

An interaction map for HTLV-1 Tax and PDZcontaining proteins.

<u>Karim Blibek</u>¹, Xavier Rambout¹, Jérôme Beaufays², Laurence Lins², Franck Dequiedt¹ and Jean-Claude Twizere¹. GIGA-Research, Signal Transduction Unit, Protein Signaling & Interactions, University of Liege.

Summary

Human T-cell leukemia virus type 1 (HTLV-1) retrovirus encodes for the Tax protein, which has a transforming capacity *in vitro*. Tax contains at its C-terminus a binding motif for PDZ domain-containing proteins (PSD95-DLG1-ZO1). It has been shown that the C-terminal motif of Tax is involved in Tax oncogenic capacity. Ten different PDZ domain-containing proteins have been reported to interact with Tax, but the specificity of Tax-human PDZome interactions has not been investigated. The objective of this study is to obtain a comprehensive interactome map for Tax and the human PDZome and to determine a global role of Tax-PDZ interactions in HTLV-1 biology.

Results

Fig. 1: Several protein-protein interaction methods were used to generate this network: predicting interaction *in silico*, yeast two-hybrid (Y2H) and GST pulldow. In addition to Tax, there are 212 proteins in this network: 100 Tax partners (n) and 112 partners of Tax partners (n+1). The squares (with red edges) represent the Tax partners aready known in the literature (10 proteins). The triangles (with blue edges) represent neodes with red redations). The circles represent the partners of Tax partners (112 proteins) reported in databases. The nodes with the same color denote a cluster (the gray nodes don't belong to any cluster: 56 proteins). Proteins surrounded by a red outline don't have any known interactor in the literature (22 proteins).

2. Clustering analysis of Tax/PDZome network

Table 1: In this table, we have reported the most important biological functions associated with each cluster of the network. Interestingly Several other clusters in our network are also composed of protein involved in membrane polarization, shape or traffic. This is consistent with known roles of some PDZ containing proteins such as DLG or SCRIB implicated in immunological synapse formation.

Outlers	Number of nodes	tem iD	Biological function
1	49	GO:0006812	ation transport
		60:0007268	synaptic transmission
		60:0007610	behavior
		60:0022607	cellular component assembly
		60:0033058	directional locamotion
		60:0051899	membrane depolarization
		60:0007163	establishment or maintenance of cell polarity
2	15	60:0006936	muscle contraction
		60:0033488	Cdo42 protein signal transduction
		60:0006541	glutamine metabolic process
2	12	60:0002089	less morphagenesis in camera-type eye
		60:0007267	cell-cell signaling
		60:0034830	cell junction organization
4	10	60:0007155	oil aftesion
		60:0022603	regulation of anatomical structure morphogenesis
		60:0022610	biological adhesion
		60:0071681	cellular response to indole-3-methanci
		60:0015216	cell-cell junction organization
s	9	60:0015216	cell-cell junction organization
		60:0035088	establishmentor maintenance of spical/basal cell polarity
		60:0013552	positive regulation of phosphatidylinosital 3-kinase activity
		60:0007163	establishment or maintenance of cell polarity
		60:0030029	actin filament-based process
		60:0051301	cell division
6	7	60:0006921	cellular component disassembly involved in apoptotic process
,	7	60:0010646	regulation of cell communication
	7	60:0007215	glutamate receptor signaling pathway
9	6	60:0013297	apical junction assembly
10	6	60:0012995	all projection
		60:0031256	leading edge membrane
		60:003:1252	cell leading edge
		60:0014463	cell projection part
11	6	60:0007164	establishment of tissue polarity
		60:0016055	Whit receptor signaling pathway
12	6	60:0008277	regulation of G-protein coupled receptor protein signaling pathway
13	5	60:0019717	synaptoxome
		60:0030054	orli junction
14	4	60:0013615	astrocyte cell migration
15	4	60:0021849	neuroblast division in subventricular zone
		60:0051260	protein homodigamerization
16	4	60:0003409	assognesis
		GO:0010741	negative-regulation of intracellular protein kinase cascade

4. PDZ domain 1 of LNX2 is responsible for the interaction with Tax

 PDZ1
 248
 251
 255

 TIEIHRSNPYIQLGI S IV G GNE TPLINIVIQEVYRDGVIARDGR LLAGDQILQVNNYNISNVS H NYA R AVLSQPCNTLHLTVLRER
 254
 296
 300

Fig. 3: We tested the interaction of LNX2 mutants with Tax by Y2H (3.a.) and Luciferase Complementary Assay (3.b.) and determined that the PDZ1 is responsible for the interaction. We also identified by "docking" (3.c.) 6 amino acids at the PDZ1 as potentially responsible for the interaction with Tax.

Conclusions

Tax Ct

• By using different protein-protein interaction methods we have generated a Tax/human PDZome interaction map. We then performed a clustering analysis to define biological functions associated with Tax/PDZ interactions. PDZ Proteins involved in cell shape, cytoskeleton organization and membrane polarization and traffic were overrepresented.

 We then focused on LNX2 protein and tested its individual PDZ domains. We found that the first PDZ domain of LNX2 is responsible for the interaction with Tax. Furthermore, we have demonstrated by "docking" analysis that 6 amino acids from PDZ1 could be implicated in the interaction with Tax.

