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ABSTRACT
In this paper, a new contact formulation defined between

flexible bodies modeled as superelements is investigated. Un-
like rigid contact models, this approach enables to study the de-
formation and vibration phenomena induced by hard contacts.
Compared with full-scale finite element models of flexible bod-
ies, the proposed method is computationally more efficient, espe-
cially in case of a large number of bodies and contact conditions.
The compliance of each body is described using a reduced-order
elastic model which is defined in a corotational frame that fol-
lows the gross motion of the body. The basis used to reduce the
initial finite element model relies on the Craig-Bampton method
which uses both static boundary modes and internal vibration
modes. The formulation of the contact condition couples all de-
grees of freedom of the reduced model in a nonlinear way. The
relevance of the approach is demonstrated by simulation results
first on a simple example, and then on a gear pair model.

∗Address all correspondence to this author.

INTRODUCTION
Often, contact models used for dynamic simulations of

multibody systems are defined between rigid bodies. Various ap-
proaches are available to formulate the contact condition such as
the continuous contact modeling [1] or the nonsmooth contact
dynamics method [2]. These contact models are efficient to rep-
resent the interactions between bodies in large and complex me-
chanical systems. Their formulation is often compact and does
not require large computer resources if the number of bodies is
small. However, due to the rigidity assumption, it is not possible
to study the wave propagation caused by hard contacts or im-
pacts, so that the dynamic responses may be unrealistic. Refer-
ence [3] points out that for compliant gear bodies the flexibility
effects modify significantly the contact forces applied on teeth
and the motion of the whole gear pair system. With rigid body
models, this kind of dynamic behavior can not be reproduced.

An accurate way to account for flexibility effects in contact
situations is to rely on finite element models of bodies since this
approach allows a reliable description of deformation and vibra-
tion phenomena (see Ref. [4]). Nevertheless, if the number of
bodies and the number of contact conditions are large, the nu-
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merical simulation can become computationally inefficient with
large computational time and huge memory requirements. For
example, in order to model the contact between gear pairs, a very
fine mesh of the whole skin of the two rotating wheels would be
required, which would be quite expensive for a global dynamic
analysis [5].

A contact model at an intermediate detail level between the
two aforementioned categories is needed to simulate quickly and
properly the contacts included in multibody models of industrial
applications where the flexibility effects are not negligible.

The contact formulation presented in this paper is defined
between two flexible bodies modeled as superelements. One ma-
jor originality of the present work addresses the determination
of the spatial configuration of the potential contact zones from
the superelement variables. The contact forces computed in the
3D space are reformulated to load directly the superelement vari-
ables. This approach allows very compact models of contacting
bodies.

With the superelement method, the flexibility of each body
is described using an elastic reduced order model which is de-
fined in a corotational frame that follows the gross motion of
the body. In this substructuring technique, the basis used to re-
duce the initial finite element model relies on the Craig-Bampton
method which computes both static modes related to the bound-
ary nodes and vibration modes related to the internal nodes (see
Ref. [6]).

For systems with wide potential contact zones or with sev-
eral sliding contact paths, the size of the reduced model would
still be rather large if each potential contact node has to be re-
tained. For instance, in the model of a gear pair, all the nodes on
the teeth flanks can enter in contact during the gear mesh. In the
formulation developed in this work, in order to keep the model
compact, all the candidate contact nodes do not necessarily have
to be included in the set of boundary nodes. Only a couple of
nodes, not compulsorily located on the contact zone, has to be
selected as boundary nodes, so that a large number of nodes of
the skin can still be condensed. The implementation is carried
out with absolute nodal coordinates which are well suited with
the superelement formulation described in Ref. [7].

At each time step, according to the component mode synthe-
sis, the 3D topology of candidate contact zones is reconstructed
from the generalized coordinates of the superelement (position
and orientation of the corotational frame, positions of the bound-
ary nodes, internal variables) and the global shape function of
static and dynamic modes. From the absolute positions of the
candidate contact node, a node-to-face projection algorithm is
used to detect the active contact zone. The contact forces are
evaluated by a contact law based on a penalty method with stiff-
ness and damping contributions. Then, these contact forces are
transferred to all coordinates of the reduced model in a nonlinear
way.

In the sequel of this paper, the superelement formulation as

well as the corotational frame definition used in this study are
briefly presented. Then, the various steps of the contact detection
algorithm will be looked over. The contact law and the expres-
sion of the contact forces are described next. Finally, the rele-
vance of the approach for the dynamic analysis of transmission
devices is demonstrated through simulation results of a simpli-
fied example first, and then on a gear pair model.

