
1 

 

Euromech Colloquium n. 541 

New Advances in the Nonlinear Dynamics and Control of Composites for Smart Engineering Design 
Senigallia, Italy, June 3-6, 2013 

 

 

A new computational method for nonlinear normal modes of 

nonconservative systems 

 

L. Renson, G. Kerschen 
Aerospace and Mechanical Engineering Department, University of Liège, Belgium. 

l.renson@ulg.ac.be, g.kerschen@ulg.ac.be  

 
Abstract. The concept of nonlinear normal modes (NNMs) was introduced with the aim of 

providing a rigorous generalization of normal modes to nonlinear systems. Initially, NNMs were 

defined as periodic solutions of the underlying conservative system, and continuation algorithms 

were recently exploited to compute them. To extend the concept of NNMs to nonconservative 

systems, Shaw and Pierre defined an NNM as a two-dimensional invariant manifold in the 

system’s phase space.  

This contribution presents a novel algorithm for solving the set of partial differential equations 

governing the manifold geometry numerically. The resolution strategy takes advantage of the 

hyperbolic nature of the equations to progressively solve them in annular regions. Each region is 

defined by two different iso-energy curves and equations are discretized using a specific finite 

element technique. The proposed strategy also offers the opportunity to estimate the frequency-

energy dependence of the mode without using time integration. The algorithm is applied to both 

conservative and nonconservative systems. 

 

1. INTRODUCTION 

Pioneered in the 1960s by Rosenberg [1, 2], NNMs were defined as a vibration in unison 

of a nonlinear system. Later extended to embrace all periodic solutions [3], this 

definition leads to efficient and versatile computational methods for NNMs (see, e.g., 

[4, 5]) that are, however, a priori limited to conservative systems. Shaw and Pierre 

proposed a generalization of Rosenberg's definition that provides an elegant extension of 

NNMs to damped systems. Based on geometric arguments and inspired by the center 

manifold theory, they defined an NNM as a two-dimensional invariant manifold in phase 

space [6]. 

 

The first attempt to carry out numerical computation of NNMs as invariant manifolds is 

that of Pesheck et al. [7]. The manifold-governing partial differential equations (PDEs) 

are solved in modal space using a Galerkin projection with the NNM motion 

parameterized by amplitude and phase variables. The approach developed in [7] uses 

global shape functions to discretize the NNM PDEs, i.e. shape functions defined over the 

entire computational domain. The discretization ends up with a set of highly-coupled and 

highly-nonlinear algebraic equations to solve. As a consequence, the computational 

burden was dramatically increased as the number of degrees of freedom of the 

mechanical system increases and a “shift in tactics” was needed [7]. A semi-discrete 

approach was then introduced by dividing the amplitude domain into several sub-domains 

in order to reduce the complexity of the shape functions in amplitude. 

 

Another interesting approach uses a Fourier-Galerkin procedure to solve a nonlinear 

eigenvalue problem with NNMs defined in terms of a frequency and a modal vector both 
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functions of amplitude and phase. First established for conservative systems [8], this 

method was then extended to nonconservative ones [9]. Despite the interesting presence 

of a series expansion whose coefficients can provide valuable insight into the dynamics, 

the method suffers from a dramatically increasing computational burden as the number of 

DOFs increases. Indeed, yet different, [7] and [9] share a similar discretization strategy to 

solve NNMs. 

 

In [10], NNMs are viewed as complex modes. An eigenvalue problem in terms of these 

complex modes and generalized Fourier series is defined. The method extends classical 

continuation approaches to nonconservative systems. Alike [6], this approach issues from 

the observation that LNMs can be viewed as complex quantities in the presence of 

damping. This complex character accounts for the phase lag between the different DOFs 

of the system. In [6], they further showed that this complex formulation is similar to a 

displacement-velocity description of the mode which in turn was extended to NNMs. 

