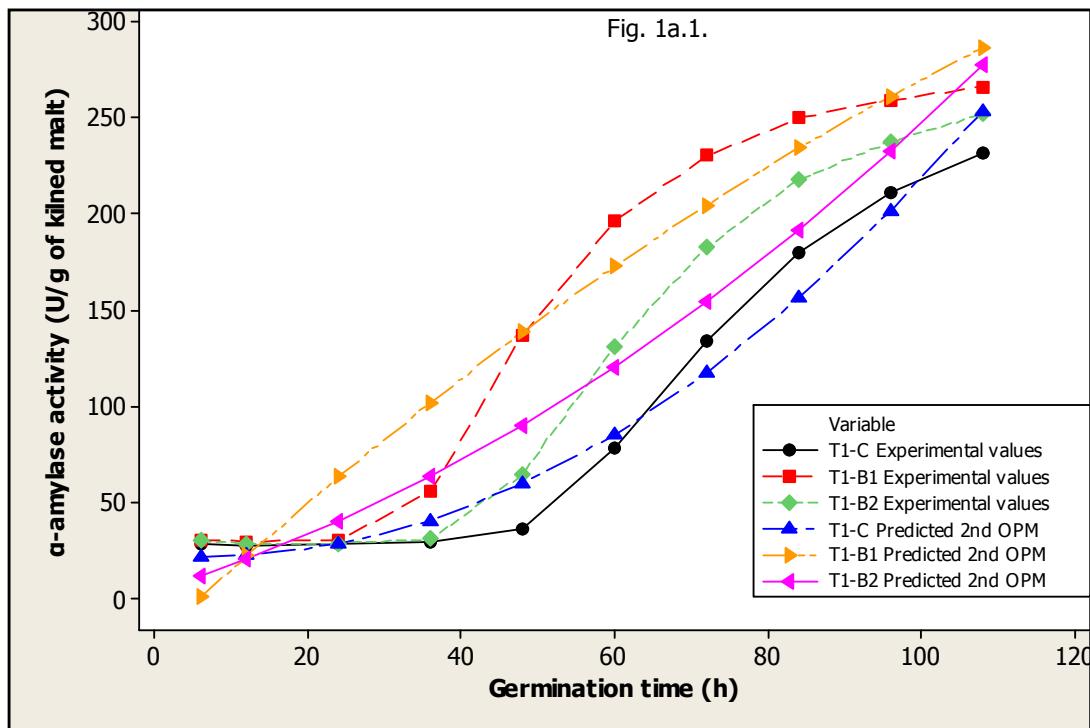
311 24. Hamaker, B.R., Kirleis, A.W., Butler, L.G., Axtell, J.D. and Mertz, E.T. (1987) Improving the
312 in vitro protein digestibility of sorghum with reducing agents. *Proc Natl Acad Sci USA* 84,
313 626–628.

