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ABSTRACT
Since linear modal analysis fails in the presence of non-

linear dynamical phenomena, the concept of nonlinear normal
modes (NNMs) was introduced with the aim of providing a rigor-
ous generalization of linear normal modes to nonlinear systems.
Initially defined as periodic solutions, numerical techniques such
as the continuation of periodic solutions were used to compute
NNMs. Because these methods are limited to conservative sys-
tems, the present study targets the computation of NNMs for non-
conservative systems. Their definition as invariant manifolds in
phase space is considered.

Specifically, the partial differential equations governing the
manifold geometry are considered as transport equations and
an adequate finite element technique is proposed to solve them.
The method is first demonstrated on a conservative nonlinear
beam and the results are compared to standard continuation
techniques. Then, linear damping is introduced in the system
and the applicability of the method is demonstrated.

INTRODUCTION
NNMs are mathematical tools that offer a new framework

for understanding nonlinear phenomena. They are a rigorousex-
tension of the linear normal modes (LNMs) to nonlinear systems
and were pioneered in the 1960s by Rosenberg [1,2]. He defined
an NNM as avibration in unisonof the system. This defini-
tion was then extended to embrace all the system’s periodic so-

lutions [3]. From this approach, several numerical techniques to
compute NNMs have emerged (see, e.g., [4,5]). On the one hand,
these methods are efficient and versatile methods when targeting
a numerical computation of the NNMs. They pave the way for
the application of the NNM theory to large-scale, complex struc-
tures [6, 7]. On the other hand, the influence of (linear and non-
linear) damping cannot be studied, which may be an important
limitation in practice.

Shaw and Pierre proposed a generalization of Rosenberg’s
definition that provides an elegant extension of the NNM concept
to damped systems. Based on geometric arguments and inspired
by the center manifold theory, they defined an NNM as a two-
dimensional invariant manifold in phase space [8]. A polynomial
series expansion method was then introduced in order to solve
the manifold partial differential equations (PDEs) and obtain the
NNM geometry.

This analytical approach is usually limited to weakly non-
linear regimes and suffers from a convergence domaina priori
unknown. The first attempt to carry out numerical computation
of NNMs as invariant manifolds is that of Pesheck et al. [9, 10].
The manifold-governing PDEs are solved in modal space usinga
Galerkin projection with the NNM motion parametrized by am-
plitude and phase variables. In a recent contribution, Touzé and
co-workers [11] also tackled the PDEs in modal space. They
show that these PDEs can be interpreted as a transport equation,
which, in turn, can be discretized using finite differences.An-
other interesting approach uses a Fourier-Galerkin procedure and

1 Copyright c© 2013 by ASME



relies on the concept of complex nonlinear modes [12]. It does
not solve the governing equations of the manifold, but it is able
to compute ita posteriori.

The present study introduces a new method for the compu-
tation of NNMs defined as invariant manifolds in phase space.
The transformation of the manifold-governing PDEs to modal
space is not necessary, which means that an NNM motion is
parametrized by master displacement and velocity, as in [13].

The approach developed in [10] uses global shape func-
tions to discretize the NNM PDEs, i.e. shape functions defined
over the entire computational domain. The discretization ends
up with a set of highly-coupled and highly-nonlinear algebraic
equations to solve. As a consequence, the computational burden
was dramatically increased as the number of degree-of-freedom
of the mechanical system increases and a “shift in tactics” was
needed [10]. A semi-discrete approach was then introduced by
dividing the amplitude domain into several sub-domains in order
to reduce the complexity of the shape functions in amplitude.

Targeting the computation of NNMs for high-dimensional
systems such as those encountered in industry, we propose to
solve the set of PDEs using the finite element (FE) method,
which employs local shape functions. The FE method renders
the algorithm general and systematic. In addition, we underline
the specific treatment required by the type of equations govern-
ing the NNMs. The proposed algorithm is particularly adapted
to these equations.