EQUATIONS OF MOTION IN DYNAMICS
Using absolute nodal coordinates, the system configuration

is represented with respect to a unique inertial frame. The dy-
namics of a system including holonomic bilateral constraints is
described by Eqn. (1-2),

M(q) q̈+g(q, q̇, t)+ΦT
q (pΦ+ kλ ) = 0 (1)

k Φ(q, t) = 0 (2)

where q, q̇ and q̈ are the generalized displacements, veloc-
ities and acceleration coordinates, M(q) is the mass matrix,
g(q, q̇, t) = ggyr(q, q̇)+gint(q, q̇)−gext(t) is a global forces vec-
tor where ggyr states for the vector of the complementary inertia
forces, gint(q, q̇) the vector of the internal forces, e.g. contact,
elastic and dissipation forces, and gext(t) the vector of the ex-
ternal forces. According to the augmented Lagrangian method,
the constraint forces are formulated by ΦT

q (pΦ+kλ ) where λ is
the vector of Lagrange multipliers related to algebraic constraints
Φ = 0; k and p are respectively a scaling and a penalty factor to
improve the numerical conditioning.

Equations (1-2) form a system of nonlinear differential-
algebraic equations. The solution is evaluated step by step using
a generalized α-method which is a second order accurate time
integration scheme (see [8], [9]). At each time step, a system of
nonlinear algebraic equations has to be solved using a Newton-
Raphson iteration process.

SUPERELEMENT DESCRIPTION
The superelement technique adopted in this work relies upon

a nonlinear corotational formulation of a reduced-order model.
In case of large amplitude motions of dynamic multibody sys-
tems but undergoing only small strains, the only nonlinearities
result from geometric effects generated by large displacements.
In a local frame (floating [10] or corotational [11]) that follows
the gross motion of the flexible body, a simple linear elastic
model can thus be used to compute the elastic forces if the as-
sumption of small strains is adequate.

The position xP and the rotation matrix RP of each node P of
the initial finite element model of the flexible body can be written
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FIGURE 1. KINEMATICS OF A SUPERELEMENT.

as (see Fig 1):

xP = x0 +R0(XP +uP) (3)
RP = R0 R(γP) (4)

where x0 is the absolute position of the local reference frame,
R0 is the rotation matrix of the local frame about the inertial
frame, XP is the undeformed position of P in the local frame,
uP is its small elastic displacement in translation measured in the
local frame and γP is a set of parameters that represents the small
relative rotation with respect to the local frame.

The Craig-Bampton method is used to reduce the order of
the linear elastic model and therefore to decrease the number of
degrees of freedom of the initial finite element model. The basis
of this substructuring technique is to use by both static boundary
modes and internal vibration modes as ingredients of the com-
ponent mode synthesis (see Ref. [6]). This association of modes
allows to represent both the local deformations due to the forces
applied on the boundary nodes and the global deformations in-
volved by the dynamic behavior of the flexible body. The full set
of modes is collected in the matrix Ψ defined by:

Ψ =
[
ΨB ΨI

]
(5)

where ΨB are the static boundary modes which can be considered
as the static deformations obtained when unit displacements are
imposed successively on each interface degree of freedom; ΨI
are the internal modes related to the eigenmodes of the structure
when the boundary nodes are clamped.

The reduced stiffness and mass matrices associated to the

superelement are given by:

K = ΨT KΨ (6)

M = ΨT MΨ (7)

where K and M are the stiffness and mass matrices of the finite
element mesh before the model reduction.

{
u
γ

}
= Ψ η (8)

The reduction relationship (Eqn. 8) enables to accurately expand
the full vector of nodal elastic displacements in the local frame
(
{

uT γT}T ) in terms of a few global shape functions (Ψ) and
the vector of local coordinates (η) of the superelement expressed
in the corotational frame. The latter is defined by:

η =

uB
γB
ηI

 (9)

where uB, γB are the local displacement amplitude in translation
and rotation of the interface nodes; ηI are the modal amplitudes
of the internal modes.

