

Annual PhD Report 2012-2013

Genetic relationship between environmental impact traits and milk composition in dairy cows

Purna B. Kandel

Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Belgium

22 May 2013

Outline of Presentation

- Part I Genetic parameters for methane indicators obtained from Mid-infrared spectroscopy (MIR) of milk fatty acids (Year 2011-2012 ~ short)
- Part II Development of calibration equation from direct MIR spectra of milk samples (Belgium + Ireland)
- Part III Genetic parameters for methane indicator traits (predicted from part II)

Introduction

- Methane (CH₄) is the largest contributor to total greenhouse gas emitted by the dairy sector.
- CH₄ is 21 times more potent than CO₂ in greenhouse effect.
- Respiration chamber or Sulphur hexafluoride (SF₆) method are commonly used to measure CH4.
- Phenotype gap for direct methane measurement leads to indirect indicators to estimate genetic parameters:
 - Milk fatty acids (FA) in milk
 - Direct MIR prediction from milk
 - Other proxies

IPCC (2007), FAO (2010), EU (1998), Johnson (1994), Chilliard et al. (2009), Dijkstra et al. (2011), Dehareng et al. (2012)

Why genetics ?

Genetic selection of animal having low CH₄ emissions
✓ Additive
✓ Permanent

Objectives

- Predictions of CH₄ emissions (indicators)
- Estimation of genetic parameters
- Correlations with other economic traits

Genetic parameters for CH_4 indicators obtained from MIR of milk fatty acids in dairy cows (2011-12)

Kandel, P. B.¹, N. Gengler¹, and H. Soyeurt^{1,2}

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium ²National Fund for Scientific Research, Brussels, Belgium

> Journal of Applied Animal Research

Genetic parameters for mid-infrared methane indicators based on milk fatty acids in dairy cows

Article has been with	Genetic paran based	Genetic parameters for mid-infrared methane indicators based on milk fatty acids in dairy cows	
rubri. Wisie	Journal:	Journal of Applied Animal Research	
so ret	Manuscript ID:	JAAR-2012-0349.R1	
	Manuscript Type:	Original Research Paper	
	Keywords:	Mid Infra-Red, milk fatty acids, heritability, methane emissions, dairy	

Highlights of this study

- Previously published 5 CH₄ prediction equations developed from gas chromatographic analysis of milk fatty acids were selected
- These equations were calibrated with MIR spectroscopy to predict methane emissions from Walloon dairy cows
- The predicted methane was in general in range of published measurements
- Heritabilities for these five CH₄ indicator traits were estimated from 0.19 to 0.35

Chiliard et al. 2009; Dijkstra et al. 2011

predicted from milk mid-infrared spectra

Prediction of individual enteric methane emission of dairy cows from milk mid-infrared spectra

A. Vanlierde¹, F. Dehareng¹, E. Froidmont¹, P. Dardenne¹, P. B. Kandel², N. Gengler², E. Lewis³, F. Buckley³, M. Deighton³, S. McParland³, D. Berry³ and H. Soyeurt¹

¹Walloon Agricultural Research Center, Gembloux, Belgium ²Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, **Belgium** ³Animal & Grassland Research and Innovation Center, Teagasc, Moorepark, Co. Cork, Ireland

Introduction

- Previous studies have shown that mid-infrared spectrometry can be used to predict milk FA
- FA are related to methane emissions.
- Therefore, direct prediction of methane from midinfrared is a logical step.

Chiliard et al., 2009; Dijkstra et al., 2011, Dehareng et al., 2012

CH_4 was measured using SF_6 method and milk spectra was collected for same animal (some animals had multiple measurements)

	Ireland	Belgium
Number of SF ₆ measurements	285	196
Animals	119	27
CH ₄ /day	356.99	466.13
(Mean ±SD)	±101.64	±101.87

Calibration for CH₄ equation

- After removing potential outliers in MIR spectra and CH₄
- Final calibration equation

Ν	452
Mean (Reference value)	394.58 g/day
SD	126.39 g/day
SEC (standard error of calibration)	61.97 g/day
SECV (standard error of cross validation)	68.68 g/day
R ² cv (cross validation coefficient of determination)	0.70
RPD (residual predictive deviation)	2.03