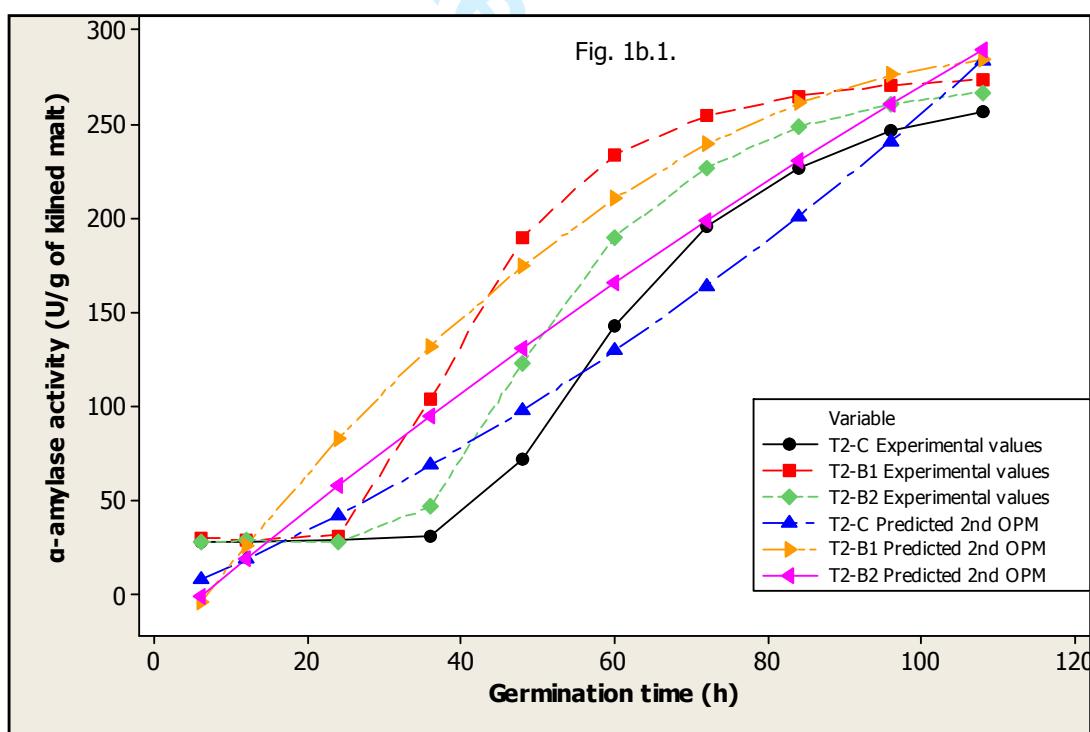
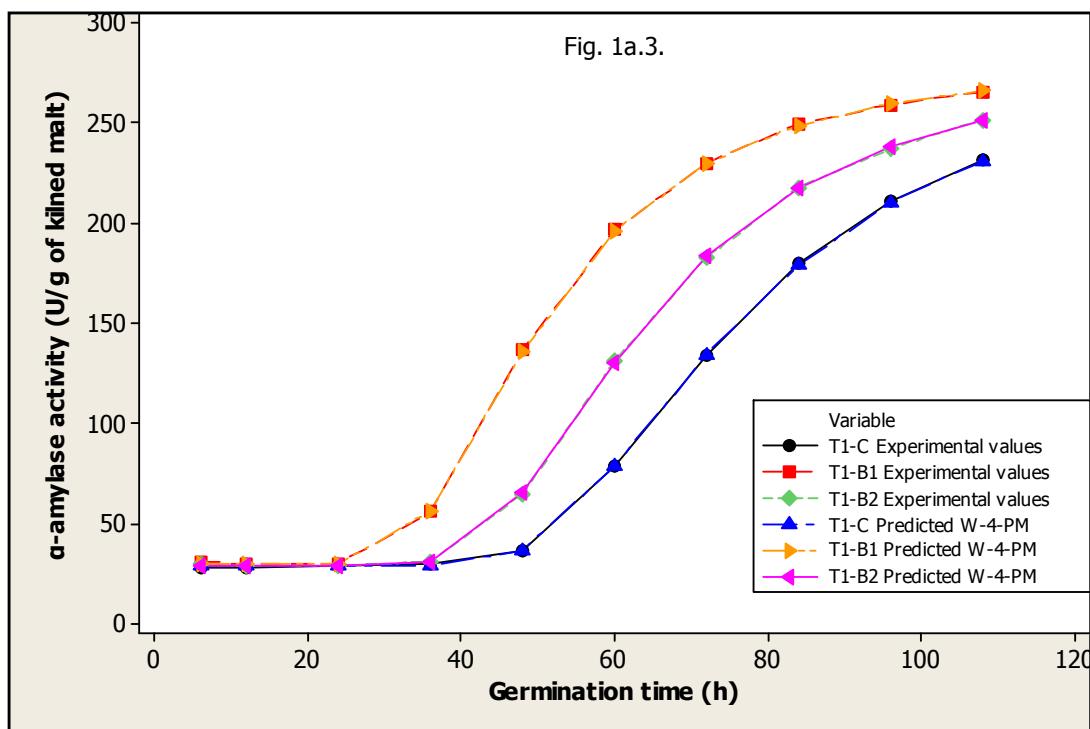
314 25. Iwuoha, C.I. and Aina, J.O. (1997) Effects of steeping condition and germination time on the
315 alpha-amylase activity, phenolics content and malting loss of Nigerian local red and hybrid short
316 Kaura sorghum malts. *Food Chemistry*, 58 (4), 289–295.