The superlement formulation presented in this section is in-
spired from Ref. [7]. However, in contrast to this reference, the
position x0 and rotation variables α0 of the corotational frame
are included explicitly in the set q of generalized coordinates of
the superelement:

q =


x0
α0
xB
αB
ηI

 (10)

where xB are the global nodal positions and αB are the global
nodal rotation parameters of the boundary nodes. This approach
introduces 6 additional variables (x0,α0) in the set of general-
ized coordinates of the system and therefore increases the size
of the equations of motion. But this allows to simplify some
expressions, specially in the contact condition formulation and
the definition of the corotational frame as it will be shown in the
next Sections. A parametrization of spherical motion is used as
in Ref. [7].

The elastic forces in the absolute frame are expressed as:

gelastic = PT Kη (11)
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where P is a kinematic tangent matrix between infinitesimal vari-
ations of local coordinates η and absolute coordinates q:

δη = P(q) δq (12)

For the sake of conciseness the explicit expression of the
inertia and gyroscopic forces and their linearized form will not
be given in this paper but can be easily derived from [6].

COROTATIONAL FRAME DEFINITION
A corotational frame is attached to each body modeled by a

superelement and follows its gross motion. This local frame is
represented by the translation vector x0 of the frame origin and
the rotation matrix R0 which depends on the rotation variables
α0 and gives the orientation of the local frame about the iner-
tial frame. Several formulations are available to determine the
corotational frame. The simplest way consists in defining a refer-
ence frame that follows the translation and rotation of a selected
boundary node. However, with this method the mechanical re-
sponse of the superelement can depend on the chosen boundary
node. In [11], the position and orientation of the local frame
is obtained by a weighted mean of positions and orientations of
boundary nodes. The drawback of this formulation results from
complex relations between global and local variables involving
the multiplication of larges matrices.

The corotational frame definition used in this work requires
that the frame variables x0, α0 are independent variables and in-
cluded in the set q of generalized coordinates of the superelement
(Eqn. 10). A set of 6 kinematic constraints is needed to link these
local frame variables to the boundary node coordinates.

The boundary node displacements (uB,γB) expressed in the
corotational frame depend on the corotational frame variables
(x0,α0). Small variations of (x0,α0) are equivalent to add a small
rigid body motion to the relative displacements and rotations.
The aim of the constraints (Eqn. 13) is to minimize the part de-
pending on the rigid body motion in the boundary node displace-
ments. To reach this objective, the product of the rigid body
motion defined in the corotational frame (τrig) by the relative dis-
placements and rotations (ηB) should be equal to zero. The part
of the reduced mass matrix related to the boundary nodes (MB)
is inserted as scaling factor of the various boundary nodes.

Φ(q)≡ τT
rig MB ηB(q) = 0 (13)

The matrix of the 6 rigid body modes in the corotational frame is

given by:

τrig =


τrig,1

...
τrig,i

...
τrig,nb

 (14)

where each matrix τrig,i is related to the ith boundary node:

τrig,i =

[
I3×3 −X̃Bi
03×3 I3×3

]
(15)

The first column represents the boundary modes in translation
and the second column, the modes in rotation. The skew-
symmetric matrix ã formed with the components of the vector a
is used to replace cross products by matrix products (a×b= ã b).

The corotational frame variables (x0,α0) do not appear ex-
plicitly in the constraint formulation (Eqn. 13), but the depen-
dence with these variables is included in the definition of the
local displacement vector (ηB) according to inverse expressions
of Eqn. (3-4).

Unlike both corotational frame formulations mentioned pre-
viously, the superelement frame can be defined even when the
boundary nodes have no rotational degrees of freedom, as it is
the case if the initial finite element model is meshed with volume
finite elements. With these kinematic constraints, at equilibrium
the values given to x0 and R0 can be interpreted as the position
and orientation of the center of gravity of the body. In addition
to x0 and α0 six more unknowns, the Lagrange multipliers, are
added for each superelement.

CONTACT DETECTION ALGORITHM
In order to determine the presence or absence of contact

for each point of candidate contact areas, a contact detection al-
gorithm based on a standard node-to-face projection method is
used. The goal of this search procedure is to find the nodes of the
slave body in contact with the element faces of the master body
(see Fig. 2) .

