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m On (R?,gg), we consider the Schrédinger equation
Ap = E9,

where
A=0;+0;, EcR

m Coordinates (u, v) separate this equation<=> 3 solution
of the form f(u)g(v)

m Coordinates (u, v) orthogonal<=> go(9,,0,) =0
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High : - :
IALE m There exist 4 families of orthogonal separating

the conformal coordinates systems :

Laplacian

Cartesian coordinates
Polar coordinates (r,0) :

x = rcos(6)
y = rsin(f)
Parabolic coordinates (£,7) :
{x = £
y = 3(&-17)

Elliptic coordinates («, ) :

{x = V/dcos(a) cosh()
y = +/dsin(a)sinh(B)
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Figure: Coordinates lines corresponding to the elliptic coordinates
system
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R m Separating coordinates systems allow to simplify the
resolution of the Schrddinger equation :

m Example : in cartesian coordinates (x,y), f(x)g(y) is a
solution of A¢p = E¢ iff

2 2
(0xf)g +f(9,g) — Efg =0

iff a2
8Xf+Lg_ _0
f g
iff
{8§f—51f:0
g —(E—E)g=0
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m Bijective correspondence
{Separating coordinates systems}
—

{Second order symmetries of A : second order
differential operators D such that [A, D] = 0}

Coordinates system Symmetry
(x,¥) 05

(r,0) L3

(67 77) %(8XL9 + Leax)
(a, B) Lg +do?

with Ly = x0, — yOx
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ot m Link between the symmetry and the coordinates

e et system : if the second-order part of D reads as

Laplacian
Ox
(o a(3),

the eigenvectors of A are tangent to the coordinates
lines.

m Example : second-order part of Lg :

a2, ) (5)

eigenvectors of A in this case :

() ()
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p n—2
Av = VN g

where Sc is the scalar curvature of g.

Sc,

Riemann curvature : R,y gv? = [V,, Vp]v©
Ricci tensor : Ricpy = Rapy

Symmetry of Ay : D € D(M) such that [Ay,D] =0

Conformal symmetry of Ay : Dy € D(M) such that
dD, € D(M) such that Ay o Dy = Dyo Ay

| |
| |
m Scalar curvature : Sc = g?PRic,y
m
m
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m (M, g) conformally flat : for each x € M, there exist a
neighborhood U of x and a function f on U such that
e’ g is flat on U

Conformal symmetries of Ay known (M. Eastwood,
J.-P. Michel)

m (M,g) Einstein : Ric = fg
Existence of a second order symmetry (B. Carter)
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Second order conformal symmetries of Ay
m Conformal Killing tensors
m Natural and conformally invariant quantization
m Structure of the conformal symmetries

Examples
m DiPirro system
m Taub-NUT metric

Application to the R-separation
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the conformal
a Qo 16
N DUog...og,

Laplacian
|a|<k

o(D) = Z Depf™ ... pyn,
Conformal Killing

tensors |O[‘:k

where (x’, pj) are the canonical coordinates on T*M

m o(D) can be viewed as a contravariant symmetric tensor
of degree k :

a(D)= > DO v ...v oy
|a|=k
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operator D’ such that Ay oD =D’ o0 Ay

m o(Ay) = H =glp;pj, then {H,a(D)} € (H), i.e. (D)
is a conformal Killing tensor

m Conformal Killing tensor K : trace-free part of

io Kiy..i,) vanishes

m If D is a symmetry of Ay, [Ay, D] =0, then
{H,o0(D)} =0, i.e. 0(D) is a Killing tensor

m Killing tensor K : V(;, K; =0

Conformal Killing V(

tensors

i)
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If D is a conformal symmetry of Ay, there exists an
operator D’ such that Ay oD =D’ o0 Ay

o(Ay) = H = glipp;, then {H, (D)} € (H), i.e. o(D)
is a conformal Killing tensor

Conformal Killing tensor K : trace-free part of
V(ioKiy...i,) vanishes

If D is a symmetry of Ay, [Ay, D] =0, then
{H,o(D)} =0, i.e. o(D) is a Killing tensor

Killing tensor K : V(;,Kij,..;,) =0

The existence of a (conformal) Killing tensor is necessary
to have the existence of a (conformal) symmetry of Ay

io

Is this condition sufficient ?
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Definition
A quantization on M is a linear bijection QM from the space

of symbols Pol(T*M) to the space of differential operators
D(M) such that

Natural and
conformally

i a(QM(S)) =S, VS e Pol(T*M)
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the conformal
S A natural and conformally invariant quantization is the data
SSERE  for every manifold M of a quantization QM depending on a
pseudo-Riemannian metric defined on M such that
m /f ® is a local diffeomorphism from M to a manifold N,
then one has
vty OM(d*g)(*S) = d*(QN(g)(5)),

invariant
quantization

for all pseudo-Riemannian metric g on N and all
S € Pol(T*N)

m OM(g) = QM(g) whenever g and & are conformally
equivalent, i.e. whenever there exists a function T such

that g = 2T g.
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m Proof of the existence of QM :

Work by A. Cap, J. Silhan
Work by P. Mathonet, R.