The present paper is organized as follows. Theoretical con-
cepts about NNMs as invariant manifold are briefly introduced.
The details of the new algorithm are developed. The FE method
is presented as well as our specific treatment of boundary condi-
tions. Our algorithm is validated on a 20 DOFs system composed
of a beam with a nonlinear connection. The validation procedure
involves comparison with an algorithm for the continuationof
periodic solution. Linear damping is introduced in the system
and the applicability of the algorithm is demonstrated. Finally, a
novel strategy to recover an estimation of the motion frequency
is introduced and conclusions are discussed.

NONLINEAR NORMAL MODES OF NONCONSERVA-
TIVE SYSTEMS

A detailed description of NNMs and of their fundamental
properties (e.g., frequency-energy dependence, bifurcations, and
stability) is given in [3,14] and is beyond the scope of this paper.

In the present contribution, the free response of discrete me-
chanical systems withN degrees of freedom (DOFs) is consid-
ered, assuming that continuous systems (e.g., beams, shells, or
plates) have been spatially discretized using the FE method. The
equations of motion are

M ẍ(t)+Cẋ(t)+Kx(t)+ fnl {x(t), ẋ(t)}= 0 (1)

whereM , C, andK are the mass, damping, and stiffness matri-
ces, respectively;x, ẋ, andẍ are the displacement, velocity, and
acceleration vectors, respectively;fnl is the nonlinear restoring
force vector.

To provide a rigorous definition of the NNM concept to
damped systems, Shaw and Pierre defined an NNM as a two-
dimensional invariant manifold in phase space [8]. Such a mani-
fold is invariant under the flow (i.e., orbits that start out in the
manifold remain in it for all time), which generalizes the in-
variance property of LNMs to nonlinear systems. In order to
parametrize the manifold, a single pair of state variables (i.e.,
both the displacement and the velocity) are chosen as masterco-
ordinates, the remaining variables being functionally related to
the chosen pair (Eqns. (2)).

xi = Xi(u,v),

yi = Yi(u,v), i = 1, ...,N; i 6= k. (2)

Using a similar approach as for the center manifold technique,
the time dependence in the equations is eliminated and leadsto
a set of 2N-2 partial differential equations (PDEs) that canbe
solved for theXi ’s andYi ’s:

Yi =
∂Xi

∂u
v+

∂Xi

∂v
fk(u,X,v,Y),

fi(u,X,v,Y) =
∂Yi

∂u
v+

∂Yi

∂v
fk(u,X,v,Y), (3)

i = 1, ...,N; i 6= k,

where X =
{

Xj : j = 1, ...,N ; j 6= k
}

, Y =
{

Yj : j = 1, ...,N ; j 6= k
}

, and f j accounts for all the forc-
ing terms in the equations (linear/nonlinear stiffness and
damping) . Equations fori = k are trivially satisfied. Once the
manifold-governing PDEs are solved, constraint equations(2)
represent the geometrical description of the NNM. Around the
equilibrium point, Eqns. (3) admitN solutions, i.e., one for each
mode. Geometrically, LNMs are represented by planes in phase
space, and NNMs are two-dimensional surfaces that are tangent
to them at the equilibrium point. The curvature of the NNM
surface is purely due to nonlinear effects.

FINITE ELEMENT COMPUTATION OF NNMs
To fit into a formulation more convenient to the FEM,

Eqns. (3) are recast into Eqns. (4) where∇ is the gradient vec-
tor, and∂Ω is the domain boundary. This boundary comprises
an inflow boundary∂Ω− = {u ∈ ∂Ω : V(u).n(u)< 0} and an
outflow boundary∂Ω+ = {u ∈ ∂Ω : V(u).n(u)> 0}. The 2N-2
equations are quasilinear first-order hyperbolic partial differen-
tial equations that are similar to flow equations encountered in
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fluid dynamics. This interpretation of the PDEs is identicalto
the interpretation made by Touzé and its co-workers [11] who
interpreted the PDEs as a transport problem. The vectorV can
therefore be interpreted as the velocity vector of the master co-
ordinates flow. The flow direction is called the characteristic di-
rection and illustrates the propagation of the informationinto the
domain.