The contact detection algorithm used in this work is suit-
able for master triangular surface and can be summarized by the
following steps (Fig. 3):

• Computation of the absolute positions xCi , xNi of the can-
didate contact nodes respectively on slave and master body.
If the contact nodes are retained as superelement boundary
nodes, their position vectors are available in the vector q of
generalized coordinates. However, in case of a large number
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of potential contact nodes the size of the superelement ma-
trices could not be drastically reduce compared with initial
finite element model. The solution adopted in this study to
keep a compact superelement model, consists in computing
the absolute position of the candidate nodes at each itera-
tion according to Equations (3) and (8). In this way, only
a few boundary nodes per superelement are needed and the
accuracy of contact node positions computed depends on the
detail level provided by the reduction basis (Ψ).
The candidate contact nodes are a fixed set of nodes located
on the skin of the non-reduced model. These nodes are se-
lected by the model analyst during the model construction
and their absolute positions is computed at each simulation
time step.

• For each master contact face, determination of the normal
direction.

• Computation of the normal distance between each slave
node and the plane of each master surface.

• Computation of the absolute coordinates of the projection
point of the slave node onto the master face plane. This
step is only carried out if the normal distance of this pair is
negative.

• Determination of the projection point position in the surface
element. The barycentric coordinates are used to determine
whether if the projection point is inside or outside the sur-
face element. This operation is only achieved if the node
projected lies in the neighbourhood of the contact element.

The contact is active if the projection point is inside the master
element face and the normal distance between the slave node and
the master face is negative.

A similar contact detection procedure is described in Ref. [3]
for non-triangular faces on the master body. Nevertheless,
this method involves nonlinear relations and therefore needs a
Newton-Raphson iteration scheme to detect the active contact
nodes.

With a node-to-surface projection approach, it is often rec-
ommended that the mesh in contact zones is finer for the slave
body than for the master body. It allows avoiding unreliable ef-
fective contact zones and numerical problems which can affect
the robustness of the numerical simulation.

CONTACT LAW
For each superelement point in contact, the magnitude of the

contact force is computed with a penalty method depending on
the penetration length ℓ of the slave node inside the master face.
In addition to the stiffness term, this contact law (Eqn. 16) also
includes a hysteresis damping term which enables to represent
the kinetic energy loss in case of impact phenomena. In order to
avoid a jump at the beginning of the contact and tension force at
the end, the classical viscous damping term c ℓ̇ has been multi-

E1

E3

E2

xCi

master contact faces 

slave contact nodes 

n

d

xprojecxNi

FIGURE 2. PROJECTION OF SLAVE NODES ON MASTER
FACES.

FIGURE 3. FLOW CHART OF THE CONTACT DETECTION AL-
GORITHM.

plied by ℓ.
The contact law is expressed as:

f (ℓ, ℓ̇) =
{

kp ℓ+ c ℓ ℓ̇ if ℓ > 0 active contact
0 if ℓ < 0 no contact

(16)

where kp is the contact stiffness, also called penalty parameter
and c is the damping coefficient. The penetration length ℓ and
the penetration velocity ℓ̇ in the normal direction are computed
according to the following expressions:

ℓ = nT (xN1 −xCi) (17)
ℓ̇ = nT (ẋN1 − ẋCi)+(xN1 −xCi)

T ṅ (18)

CONTACT FORCE FORMULATION
The contact force (Eqn. 19) applied on each contact node of

the slave or the master body has its magnitude f defined by the
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FIGURE 4. KINEMATICS OF CONTACT FORCE.

contact law (Eqn. 16) and its direction given by the normal vector
n of the master contact surface involved in the slave-master pair
considered. For the master body, the participation factors w per-
mit to distribute the contact force on the master nodes delimiting
the master surface (see Fig. 4). In case of triangular contact faces,
these participation factors are equivalent to the barycentric coor-
dinates already computed in the detection algorithm presented in
the previous Section. For the slave body, the parameter w is ob-
viously always equal to one because the contact force amplitude
is computed at this node.

fc = w f n (19)

The contact nodes can be interpreted as virtual nodes since
they do not necessarily correspond to the superelement boundary
nodes. Therefore, each contact force applied on these virtual
nodes has to be transfered to the generalized coordinates vector
q of the superelement, loading thus the boundary nodes and the
modal variables.

