Two year study of CO$_2$, CH$_4$ and N$_2$O dynamics and fluxes in four rivers in Belgium (Meuse, Ourthe, Geer and Blanc Gravier)

Borges A.V. 1*, F. Darchambeau 1, J.-P. Descy 2, and A. Beulen 1

1University of Liège (BE), 2University of Namur (BE)

Two rivers and two streams close to the city of Liège in Belgium (Meuse, Ourthe, Geer and Blanc Gravier) were sampled to describe the dynamics of CO$_2$, CH$_4$ and N$_2$O (for the first time in Belgium for freshwaters). The four systems were chosen to cover a gradient of size (stream to river) and of human influence (mainly forested to mainly agricultural watersheds). The study covers the period from February 2011 to March 2013 with weekly sampling in surface waters. The variables were very contrasted in the four systems, the Geer showing a strong enrichment in nitrogen NH$_4^+$ and NO$_3^-$ and phosphorous in relation to the other three systems. The O$_2$ concentrations were much lower, and the concentration of CH$_4$, N$_2$O and pCO$_2$ were much higher in the Geer than in three other systems. The concentrations in CH$_4$, N$_2$O and pCO$_2$ were higher in the Ourthe than in the Meuse and than in the Blanc Gravier. Marked seasonal variations were observed in the 4 systems. In general the concentration of CH$_4$, N$_2$O and pCO$_2$ were higher in summer than in winter. This is related on one hand to the increase in temperature in summer that stimulates bacterial activity. Also in summer, the availability of organic matter for bacterial activity is higher after the spring phytoplankton blooms and also from allochthonous inputs from the watersheds. The increase of temperature and bacterial consumption of O$_2$ in the water column leads to a lesser O$_2$ penetration in the sediments that could stimulate benthic anaerobic processes among which methanogenesis and denitrification, leading to an increase of CH$_4$ and N$_2$O in the water column. Also, the production of N$_2$O by denitrification strongly increases at low O$_2$. During low water, the increase of residence time of the water mass and the decrease of current (increase of degasing) allow an accumulation of CO$_2$, CH$_4$ and N$_2$O excepted during spring phytoplankton blooms when an under-saturation of CO$_2$ was observed in the Ourthe. Hence, the four systems were sources of CH$_4$, N$_2$O and CO$_2$ to the atmosphere. Diffusive CO$_2$ fluxes varied from 24 to 607 mol m$^{-2}$ yr$^{-1}$ (Blanc Gravier and Geer, respectively). Diffusive N$_2$O fluxes varied from 2 to 201 mmol m$^{-2}$ an$^{-1}$ (Ourthe and Geer, respectively).

Discharge (m3.s$^{-1}$)

Forest (%)
Meuse 64
Ourthe 47
Geer <1
Blanc Gravier -100

Grassland (%)
Meuse 14
Ourthe 32
Geer 7
Blanc Gravier -0

Cropland (%)
Meuse 22
Ourthe 21
Geer 93
Blanc Gravier -0

Catchment (km2)
Meuse 36000
Ourthe 1837
Geer 463
Blanc Gravier 463

Pop. density (habit. km2)
Meuse 255
Ourthe 71
Geer 194
Blanc Gravier 194