V ·∇Xi −Yi = 0,
V ·∇Yi − fi = 0,
Xi |∂Ω− = X−

i ,
Yi |∂Ω− =Y−

i ,

(4)

i = 1, ...,N; i 6= k, VT = {v fk}

Figure 1(a) shows the flow of a 2 DOFs nonlinear conservative
system. In the domainΩ, characteristic directions form curves
called characteristic curves (or characteristics). In thepresent
case, the conservation of the energy induces closed characteris-
tics and results in a clear distinction between the dynamicsof
different energies. Indeed, the “information” related to agiven
energy is limited to the corresponding characteristic. This illus-
trates there is no mixing between different energy dynamics; high
and low energy dynamics do not influence each other. In the non-
conservative case, characteristics spiral toward the equilibrium
point of the system (here, the origin) (see Fig. 1(b)).

Solving hyperbolic PDEs requires boundary conditions at
inflow (∂Ω−), i.e. where the velocity vectorV points inward the
domain. In our first order problem, it requires to set the unknown
field values (X−

i , Y−
i ) on this boundary. However, the domain

boundary is away from the equilibrium point and correspondsto
a region of high-energy where no theoretical information about
the manifold is available. A first (classical) strategy would be
to use an extrapolation technique to estimate the unknown val-
ues at the boundary using the solution computed inside the do-
main. According to the above interpretation in terms of char-
acteristics, this will involve a mixing between different energy
dynamics. Extrapolation was therefore not deemed useful. Nev-
ertheless, we note that a domain with an iso-energy curve for
boundary remains everywhere tangent to the flow and boundary
conditions become obsolete. Assuming two different iso-energy
curves, they form the inner and outer boundaries of an annu-
lar domain. Since a clear partition of the dynamics exists, one
can solve the PDEs in this region disregarding the solution com-
puted outside it. This strategy is key to our algorithm. It avoids
setting disruptive boundary conditions and reduces the computa-
tional burden. This is particularly interesting as the number of
degree-of-freedom of the mechanical system becomes large.

For nonconservative systems, there is no partition of the dy-
namics and the flow points inward the domain boundary. How-
ever, the methodology suggested remains applicable. Indeed,
let’s take an annular domain whose inner and outer boundaries

correspond to iso-energy curves. Generally speaking, the flow
points in and out at the outer and inner boundaries; respectively.
However, mathematically, an “inverse” problem where bound-
ary conditions have to be specified at the inner boundary can be
solved. The flow can be “inverted” and spiral in and out at the
inner and outer boundary; respectively. A recursive strategy can
then be applied to progressively solve the PDEs using the pre-
viously computed solution as boundary conditions for the next
domain.

The proposed strategy suffers from a single limitation thatis:
iso-energy curves are only known at the solution. To circumvent
this issue, a first guess of the iso-energy curve is computed using
the previous domain boundary and solution. Then the shape of
the new computational domain is iteratively modified as the new
solution is computed. At the solution, the domain boundary fits
the actual iso-energy.

Resolution Strategy Overview
The resolution strategy is illustrated in Fig. 2. The com-

putation starts in a small domain around the origin where the
system is assumed to behave linearly. The domain boundary
is established for a given initial energy and computed usinga
LNM. The LNM selected corresponds to the targeted NNM. The
LNM is also considered as a first guess for the solution. To com-
pute the actual solution, the domain boundary is corrected in or-
der to fit the iso-energy corresponding to the current estimation
of the solution. The correction is performed thanks to a mesh
moving technique. It is applied a user-defined number of times
until some criteria are fulfilled (tolM). Domain corrections pre-
cede each correction of the PDE solution in order to satisfy the
boundary conditions. Once the solution is computed within a
given accuracytol, a new annular domain can be predicted. The
prediction of the next iso-energy is performed using the previ-
ously computed solution. The new curve is considered as the
new outer boundary whereas the old outer boundary becomes
the inner one. Both boundaries define the new computational do-
main. The solution on this new annular region can be computed
following a similar sequence of domain-correction and solution-
correction. The NNM computation stops when the number of
domains to compute or a maximum energy has been reached.
Post-processing is performed in order to merge the different an-
nular domains computed.