Since the contact force model is based on a penalty method,
no kinematic constraint is involved and the contribution of this
force element to the motion equations (Eqn. 1) of the multibody
sysem is only contained in the term of internal forces, gint(q, q̇).
The virtual work principle is used in order to find the internal
force vector inherent in each nodal contact force:

δW con
Ci

= δxT
Ci

fc (20)

The virtual displacements δxCi of the contact points are easily
obtained by deriving Equation (3):

δxCi = δx0 −R0 ˜(XCi +uCi) δΘ0 +R0 δuCi (21)

= δx0 −R0
˜(

XCi +ΨCi η
)

δΘ0 +R0ΨCi P δq (22)

where ΨCi are the 3 rows of the mode matrix Ψ linked to the ith

contact node, δΘ0 is the vector of virtual rotation in the corota-
tional frame such that δ̃Θ0 = RT

0 δR0 (see Ref. [11]).
The internal force vector gcon

Ci
(Eqn. 24) corresponding to

the contact force fc can now be easily obtained by identifica-
tion with the classical virtual work expression for a force element
(Eqn. 23):

δW = δqT gint (23)

gint,con
Ci

= PT ΨT
Ci

RT
0 fc +


fc

˜(
XCi +ΨCi η

)
RT

0 fc
0
0
0

 (24)

The tangent stiffness and damping matrices have been computed
analytically but are not given in this paper for the sake of con-
ciseness.

NUMERICAL RESULTS
The results presented in this Section demonstrate the rele-

vance the contact method proposed for the dynamic analysis of
two different systems representative of transmission devices.

For both models the 3D geometry of each body is con-
structed in a CAD software (CATIA V5). The mesh to obtain
the initial finite element model as well as the computation of the
reduced matrices (M, K, Ψ) of the superelement are achieved us-
ing the SAMCEF FE software [12]. Dynamic analysis with the
proposed contact formulation is fully implemented in MATLAB
and the integration of the DAE-system (Eqn. 1-2) during the full
model simulation is also performed in this development code.

Simple contact example
In order to assess the contact formulation developed in this

work, the simulation of a benchmark problem has been per-
formed. The system modeled is composed of two bars con-
strained at their center of mass by a hinge joint along the x-axis
and the contact is induced by a torque applied along the rotation
axis of the bar #1 (see Fig. 5). This system can be seen as a very
simplified driving cam mechanism.

The bars are meshed with hexahedral finite elements and
the material used is basic steel (Young modulus: 210 GPa, Pois-
son ratio: 0.3 , mass density: 7800 kg/m3). For each bar, the 8
vertices have been chosen as boundary nodes and 10 vibration
modes are taken into account. The eigen frequencies of the first
10 vibration modes are in the range [603;3210] Hz for bar #1

6 Copyright c⃝ 2013 by ASME



1 m

0.1 m

0.1 m

0.8 m

0.2 m

0.15 m

x

y
z

# 1

slave body

# 2
master body

driving torque

resisting torque

(a) INITIAL CONFIGURATION (t = 0 s)
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FIGURE 5. BENCHMARK: POSITIONS OF THE BARS.

and in the range [391;3008] Hz for bar #2. These choices are
arbitrary for this simple model. Such a small number of inter-
nal modes included in the superelement enables to verify that
the contact element can work with only a few global shape func-
tions in the reduction basis (Ψ). The results provided are accept-
able even though the accuracy of system response would improve
with a higher number of modes.

In the initial configuration, the bars are separated by a gap
to evaluate the ability of the contact element to deal with uni-
lateral contact with impact. A torque is applied on the additional
node linked to the corotational frame of bar #1 whereas a viscous
torque acts against the rotation of bar #2. The simulation is per-
formed with a time step of 1.E-5 s in order to be able to capture
all the vibration modes of both superelements.

Figure 6 displays the magnitude of the total contact force
between the two bars versus time. Due to the initial gap, several
rebonds can be observed during the first part of the simulation
before occurrence of a close contact situation. The excitation
of superelement internal modes as well as the contact law based
on a spring-damping system can explain the oscillations on the
contact force curve. For both bodies, the candidate contact zone
assessed by the contact detection algorithm is depicted in gray
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FIGURE 6. MAGNITUDE OF THE TOTAL CONTACT FORCE
BETWEEN THE TWO BARS.

in Figure 7 and the effective contact area is colored in red for a
particular time step (t = 0.1 s). The bar deflections at the same
time step are represented in Figure 8.

(a) MASTER BODY (#2) (b) SLAVE BODY (#1)

FIGURE 7. CANDIDATE CONTACT ZONES DEPICTED IN
GRAY AND EFFECTIVE CONTACT ZONE COLORED IN RED
(t = 0.1 s).