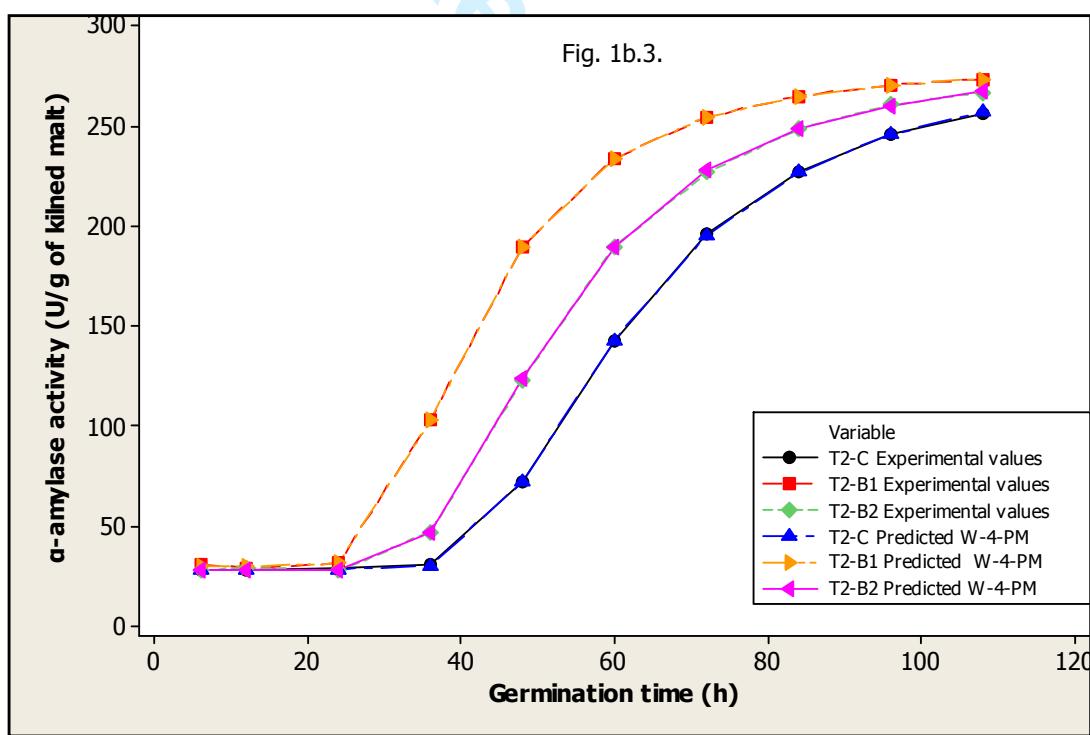
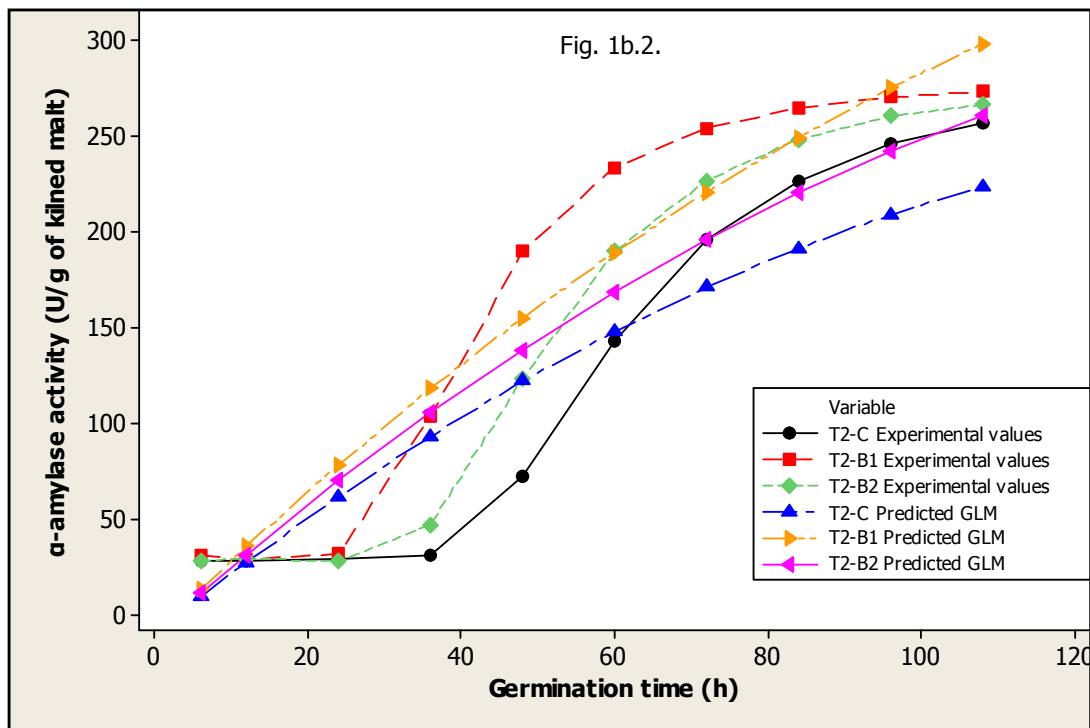
317 26. Martínez, A., Riu, J. and Rius, F.X. (2000) Lack of fit in linear regression considering errors
318 in both axes. *Chemometrics and Intelligent Laboratory Systems*, 54, 61–73.