Streamline Upwind Petrov-Galerkin
In order to solve hyperbolic PDEs using the FEM, specific

numerical techniques are employed. Indeed, classical Galerkin
finite element formulations using similar shape and test function
spaces have demonstrated poor results, for instance, in thecon-
text of fluid dynamics [15, 16]. In a similar way to off-centered
schemes in the finite difference framework, several finite ele-
ment formulations deal with transport phenomena using alterna-
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FIGURE 1. PDEs ARE INTERPRETED AS FLOW EQUATIONS WHEREV DESCRIBES THE VELOCITY FIELD (→). (a) FOR A CONSER-
VATIVE SYSTEM, THE FLOW IS TANGENT TO ISO-ENERGY CURVES. (b)FOR A NONCONSERVATIVE SYSTEM, THE FLOW SPIRALS
TO THE EQUILIBRIUM POINT.
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FIGURE 2. SCHEMATICS OF THE ALGORITHM RESOLUTION STATEGY.

tive test functions. The SUPG method is used herein and consists
in over-weighting the shape functions that are upstream. This
method falls within the general category of Petrov-Galerkin for-
mulations where test and shape functions are taken in different
spaces. The approach is rather standard and its descriptionis out
of the scope of our paper. We briefly present the major points
of our formulation and the interested reader can refer to [15] for
practical details about SUPG.

To derive our finite element formulation, a weighted residual
approach is applied to Eqns. (4). The formulation is presented in
Eqns. (5) wherei = 1, ...,N with i 6= k and where shape func-
tions are considered as simple first-order Lagrange shape func-
tions: Nb ∈ P

1. The test functions arẽNb = Nb+ τV.∇Nb. As
already mentioned, test functions differ from classical Galerkin
test functions via an upstream overweighting (τV.∇Nb). As a

consequence, discontinuous test functions are employed [17].

∫ ∫

Ω
[V(u,v,X,Y) ·∇Xi(u,v)−Yi(u,v)]δỸi dudv= 0

∫ ∫

Ω
[V(u,v,X,Y) ·∇Yi(u,v)− fi(u,v,X,Y)]δ X̃i dudv= 0 (5)

The parameterτ can be defined according to various definitions
[18–21]. Here,τ = he

2||V||2
.

After the FE discretization, the set of PDEs is transformed
to a set of coupled nonlinear algebraic equations. These equa-
tions are solved using a Newton-Raphson procedure where the
Jacobian matrix is provided analytically. Each iteration involves
the solution of a large linear system. It is computed using the
GMRes (“Generalized Minimal Residual”) iterative solver and
left and right ILU preconditioners (“Incomplete LU”). An im-
portant feature of our problem is that equations to solve remains
nonlinear even if the mechanical system considered is linear.
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FIGURE 3. PREDICTION OF THE NEXT DOMAIN BOUNDARY
USING THE LAST CONVERGED SOLUTION.

Domain Prediction
The prediction of the domaind+ 1 is performed using an

approach similar to continuation. Consider the outer boundary
Ed. This outer boundary becomes the inner boundary of the next
domaind+ 1. To compute the new outer boundary, an energy
increment∆Ed is applied and an estimation of the iso-energy
curve atEd+1 = Ed+∆Ed is determined. Linearizing the energy
around each pointi of the boundaryd and solving Eqn. (6) trans-
forms energy increments in terms of displacements(∆ui ,∆vi) to
apply to boundary nodes. Figure 3 illustrates the result of this
procedure.

∆Ed =
dE
du

|d,i∆ui +
dE
dv

|d,i∆vi , ∀i. (6)

Domain Correction using a Mesh Moving Technique
As introduced, the shape of the computational domain is

chosen in order to avoid imposing boundary conditions. Such
a domain needs to be everywhere tangent to the flowV. In the
particular case of a conservative system, the flow is everywhere
tangent to iso-energy curves. An iso-energetic domain bound-
ary would therefore meet our requirement. Unfortunately, such
curves are known at the solution and only a prediction of it can
be performed. In order to satisfy the need of boundary conditions
to solve the hyperbolic problem, the domain is modified at each
iteration such that it is an iso-energy curve for the currentesti-
mation of the solution. At each iteration, BCs are thus satisfied
and the hyperbolic problem is well posed.