Gear pair model
Multibody dynamics analysis of gear pairs is often based

on the expression of macroscopic kinematic constraints defined
between two rigid bodies representing both gear wheels. These
global models may use a spring and damper combination along
the normal pressure line in order to represent the virtual contact
points between teeth (see Reference [13]). Such formulation of
gear pair models is compact and enables to simulate complex
mechanisms including gears with relatively low computational
time. However, only properly meshing gears can be considered
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(a) MASTER BODY (#2) (b) SLAVE BODY (#1)

FIGURE 8. BAR DEFLECTIONS AT t = 0.1 s (DEFORMED AM-
PLIFICATION FACTOR: 100).

#1, pinion

slave body

#2, gear

master body
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contact zones
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 rotation

viscous 

torque
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FIGURE 9. GEAR MESHING MODELED WITH CONTACT CON-
DITIONS BETWEEN SUPERELEMENTS.

since the disruptive effects are most of the time quite approxi-
mately represented. For instance, transmission devices with mis-
alignment or crossed axes can hardly be represented.

To model more accurately the gear flexibility and cap-
ture meshing defaults, expressing the contact conditions be-
tween detailed finite element models of the gear wheels is often
needed, [5]. Such detailed models are without doubt the most re-
liable technique but they are quite complex to develop and they
involve a high computational time.

The modeling of gear wheels as superelements combined
with the contact condition described previously allows to account
for the tooth flexibility and model the misalignment, the gear
hammering and the backlash with higher accuracy than classical
global models. Moreover, the formulation is more compact than
with standard FE models. The proposed model takes into account
the actual 3D geometry of the gear wheels (Fig. 9) and therefore
can predict the actual contact points on teeth flanks.

All tooth flanks are candidate contact zones, therefore a con-
tact detection loop over all flanks of both gear wheels would be
numerically extremely costly. To avoid this huge number of pro-
jections, a reference node can be associated to each tooth flank.
At each iteration, the absolute position of these reference nodes
is computed and the closest flank to the center distance of the
gear pair is determined for both wheels. The collision detection
method is performed for these two candidate contact zones as
well as for a small number of flanks on either side of the central
flank. Usually, the number of tooth pairs simultaneously in con-
tact does not exceed three, so that the potential contact zones are
often limited to six.

When developing the model, the number and the location of
boundary nodes have to chosen with great care. Indeed, the sys-
tem response is significantly influenced by the static modes. Fur-
thermore, the shape functions of vibration modes depend directly
on the spatial distribution of boundary nodes in the superelement.
In order to describe properly the bending mode of each tooth, at
least one boundary node per tooth has to be retained.

In a first phase, for each tooth the closest node to the cen-
ter of the tooth tip face was selected as boundary node. How-
ever, simulation results have shown a large localized deformation
around each boundary node. These non-uniform strains on tooth
flanks lead to partial contact paths along the wheel facewidth.

A solution to avoid this drawback consists in adding an ad-
ditional independent node at each tooth flank center and link this
node to the flank nodes by kinematic constraints. These extra
nodes are retained as boundary nodes of the gear wheel.

The value of the 6 DOF related to the additional node intro-
duced by these 6 constraints can be interpreted as the mean po-
sition and rotation of the node group located on the tooth flank.
The aim of this mean element (see Ref. [12]) is similar to the
corotational frame definition presented in this paper (Eqn. 13) but
the kinematic constraints are not at the same level of the model-
ing approach. Indeed, the constraints allowing to determine the
position and the orientation of the additional node are defined
between nodes of the initial finite element model, whereas the
corotational frame constraints are based on the boundary nodes
of the reduced model.

The geometric data of the pinion and the gear are summa-
rized in Table 1 and the material properties are the same as the
bars in the benchmark system presented previously. The su-
perelement of each gear wheel is composed of two boundary
nodes, one per tooth flank, and 100 vibration modes. The eigen
frequencies are in the range [19520;146068] Hz for the pinion
and in the range [10402;115469] Hz for the gear.

A hinge joint between the ground and the node representing
the corotational frame (x0,α0) is used to avoid the inclination of
the wheel rotation axis. In order to analyze the dynamic response
when there is a backlash between teeth, the center distance is set
to 91,5 mm. At the initial time, the two gear are not in con-
tact and their rotation velocities are prescribed (−1000 rpm for
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TABLE 1. GEOMETRIC DATA OF SPUR GEAR WHEELS [14].