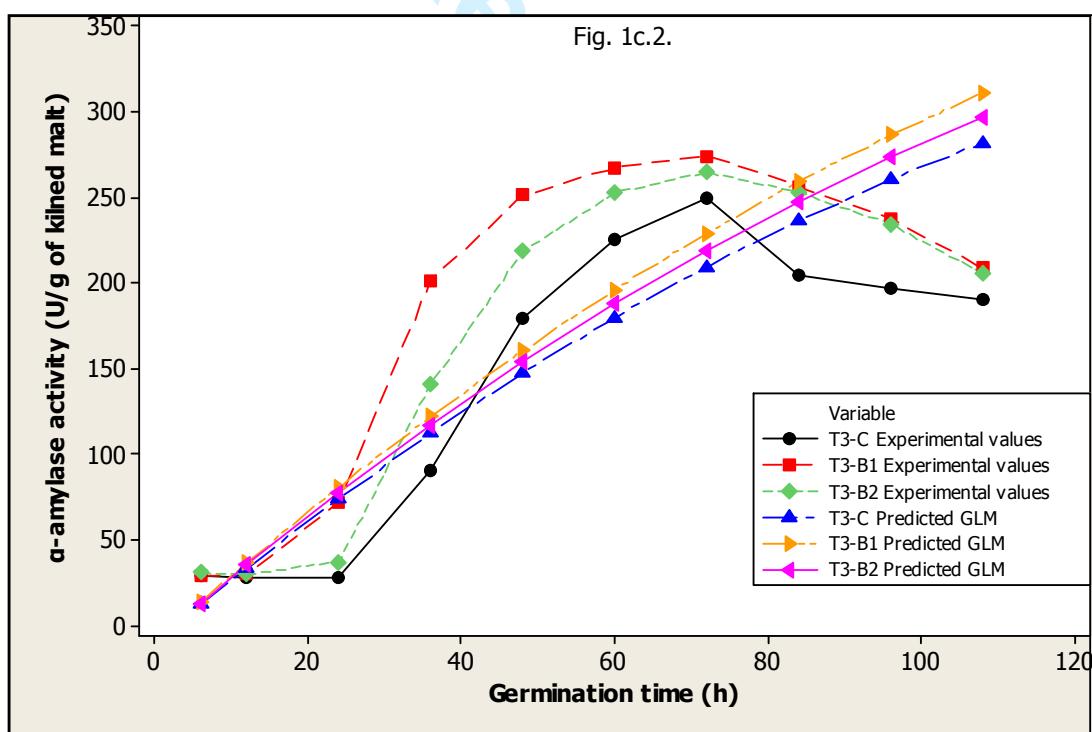
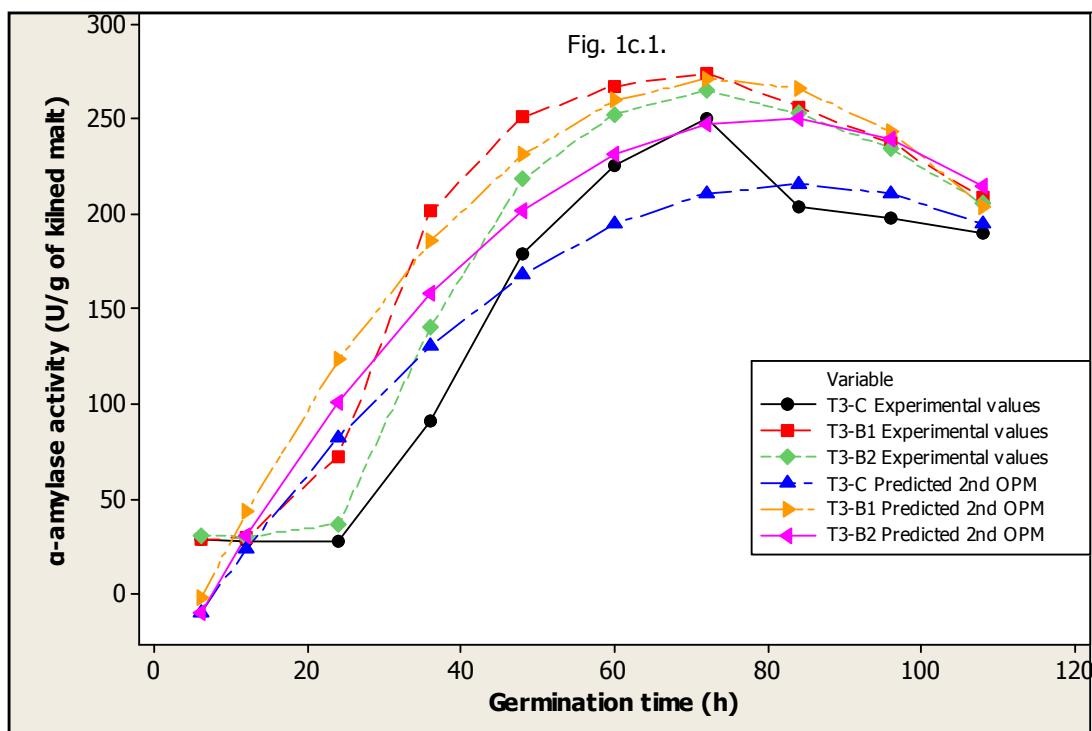
319 27. Lewis, M.J. and Bamforth, C.W. (2006) Essays in brewing science. University of California-
320 Davis, California USA.