To modify the domain’s shape, the mesh is considered as a
pseudo-elastic medium and a linear elasticity problem is solved.

The inner boundary is considered as clamped (displacements
are set to zero) while the outer boundary is moved in order to
equal a reference energy. This reference energy is considered
to be the smallest energy of all boundary points. This choice
has the advantage to consider a new boundary completely en-
closed into the previous one. The data interpolation between both
meshes is therefore obvious and does not require any extrapola-
tion. The formula used to compute the displacements imposed
to the boundary nodes are similar to formula used for domain
prediction (cf. Eqn. (6)). The only difference is the energyincre-
ment∆E that is now determined to equal the reference energy.

Without going into the details of mesh moving techniques,
the finite element method discretization results in a linearalge-
braic problem (Eqn. (7)) whereKel. denotes the stiffness ma-
trix of the discretized domain considered as a pseudo-elastic
medium. The displacementsq are split into three different sets,
namely: clamped nodes whose displacements equal zero (q0 =
0), outer nodes whose displacements are non-zero and follow the
energy corrections (qd), and finally internal nodes whose dis-
placements are unknown (qi). This partition provides a straight-
forward expression for the unknown displacementsqi (Eqn. (7)).
Additional information about mesh moving techniques can be
found in [22].





K ii K id K i0

Kdi Kdd Kd0

K0i K0d K00





el.



qi

qd

q0



= 0⇒ qi =−K−1
ii K idqd (7)

Mesh modification according to iso-energy curves is critical and
can lead to erroneous results or even divergence if not performed.
Indeed, the correction should be applied enough times in order to
have a domain which is consistent with the current estimation of
the solution. Without proper boundary conditions, the problem
to solve is not well posed and the PDE resolution will fail.

Convergence Study
In this section, we investigate the convergence rate of our

method on the out-of-phase mode of a 2DOF system including
a cubic nonlinearity. Calculations are performed using a refer-
ence periodic solution as exact domain boundary in order to ar-
tificially satisfy the boundary conditions and to free the results
from the mesh-moving influence. The convergence rate for trian-
gular and quadrangular first order elements is presented in Fig. 4.
The convergence rate for triangles is 1.70 and for quadrangles
is 1.94. In a linear setting, the convergence rate of the SUPG
method was demonstrated [23] to be suboptimal with a conver-
gence rate ofO(h3/2) (i.e. agapof h1/2 with the optimal rate of
O(h2)). In practice, theL2 convergence rate appeared to vary be-
tweenO(h3/2) andO(h2) depending on mesh parameters [24]. In
the present situation, we observe an almost optimal convergence
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FIGURE 4. L2-NORM CONVERGENCE FOR TRIANGLES AND
QUADRANGLES. (-*-) FOR QUADRANGLES AND (-o-) FOR TRI-
ANGLES.

rate for quadrangular elements and an improved convergencerate
with respect to theoretical expectations for triangles.

A NONLINEAR CONSERVATIVE BEAM
In this section, the algorithm developed is demonstrated ona

linear conservative beam (see Fig. 5) beam with nonlinear bound-
ary conditions. The beam is discretized using 10 beam elements
resulting in a system with 20 DOFs (i.e. 38 unknown fields have
to be solved). A cubic spring is attached to the end of the beam
and models a geometrical nonlinearity induced by the large dis-
placements of a thin element at the end of the beam.

For conservative systems, reference algorithms to compute
NNMs exist [4, 5]. For instance, the “exact” manifolds can be
computed using the technique developed in [5], which combines
shooting and pseudo-arclength continuation. For each NNM,the
graphical depiction in phase space of the periodic orbits atdif-
ferent energy levels provides a reference solution to whichwe
can compare the solution computed using the invariant manifold
approach. Figure 6 presents the first NNM of the system for the
slave angular velocity of the ninth beam-element (Y19). The re-
sults coming from the invariant manifold approach are depicted
in green whereas the reference solutions are in yellow. A very
good agreement between computed and reference surfaces is ob-
served (green and yellow are “intimately mixed”).