Pinion Gear

Number of teeth [-] 16 24

Pitch diameter [mm] 73.2 109.8

Outside diameter [mm] 82.64 118.64

Root diameter [mm] 62.50 98.37

Tooth width [mm] 15 15

Addendum modification coefficient [-] 0.196 0.125

Pressure angle [deg] 20 20

Module [mm] 4.5 4.5

the pinion and 667 rpm for the gear according to the transmis-
sion ratio). During the whole simulation, the gear rotation is
still prescribed at the same velocity whereas a viscous torque
(T = −1 ·ω(rad/s)) is applied on the pinion. This torque tends
to slow down the gear and lead to contact between teeth of the
geared wheels. The penalty factor kp of the contact law has been
chosen higher than tooth stiffness to have a penetration length
between the two bodies much smaller that the tooth deformation.
The damping coefficient c has been set to a value allowing to
introduce enough dissipation to manage the impact phenomena
due to backlash. The simulation is performed with a fixed time
step of 1.E-6 s.

Figure 10 displays the magnitude of the contact force ap-
plied on tooth flanks. For the first contacts, the time periods
without any contact between wheels are due to backlash. When
there is contact, one or two pairs of teeth can be in contact at the
same time according to the relative position of the gear wheels.

The oscillations observed on contact curves can be explained
by the mode excitations of both superelements. The time evolu-
tion of modal variables of the gear #1 are depicted in Fig. 11
and the displacements of boundary nodes are represented in Fig-
ure 12. The static and internal modes are mainly excited during
the transient periods when the active contact zone switches from
one tooth pair to another. The boundary node related to a tooth
flank in contact undergoes a deformation and the boundary node
linked to the other flank of the same tooth is also submitted to a
displacement but with a lower amplitude. The boundary nodes
related to the teeth not in contact are submitted to much smaller
displacements due to the corotational frame constraint.

The deformations in gear wheels when there is contact be-
tween teeth are mainly localized on teeth (see Fig. 13). The rota-
tion velocity of the pinion versus time is illustrated in Figure 14
where the decreasing of oscillations is due to the viscous torque
applied on this wheel and the damping force introduced in the
contact law.
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FIGURE 10. CONTACT FORCE ON TOOTH FLANKS (GEAR #1).
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FIGURE 11. TIME EVOLUTION OF MODAL VARIABLES
(GEAR #1)

CONCLUSION
This paper proposes a contact model between elastic bodies

based on the use of superelements. The flexibility of the bodies
subjected to contact conditions is represented by a reduced or-
der model defined in a corotational frame, so that linear elastic
behavior can be assumed in case of small strains. The reduction
basis allowing to construct the reduced matrices of each superele-
ment is composed of a mixed set of static and vibration modes in
accordance with the Craig-Bampton method.

In order to keep the model compact, the contact formulation
developed does not require that the candidate contact nodes are
included in the set of boundary nodes. Therefore, a large number
of nodes of the skin can be condensed. At each simulation time,
the absolute position of the candidate contact nodes is computed
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FIGURE 12. BOUNDARY NODE DISPLACEMENTS (GEAR #1).

FIGURE 13. DEFORMATION OF GEAR WHEELS DUE TO CON-
TACT BETWEEN TEETH (t =8.8E-4 s).

in terms of the corotational frame position and rotation matrix
together with the vector of superelement local coordinates ex-
pressed in the corotational frame. To detect the effective contact
zones, a node-to-surface projection method is used.

A contact law based on a penalty method enables to deter-
mine the magnitude of each contact force between a slave node
and a master face element. Finally, each individual contact force
is transfered to the generalized coordinate vector, loading thus
the boundary nodes and the modal coordinates.

The contact formulation developed can be seen as a com-
promise between the different contact models classically used in
dynamic simulations of systems. On one hand, the contact de-
fined between rigid bodies are often compact and computation-
ally efficient even for large and complex mechanical systems but
can lead to unreliable responses if the flexibility effects are sig-
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FIGURE 14. ROTATION VELOCITY OF THE PINION.

nificant. On the other hand, contact conditions based on finite
element models of flexible bodies enable to study the deforma-
tion and vibration phenomena. Unfortunately, these models are
often computationally inefficient for industrial applications.

The contact element has been assessed by the simulation of
a first crude example composed of two bars in rotation. A spur
gear pair model submitted to backlash has also been studied. Fu-
ture work will address the improvement of the formulation to
account for the friction forces produced by contacts and the lin-
ear viscoelastic contact law will be replaced by a nonlinear law
based on the Hertz’s theory. The modeling of other kinds of gear
pairs such as helical gears submitted to misalignment will be also
investigated.
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