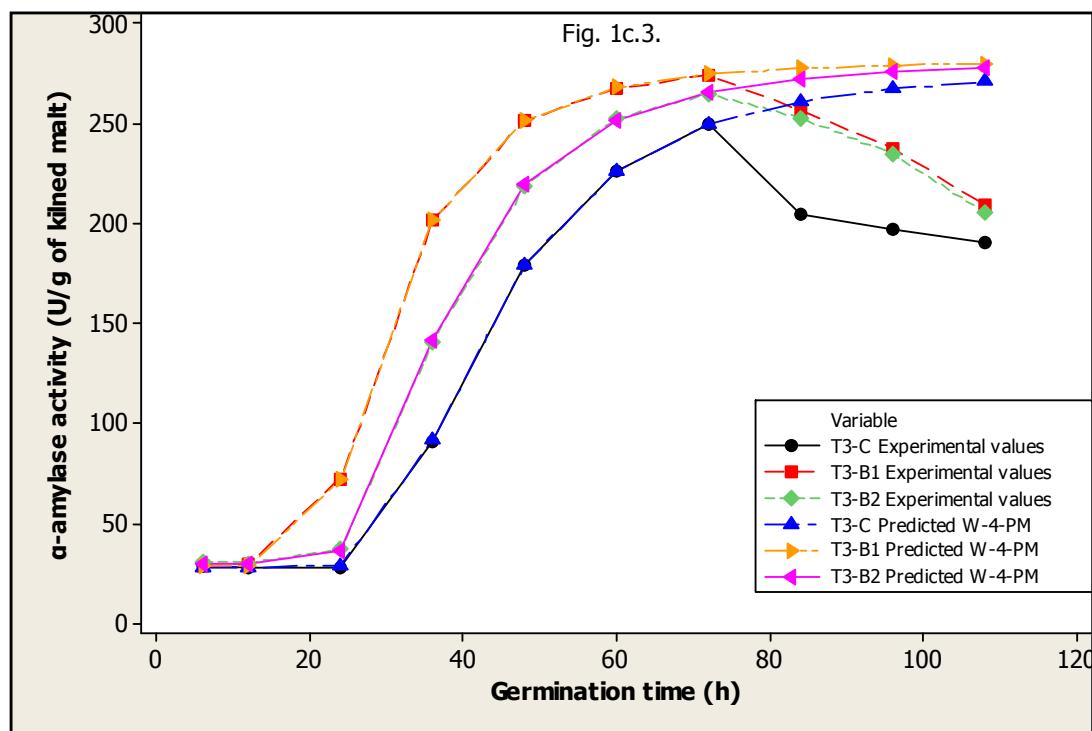
321 28. Perata, P., Matsukura, P., Vernieri, C. and Yamaguchi, J. (1997) Sugar Repression of a
322 Gibberellin-Dependent Signaling Pathway in Barley Embryos. *The Plant Cell*, 9, 2197–2208.



323 29. Aisien, A.O. (1982) Enzymic modification of sorghum endosperm during seedling growth



324 and malting. *J. Food Sci. Agric.*, 33, 754–759.



325 30. Aisien, A.O. and Palmer, G.H. (1983) The sorghum embryo in relation to the hydrolysis of



326 the endosperm during germination and seedling growth. *J. Food Sci. Agric.*, 34, 113–124.