A more quantitative comparison of the results is now car-
ried out. The initial conditions in the modal space(u,v) of the
first (bending) mode computed through the FE method are trans-
formed back to physical space(x1,y1,x2,y2) using Eqn. (2). Both
the equations of motion in physical space (1) and in modal space
(8) are numerically integrated for these initial conditions using

1 2 3 4 5 6 7 8 9 10

knl = 109 [N/m3]

b
b
b
b bb
b b

b b b b b bb
bbb b

b
bb b
bbb
b

b
b
b
b
b
bb

b
b

b
b

FIGURE 5. NONLINEAR BEAM SYSTEM. THE BEAM PARAM-
ETERS ARE:E = 2.05e11 [Pa], ρ = 7800 [Kg/m3], LENGTH = 0.7
[m], WIDTH = 0.014 [m], HEIGHT= 0.014 [m], Ix = 0.0144/12 [m4].
THE FULL BEAM IS DISCRETIZED USING 10 BEAM ELEMENTS
(20 DOFs).

Y19(u,v)

vu

FIGURE 6. SLAVE VELOCITY Y19 MANIFOLD IN FUNCTION
OF THE MASTER COORDINATES(u,v) FOR THE FIRST NNM.
THE RESULTS FROM THE INVARIANT MANIFOLD APPROACH
(GREEN) ARE IN EXCELLENT AGREEMENT WITH THE REFER-
ENCE (YELLOW).

Runge-Kutta method.

u̇ = v,

v̇ = fk(u,X(u,v),v,Y(u,v)), i = 1, ...,N; i 6= k. (8)

The resulting time series in modal space are then transformed
back to physical space and compared to the time series gener-
ated directly in physical space. The quantitative comparison is
achieved using the normalized mean-square error (NMSE):

NMSE( f̂ ) =
100

Nσ2
f

N

∑
i=1

( f (i)− f̂ (i))2 (9)

where f̂ is the time series to be compared to the reference se-
ries f , N is the number of samples andσ2

f is the variance of
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FIGURE 7. MASTER DISPLACEMENT DYNAMICS FOR THE
REDUCED (BLUE) AND FULL-SYSTEM (RED). A VERY GOOD
AGREEMENT IS OBSERVED.

the reference time series. A NMSE value of 1% is commonly
assumed to reflect excellent concordance between the time se-
ries. Figure 7 compares the dynamics reduced on the invariant
manifold and the full-system dynamics. A excellent agreement
between the different time series is observed over more than15
periods. It especially indicates a very accurate capture ofthe mo-
tion frequency (in addition to the motion amplitude capture). The
NMSE of 0.1% confirms our observations.

Figure 8 presents the second NNM for the velocity field of
a DOF located close the middle of beam. Contrary to the first
mode where the bending of the surface appears for DOFs close to
the beam tip, larger surface deformations are observed for DOFs
in the middle of the beam. This observation is consistent with
the modal shape of both linear modes. In both cases, the NNMs
surface deformation is more evidenced for velocity coordinates
than displacement ones. For this second NNM, a quantitative
comparison with the NMSE reveals a perfect matching between
reduced and full-system time series. The NMSE is 1e-4% over
more than 20 periods.

A NONLINEAR NONCONSERVATIVE BEAM
In this section, the same beam-example is considered. Lin-

ear proportional damping is however introduced in the system.
The damping matrix satisfies:C = αM +βK whereα = 5 and
β = 5e− 6. The linear modal damping coefficient for the first
mode is 0.7%.

Figure 9 presents the solution obtained for the damped sys-
tem and compares it to the conservative results. One can observe
that due to the proportionality of the damping, both surfaces co-
incide around the origin. This observation can be extended to

Y8(u,v)

vu

FIGURE 8. SLAVE VELOCITY Y8 MANIFOLD IN FUNCTION
OF THE MASTER COORDINATES(u,v) FOR THE SECOND NNM.
THE RESULTS FROM THE INVARIANT MANIFOLD APPROACH
(GREEN) ARE IN EXCELLENT AGREEMENT WITH THE REFER-
ENCE (YELLOW).