Part III

Genetic parameters for methane indicator traits obtained directly from MIR spectra in first lactation dairy cows

P. B. Kandel¹, M-L.Vanrobays¹, A.Vanlierde², F. Dehareng², E. Froidmont², P. Dardenne², S. McParland³, N. Gengler¹ and H. Soyeurt¹

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium

²Walloon Agricultural Research Center, Gembloux, Belgium

³Animal & Grassland Research and Innovation Center, TEAGASC, Moorepark, Co. Cork, Ireland

Equation applied to Walloon spectral database (Holstein)

Traits	Lactation I		
	(N=412, 520)		
CH ₄ g/day	545.91±109.34		
CH ₄ g/kg of milk	25.01±8.88		
Milk yield (kg/day)	23.44±5.97		
Fat yield (kg/day)	0.92±0.23		
Protein yield (kg/day)	0.78±0.19		

Model : Two trait random regression test day

y=Xβ+Q(Zp+Zu)+e

y: MIR CH₄ indicators and milk traits (two traits-each pair) β: herd x test day, 24 classes of days in milk, and 3 classes of age at calving → fixed effects p: random permanent environmental effects u: additive genetic effects e: random residual effect Q: coefficients of 2nd order Legendre polynomials Variance components: REML Fixed effects: BLUP

Averaged daily heritability

Traits	heritability
CH ₄ g/day	0.07±0.01
CH ₄ intensity (g/kg of milk)	0.16±0.01

Model: Multi-trait random regression test-day model

y=Xβ+Q(Zp+Zu)+e

y: MIR CH_4 indicators and milk traits (total 5 traits) β : herd x test day, 24 classes of days in milk, and 3 classes of age at calving \rightarrow fixed effects p: random permanent environmental effects u: additive genetic effects, e: random residual effect Q: coefficients of 2nd order Legendre polynomials Prior variance components- REML Variance components – Gibbs Sampling Fixed effect- BLUP

Relative CH₄ emission across lactation For comparison first lactation first day was made zero

Relative CH₄ intensity across lactation For comparison first lactation first day was made zero

Heritability

Averaged daily heritability

	CH ₄ (g/d)
Lactation I	0.10±0.01
Lactation 2	0.10±0.01
Lactation 3	0.09±0.01

Daily heritability

Averaged daily heritability		
	CH ₄ intensity	
	(g/kg FPCM)	
Lactation I	0.15±0.01	
Lactation 2	0.15±0.01	
Lactation 3	0.16±0.02	

Phenotypic (below diagonal) and genetic (above diagonal) correlations

Traits	MIR CH ₄	MIR CH ₄	FPCM	Fat	Protein
	(g/d)	intensity		yield	yield
MIR CH ₄ (g/d)		0.52	-0.01	0.16	-0.02
CH ₄ intensity	0.21		- <mark>0.8</mark> 4	- 0.68	- <mark>0.78</mark>
(g/kg of FPCM)					
FPCM	-0.02	-0.65			
Fat yield	0.01	-0.58			
Protein yield	-0.01	-0.60			

Estimated Breeding Values

Sires which have daughters with MIR CH₄ records

- Production on less CH₄ (g/day) during peak milk production
- First lactations and second lactation different genetically and within lactations
- Obtained heritability- selection for these traits possible
- Selection of methane intensity decreases yield of milk production traits
- Genetic variability seems to exist

Perspectives

- Extend to the Walloon genetic evaluation system to access the profitability (+ve/-ve) from inclusion of methane traits in the selection index
- Genome wide association study to detect potential region of chromosome for methane emissions (50k SNP data will be utilized from DairySNP project)

Acknowledgements

Supervisors/Collaborators

- Hélène Soyeurt
- Nicolas Gengler
- Marie-Laure Vanrobays
- Amélie Vanlierde
- Fréderic Dehareng
- Eric Froidmont
- Pierre Dardenne
- Eva Lewis
- Frank Buckley
- Mathew Deighton
- Sinead McParland
- Donagh Berry

Contact: pbkandel@ulg.ac.be