For Review Only

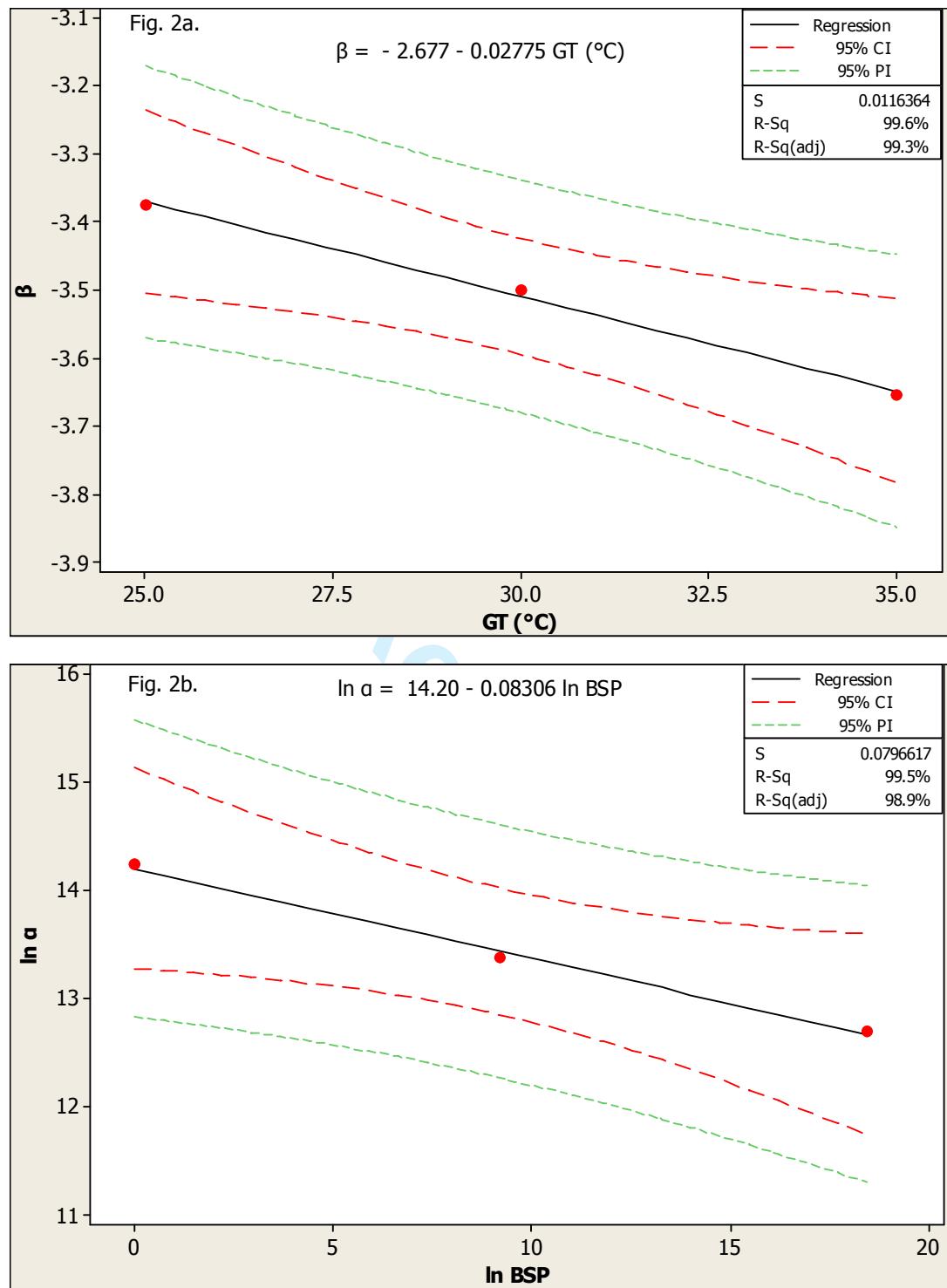


Table 1. Three-way Analysis of Variance for α -amylase activity

Source	DF	SS	MS	F	P
GT	2	77733	38866	19755.61	0.000
ln BSP	2	88332	44166	22449.49	0.000
GD	9	2075955	230662	117244.42	0.000
GT*ln BSP	4	1359	340	172.75	0.000
GT*GD	18	183965	10220	5194.92	0.000
ln BSP*GD	18	48361	2687	1365.64	0.000
GT*ln BSP*GD	36	19158	532	270.49	0.000
Error	180	354	2		
Total	269	2495216			

S = 1.40263 R-Sq = 99.99% R-Sq(adj) = 99.98%

GT: germination temperature, BSP: *Bacillus subtilis* population, GD: germination time.

For Review Only

Table 2. Kinetic parameters of W-4-PM and 2nd OPM

Germination Temperature (°C)	Steeping Treatment	W-4-PM			2nd OPM				
		ln α	β	Lack of fit (p-value)	a	b	c	R-sq (%)	R-sq(adj)
25	C	14.4032972	-3.40443	0.696	23.3	-0.342	0.0229	96.4	96.2
	B1	12.7068479	-3.32415	0.507	-21.2	3.72	-0.00810	93.6	93.2
	B2	13.8054602	-3.39737	0.600	4.3	1.20	0.0123	94.4	94.0
30	C	14.2209757	-3.53351	0.423	-2.2	1.63	0.00939	93.8	93.4
	B1	12.7938593	-3.5137	0.713	-36.5	5.55	-0.0239	94.4	94.0
	B2	13.3374748	-3.45218	0.417	-20.9	3.40	-0.00485	93.5	93.0
35	C	14.0778748	-3.4764	0.000	-45.3	6.22	-0.0370	87.3	86.3
	B1	12.6115378	-3.79624	0.125	-52.6	8.74	-0.0589	94.8	94.4
	B2	12.9715405	-3.6857	0.591	-53.3	7.57	-0.0471	91.7	91.1

Table 3. Goodness of fit

	GLM	2ndOPM	W-4-PM
MSE	1568.49096	570.669896	0.90030675
RMSE	39.6041786	23.8886981	0.94884496

For Review Only

Figure captions

Figure 1. Experimental and 2nd OPM, GLM and W-4-PM predicted data (at different temperatures: T1=25°C, T2=30°C and T3=35°C for different steeping treatments: B1 and B2 refer, respectively, to the treatments containing 10⁸ and 10⁴ cells/ml and C refers to the treatment with distilled water alone in the second phase of steeping)

Figure 2a. Effect of germination temperature (GT) on the rate of α -amylase synthesis (α : a parameter of the W-4-PM).

Figure 2b. Effect of steeping treatment on the capacity of the α -amylase synthesis. BSP: *Bacillus subtilis* Population, β : a parameter of the W-4-PM.

For Review Only

Table S1. General Linear Model Stepwise regression

Step	1	2	3	4	5	6	7	8
Constant	11.028	9.802	7.672	-9.971	-22.705	-22.705	-202.3	-216.5
GT*GD	0.0813	0.0702	0.0720	0.1067	0.0592	0.0458	-0.034	-0.034
T-Value	30.29	24.43	24.71	12.95	4.14	5.06	-2.07	-2.09
P-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.037
lnBSP*GD		0.0385	0.1055	0.1744	0.0799	0.0363	0.0363	0.0159
T-Value		7.38	4.25	6.11	2.19	7.39	7.82	1.81
P-Value		0.000	0.000	0.000	0.029	0.000	0.000	0.071
GT*lnBSP*GD			-0.00229	-0.00455	-0.00145			
T-Value			-2.75	-4.79	-1.21			
P-Value			0.006	0.000	0.229			
GD^2				-0.0097	-0.0150	-0.0150	-0.0150	-0.0150
T-Value				-4.47	-6.03	-6.03	-6.38	-6.46
P-Value				0.000	0.000	0.000	0.000	0.000
GD					2.08	2.48	4.87	5.05
T-Value					4.01	6.23	8.66	9.04
P-Value					0.000	0.000	0.000	0.000
GT							6.0	6.0
T-Value							5.72	5.79
P-Value							0.000	0.000
ln BSP								1.54
T-Value								2.74
P-Value								0.007
S	45.9	41.9	41.4	40.0	38.9	38.9	36.8	36.3
R-Sq	77.40	81.23	81.75	83.03	84.00	83.92	85.69	86.09
R-Sq(adj)	77.31	81.09	81.54	82.77	83.70	83.67	85.42	85.77
Mallows Cp	159.0	89.0	81.2	59.1	42.8	42.4	11.1	5.6