Natural and
conformally
invariant
e E zaTion
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the conformal exists a conformal symmetry of Ay with K as principal
’ symbol iff Obs(K)” is an exact one-form, where

2(n—2 . .
( )Pi3p,-3p, (C VAT 3Aﬂ')

Obszm

m C : Weyl tensor :

2 . .
Cabcd = Rabed — m(ga[chcd]b — gpcRicg)a)

Structure of the
conformal 2
symmetries

+ msc 8a[c8d]b

m A : Cotton-York tensor :

Aiik = Vi Ric;—V Ricj+ (VJ'SC gik — ViSc g,-j)

1
2(n—1)
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m If K is a Killing tensor of degree 2, there exists a
symmetry of Ay with K as principal symbol iff Obs(K )
is an exact one-form

m If Obs(K)® = 2df, the symmetries of Ay whose the

principal symbol is given by K are of the form

Structure of the Q(K) — f + LX + [oN

conformal

symmetries

where X is a Killing vector field and where c € R
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m Remarks :
If (M, g) is conformally flat, no condition on the
(conformal) Killing tensor K
If Ric = £Sc g and if K is a Killing tensor of degree 2,
then

2—n

Obs(K)” = d <2(n+1)

e 2—n .
ViViKi) + —= " S g;iK
Strl;cturelof the ( I ) + 2”(" — 1) ¢ g" )

symmetries

and V;K¥V; is a symmetry of Ay
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Laplacian m On R3, diagonal metrics admitting diagonal Killing
tensors are classified :
Hamiltonian H = g¥p;p; :

1
2(7y(x1, x2) + c(x3))

(alxa, x2)pf + b(x1, x2)P3 + P3) »
Killing tensor K :

c(x3)a(x1, x2)pi + c(x3)b(x1, x2)p3 — (1, %2)P3
V(x1, x2) + ¢(x3)

a, b,y € C*(R?), c € C®(R).

)

DiPirro system
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1P Miche = 30as)Teta) 8 then

1 ..
Obs(K)’ = d(—§(3Ric;j —Sc g;)KY)

DiPirro system
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S A mlfg 78 then

_ 1
T 2(v(xa ) +c(x3)

1 ..
Obs(K)" = d(—5 (3Ricj; — Sc g;)KY)

m Symmetry of Ay :

y 1 ] y
V,’KUVJ' — E(V,’VJKU) — §Ric,-jKU

DiPirro system
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symmetries of m Four-dimensional fiber bundle M over 52 with

the conformal .
Laplacian coordinates (1, r, 0, ¢)

m Taub-NUT metric g :

(1 + 2:") (dr* + r*d6? + r?sin® 0d¢?)

Am?

Tirm

r

(dvp + cos 0dp)?

m g hyperkdhler : there exist three complex structures J;
which are covariantly constant and which satisfy the
quaternion relations

Taub-NUT metric

=2 = 2= hhty=—1d.
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Higher m The skewsymmetric tensor Y of degree 2 is Killing-Yano

symmetries of

the conformal |fF V(A YAU‘)V - 0
Laplacian I
m Killing-Yano tensor Y :

2m? (dyp + cos Od ) Adr+r(r+m)(r+2m)sin0dO Ado

m Y conformal Killing-Yano tensor :

2 K K
Vo Yy, = g(g,\uv,{(*Yy ) + Vi(xY)8uw)

m J; Killing-Yano tensors, hence

A
Taub-NUT metric Ki = PuPv (* Y)EHJIV) )

conformal Killing tensors



ET= The skewsymmetric tensor Y of degree 2 is Killing-Yano
symmetries o

the conformal |fF V(A YAU‘)V - 0
Laplacian I
m Killing-Yano tensor Y :

2m? (dyp + cos Od ) Adr+r(r+m)(r+2m)sin0dO Ado

m Y conformal Killing-Yano tensor :

2 K K
Vo Yy, = g(g,\uv,{(*Yy ) + Vi(xY)8uw)

m J; Killing-Yano tensors, hence
A
Ki = pupv (*Y)E”J;’) )

conformal Killing tensors
m Obs(K;)” not exact, then there are no conformal
symmetries whose principal symbols are the K;

Taub-NUT metric
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m Schrédinger equation : (Ay + V)¢ = Evy, V € C°(M)
is a fixed potential and E € R a free parameter

m Solving Schrédinger equation : finding a solution for all
E

m Schrddinger equation at zero energy : (Ay + V) =0,
V € C>®(M) is a fixed potential

Application to

the R-separation
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m Schrddinger equation R-separable in an orthogonal
coordinates system (x')

—

V E € R, 3 n+ 1 functions R, h; € C>°(M) and n
differential operators L; := 02 + I;(x")0; + m;(x') such
that .
RN Ay + V)R- E = hil,.
i=1

m RTI™; ¢i(x") solution of one of the two previous
equations

Application to

the R-separation <=

Lidi =0 Vi
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such that
B {Ki, K2} =0 forall Ki,K2 €T,
m as endomorphisms of TM, the tensors in Z admit a
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(b) For all K € Z, 3 second order symmetry D, i.e. an
operator such that [Ay + V, D] = 0, with principal
symbol o,(D) = K.
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m Link between the (conformal) symmetries and the
R-separating coordinate systems :

m Hyperplans orthogonal to the eigenvectors of the tensors
in Z <— integrable distributions

m Leaves of the corresponding foliations<— Coordinate
hyperplans of the R-separating coordinate systems

Application to
the R-separation
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