Y19(u,v)

vu

FIGURE 9. SLAVE VELOCITY Y19 MANIFOLD IN FUNCTION
OF THE MASTER COORDINATES(u,v) FOR THE FIRST NNM.
THE MANIFOLD FOR THE CONSERVATIVE SYSTEM (GREEN)
AND THE NONCONSERVATIVE SYSTEM (YELLOW) HAVE THE
SAME SHAPE.

larger amplitudes where the manifold bends. It is explainedby
the proportional nature of the damping that does not affect the
linear modal shapes.

In the presence of damping, no reference results are avail-
able and results validation relies only on time integration. Fig-
ure 10 compares the dynamics reduced (blue) on the invariant
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FIGURE 10. MASTER DISPLACEMENT DYNAMICS FOR THE
REDUCED (BLUE) AND FULL-SYSTEM (RED). A VERY GOOD
AGREEMENT IS OBSERVED.

manifold and the full-system dynamics (red). The NMSE value
of 0.06% confirms the perfect matching observed and the accu-
racy of the FE solution.

FREQUENCY COMPUTATION
A key step in the derivation of the PDEs governing the mani-

fold is the removal of the time dependence of the equations. As a
consequence, time does not appear anymore in the equations and
NNMs are geometrically described with PDEs. Therefore, con-
trary to methods using the system’s ODEs where an explicit time
dependence is present, the invariant manifold approach does not
provide a straightforward access to the motion frequency.

However, in the restrictive case of conservative systems,
“post-processing” operations can be applied in order to combine
standard continuation techniques on the reduced-dynamic ODEs
(see Eqns. (8)). In the present study, we developed a novel ap-
proach to estimate the motion frequency as a byproduct of our
finite element strategy. This approach is based on the interpreta-
tion of PDEs as hyperbolic equations and on the ”iso-energetic”
resolution strategy we employ. It does not rely on the reduced-
dynamic ODEs, so time integration and and continuation are not
needed.

PDEs are solved in theΩ (u,v) plane where each domain
boundary corresponds to an iso-energy curve. If the reduced
dynamics was integrated on one of these curves, all the points
belonging to the time series would geometrically lie on a do-
main boundary. Therefore the points describing the contourof
the finite element mesh also belong to this time series and the
contour corresponds to one period of motion. In order to com-
pute the motion frequency, the contour length is divided by the

10
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10
−4

10
−2

10
0

24

32

 

 

Freq.

[Hz]

Energy[J]

FIGURE 11. FREQUENCY COMPUTED USING THE INVARI-
ANT MANIFOLD APPROACH (-*- ) IS IN GOOD AGREEMENT
WITH THE REFERENCE (–). REFERENCE RESULTS COMPUTED
USING NEWMARK ALGORITHM AND 103 POINTS PER PERIOD.

averaged norm of the velocityV along each edge. Figure 11
compares the first NNM frequency computed using the above ap-
proach (red) with classical continuation techniques (black). We
observe a very good agreement between both frequency-energy
plots. Note that the discretization of the red curve corresponds
to the energy step-size performed by the FE algorithm duringthe
NNM computation. This method has not been yet extended to
nonconservative systems. The main reason is that the flow is not
anymore tangent to the domain boundary.

CONCLUSIONS
Despite NNMs have proven versatile and helpful in under-

standing the dynamics of nonlinear systems, the study of thein-
fluence of damping in NNMs is key to their development in an
industrial framework. In this paper, we developed a novel algo-
rithm for the computation of NNMs of nonconservative systems.
Thanks to the FE method, the algorithm is geared toward large-
scale systems.

Specifically, this paper first highlighted the hyperbolic na-
ture of the PDEs (transport phenomenon) and, based on this ob-
servation, we proposed specific numerical treatments. The FE
formulation (SUPG) is properly suited to our equations and the
resolution strategy accounts for the boundary conditions using
annular-ring domains with iso-energy boundaries. A mesh mov-
ing technique is employed to correct the shape of the domain.
The algorithm was first demonstrated on a MDOF conservative
system. The computation of the NNM and the resulting dynam-
ics were both very accurate. Then we demonstrated that the de-
veloped algorithm was also applicable to nonconservative sys-
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tems.
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