Table S2: 2nd OPM regression analysis

c) Germination temperature = 25°C

AA (for T1, C) = 23.3 - 0.342 GD + 0.0229 GD²					
Predictor Coef SE Coef T P					
Constant	23.285	8.114	2.87	0.008	
GD	-0.3424	0.3474	-0.99	0.333	
GD2	0.022885	0.003018	7.58	0.000	
S = 15.7074 R-Sq = 96.4% R-Sq(adj) = 96.2%					
Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	2	179331	89665	363.43	0.000
Residual Error	27	6661	247		
Lack of Fit	7	6647	950	1319.73	0.000
Pure Error	20	14	1		
Total	29	185992			
AA (for T1, B1) = - 21.2 + 3.72 GD - 0.00810 GD²					
Predictor Coef SE Coef T P					
Constant	-21.19	13.43	-1.58	0.126	
GD	3.7164	0.5752	6.46	0.000	
GD2	-0.008097	0.004998	-1.62	0.117	
S = 26.0080 R-Sq = 93.6% R-Sq(adj) = 93.2%					
Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	2	269210	134605	199.00	0.000
Residual Error	27	18263	676		
Lack of Fit	7	18248	2607	3343.61	0.000
Pure Error	20	16	1		
Total	29	287473			
AA (for T1, B2) = 4.3 + 1.20 GD + 0.0123 GD²					
Predictor Coef SE Coef T P					
Constant	4.35	11.54	0.38	0.709	
GD	1.2018	0.4939	2.43	0.022	
GD2	0.012288	0.004291	2.86	0.008	
S = 22.3315 R-Sq = 94.4% R-Sq(adj) = 94.0%					
Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	2	227745	113872	228.34	0.000
Residual Error	27	13465	499		
Lack of Fit	7	13447	1921	2155.67	0.000
Pure Error	20	18	1		
Total	29	241210			

b) Germination temperature = 30°C

AA (for T2, C) = - 2.2 + 1.63 GD + 0.00939 GD²

Predictor	Coef	SE Coef	T	P
Constant	-2.19	12.62	-0.17	0.863
GD	1.6345	0.5404	3.02	0.005
GD2	0.009394	0.004695	2.00	0.056

S = 24.4324 R-Sq = 93.8% R-Sq(adj) = 93.4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	245571	122786	205.69	0.000
Residual Error	27	16117	597		
Lack of Fit	7	16097	2300	2249.21	0.000
Pure Error	20	20	1		
Total	29	261689			

AA (for T2, B1) = - 36.5 + 5.55 GD - 0.0239 GD²

Predictor	Coef	SE Coef	T	P
Constant	-36.47	13.16	-2.77	0.010
GD	5.5480	0.5633	9.85	0.000
GD2	-0.023936	0.004894	-4.89	0.000

S = 25.4700 R-Sq = 94.4% R-Sq(adj) = 94.0%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	295351	147676	227.64	0.000
Residual Error	27	17515	649		
Lack of Fit	7	17489	2498	1867.98	0.000
Pure Error	20	27	1		
Total	29	312866			

AA (for T2, B2) = - 20.9 + 3.40 GD - 0.00485 GD²

Predictor	Coef	SE Coef	T	P
Constant	-20.93	13.82	-1.51	0.142
GD	3.3982	0.5918	5.74	0.000
GD2	-0.004849	0.005142	-0.94	0.354

S = 26.7602 R-Sq = 93.5% R-Sq(adj) = 93.0%

Analysis of Variance

Regression	DF	SS	MS	F	P
Residual Error	27	276520	138260	193.07	0.000
Lack of Fit	7	19335	716		
Pure Error	20	19312	2759	2401.37	0.000
Total	29	295855			

c) Germination temperature = 35°C

AA (for T3, C) = - 45.3 + 6.22 GD - 0.0370 GD²

Predictor	Coef	SE Coef	T	P
Constant	-45.34	16.34	-2.77	0.010
GD	6.2175	0.6998	8.89	0.000
GD2	-0.036977	0.006080	-6.08	0.000

S = 31.6398 R-Sq = 87.3% R-Sq(adj) = 86.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	184974	92487	92.39	0.000
Residual Error	27	27029	1001		
Lack of Fit	7	26947	3850	940.58	0.000
Pure Error	20	82	4		
Total	29	212003			

