Genetic analysis of longitudinal measurements of feed intake in Piétrain sire lines

M. Dufrasne 1,2, V. Jaspart 3, J. Wavreille 4 and N. Gengler 1
1 Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
2 Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture, B-1000 Brussels, Belgium
3 Walloon Pig Breeders Association (AWEP), B-5590 Ciney, Belgium
4 Animal Breeding, Quality Production and Welfare Unit, Production and Sectors Department, Walloon Agricultural Research Center (CRA-W), B-5030 Gembloux, Belgium

Contact: marie.dufrasne@ulg.ac.be

Background

- Feed efficiency (FE) is of major importance in pigs production because of large feeding cost
- Selection strategies to improve FE should allow a reduction of feed intake (FI) with growth rate at least constant

Objectives

- To estimate genetic parameters for longitudinal measurements of feed intake in a crossbred population of pigs
- To develop a genetic evaluation for FE of Piétrain boars

Data

- FI recorded every 15 days in test station between 2007 and 2012
- 4,095 records of cumulated FI
- 2,127 crossbred pigs Piétrain x Landrace K+
- 84 Piétrain boars with progeny recorded
- Standardization and pre-adjustment of data at 150 days of progeny-test due to variance heterogeneity

Conclusions

- Heritability of FI is moderate and tends to increase with age
- High FI at the beginning does not necessarily match with high FI at the end
- FI seems to be influenced by different genes during the growth period

Model

Random regression animal model

\[y = Xb + Za + Zp + Wl + e \]

- \(y \) = observation of FI
- \(b \) = fixed effects (sex and batch)
- \(a \) = random additive genetic effect
- \(p \) = random permanent environment
- \(l \) = random pen effect
- \(e \) = residual

Results

- \(h^2 \) increases between 50 and 150 days of progeny-test, from 0.06 to 0.45
- \(h^2 \) of FI between 50 and 150 days of test = 0.66

- Heritability of cumulated FI with progeny-test length

Days 70 90 110 130 150
50 0.76 0.54 0.25 -0.20 -0.65
70 0.96 0.82 0.49 0.01
90 0.95 0.72 0.28
110 0.90 0.57
130 0.87

- High genetic correlation between adjacent ages
- Decreasing genetic correlation with increasing age intervals
- Negative genetic correlations between the beginning and the end of the testing period border effect?