AA (for T3, B1) = - 52.6 + 8.74 GD - 0.0589 GD²

Predictor	Coef	SE Coef	T	P
Constant	-52.57	11.72	-4.49	0.000
GD	8.7384	0.5017	17.42	0.000
GD2	-0.058856	0.004359	-13.50	0.000

S = 22.6853 R-Sq = 94.8% R-Sq(adj) = 94.4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	253300	126650	246.10	0.000
Residual Error	27	13895	515		
Lack of Fit	7	13838	1977	693.65	0.000
Pure Error	20	57	3		
Total	29	267194			

AA (for T3, B2) = - 53.3 + 7.57 GD - 0.0471 GD²

Predictor	Coef	SE Coef	T	P
Constant	-53.28	14.67	-3.63	0.001
GD	7.5719	0.6283	12.05	0.000
GD2	-0.047090	0.005459	-8.63	0.000

S = 28.4078 R-Sq = 91.7% R-Sq(adj) = 91.1%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	241721	120860	149.76	0.000
Residual Error	27	21789	807		
Lack of Fit	7	21692	3099	637.03	0.000
Pure Error	20	97	5		
Total	29	263510			

Table S3. W-4-PM regression analysis

a) Germination temperature = 25°C

AA (for T1, C) = 28.8 + 251.8 * exp (-1.831*10⁶ * GD^{-3.40443})
Source DF SS MS F P
Error 22 62.1085 2.82311
Lack of fit 6 12.0526 2.00877 0.64 0.696
Pure Error 16 50.0559 3.12850
AA (for T1, B1) = 29.8 + 250.5 * exp (-333540 * GD-3.32415)
Source DF SS MS F P
Residual Error 22 84.0109 3.81868
Lack of fit 6 21.5233 3.58722 0.92 0.507
Pure Error 16 62.4876 3.90548
AA (for T1, B2) = 29.1 + 251.6 * exp (-997895 * GD-3.39737)
Source DF SS MS F P
Residual Error 22 64.8472 2.94760
Lack of fit 6 14.6137 2.43562 0.78 0.600
Pure Error 16 50.2335 3.13959

b) Germination time = 30°C

AA (for T2, C) = 28.2 + 252.8 * exp (-1520390 * GD^{-3.53351})
Source DF SS MS F P
Residual Error 22 48.9772 2.22624
Lack of fit 6 13.9662 2.32770 1.06 0.423
Pure Error 16 35.0110 2.18819
AA (for T2, B1) = 29.8 + 250.0 * exp (-361059 * GD^{-3.5137})
Source DF SS MS F P
Residual Error 22 27.8758 1.26708
Lack of fit 6 5.2512 0.87519 0.62 0.713
Pure Error 16 22.6246 1.41404
AA (for T2, B2) = 28.1 + 253.3 * exp (-617336 * GD^{-3.45218})
Source DF S MS F P
Residual Error 22 187.990 8.54500
Lack of fit 6 54.066 9.01096 1.08 0.417
Pure Error 16 133.924 8.37026

c) Germination temperature = 35°C

$$\text{AA (for T3, C)} = 28.1 + 250.3 * \exp(-353576 * \text{GD}^{-3.4764})$$

Source	DF	SS	MS	F	P
Residual Error	13	748.140	57.549		
Lack of fit	3	719.937	239.979	85.09	0.000
Pure Error	10	28.203	2.820		

$$\text{AA (for T3, B1)} = 28.8 + 252.6 * \exp(-307238 * \text{GD}^{-3.79624})$$

Source	DF	SS	MS	F	P
Residual Error	13	55.5943	4.27648		
Lack of fit	3	23.4807	7.82691	2.44	0.125
Pure Error	10	32.1135	3.21135		

$$\text{AA (for T3, B2)} = 29.7 + 251.2 * \exp(-446978 * \text{GD}^{-3.68857})$$

Source	DF	SS	MS	F	P
Residual Error	13	48.1187	3.70144		
Lack of fit	3	8.0191	2.67303	0.67	0.591
Pure Error	10	40.0996	4.00996		

Review Only

Table S4. GLM regression analysis

The regression equation is					
$AA = -9.97 + 0.107 GT*GD + 0.174 \lnBSP*GD - 0.00455 GT*\lnBSP*GD - 0.00967 GD^2$					
Predictor	Coef	SE Coef	T	P	
Constant	-9.971	6.060	-1.65	0.101	
GT*GD	0.106678	0.008237	12.95	0.000	
lnBSP*GD	0.17443	0.02853	6.11	0.000	
GT*lnBSP*GD	-0.0045463	0.0009484	-4.79	0.000	
GD^2	-0.009667	0.002161	-4.47	0.000	
S = 39.9741 R-Sq = 83.0% R-Sq(adj) = 82.8%					
Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	4	2071765	517941	324.13	0.000
Residual Error	265	423451	1598		
Lack of Fit	85	423097	4978	2530.10	0.000
Pure Error	180	354	2		
Total	269	2495216			

Review Only