 

In a recent contribution, Touzé and co-workers [11] also tackled the PDEs in modal 

space. They show that these PDEs can be interpreted as a transport equation, which, in 

turn, can be discretized using finite differences. Their method revealed accurate for 

conservative systems but not yet applicable to nonconservative ones. 

 

The present study introduces a new method for the computation of NNMs defined as 

invariant manifolds in phase space. The transformation of the manifold-governing PDEs 

to modal space is not necessary, which means that an NNM motion is parametrized by 

master displacement and velocity, as in [12]. 

 

Targeting the computation of NNMs for high-dimensional systems such as those 

encountered in industry, we propose to solve the set of PDEs using the finite element 

method (FEM), which employs local shape functions. The FEM renders the algorithm 

general and systematic. The computation of the dynamics reduced on the manifold relies 

directly on the finite element interpolation and no additional interpolation is needed 

(unlike, e.g., with finite differences [11]). In addition, we underline the specific treatment 

required by the type of equations governing the NNMs. The proposed algorithm is 

particularly adapted to these equations. 

 

The present paper is organized as follows. Theoretical concepts about NNMs defined as 

invariant manifolds are briefly introduced in Section 2. Section 3 details the proposed 

algorithm. The FEM is presented as well as our specific treatment of boundary 

conditions. The method to estimate the motion frequency is presented in Section 4. In 

Section 5, our algorithm is validated on a 2DOF system composed of quadratic and cubic 

nonlinearities. The validation procedure involves comparison with an algorithm for the 

continuation of periodic solutions. Along this example, the novel strategy to recover an 

estimation of the motion frequency is validated. Linear damping is then introduced into 

the system and the applicability of the algorithm is demonstrated. Finally, in Section 6, an 

example with two coupled Van der Pol oscillators is considered. Accurate results are 

obtained on this nonlinearly damped system. 
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2. MANIFOLD GOVERNING PDES 

A detailed description of NNMs and of their fundamental properties (e.g., frequency-

energy dependence, bifurcations, and stability) is given in [3, 13] and is beyond the 

scope of this paper. 

 

In the present contribution, the free response of discrete mechanical systems with N 

degrees of freedom (DOFs) is considered, assuming that continuous systems (e.g., beams, 

shells, or plates) have been spatially discretized using the FE method. The equations of 

motion are 

 

                                      (1) 

 

where  ,  , and   are the mass, damping, and stiffness matrices, respectively;  ,   ,    are 

the displacement, velocity, and acceleration vectors, respectively;     is the nonlinear 

restoring force vector. 

To provide a rigorous definition of the NNM concept to damped systems, Shaw and 

Pierre defined an NNM as a two-dimensional invariant manifold in phase space [6]. In 

order to parametrize the manifold, a single pair of state variables (i.e., both the 

displacement and the velocity) are chosen as master coordinates, the remaining variables 

being functionally related to the chosen pair (eq. (2)). 

 

 
           

           
                                   (2) 

 

Using a similar approach as for the center manifold technique, the time dependence in the 

equations is eliminated and leads to a set of      partial differential equations (PDEs) 

that can be solved for the   's and   's: 

 

 
   

   

  
  

   

  
            

   
   

  
  

   

  
            

                                  (3) 

 

where                    ,                    , and    accounts for all 

the forcing terms in the equations (linear/nonlinear stiffness and damping). Equations for 

    are trivially satisfied. Once the manifold-governing PDEs are solved, constraint 

equations (2) represent the geometrical description of the NNM. Around the equilibrium 

point, eqs. (3) admit   solutions, i.e., one for each mode. Geometrically, LNMs are 

represented by planes in phase space, and NNMs are two-dimensional surfaces that are 

tangent to them at the equilibrium point. The curvature of the NNM surface is purely due 

to nonlinear effects. 

 

3. FINITE ELEMENT COMPUTATION OF NNMS 

To fit into a formulation more convenient to the FEM, eqs. (3) are recast into eqs. (4) 

where   is the gradient vector and          . Targeting a solution for finite 

amplitudes, equations are solved in a domain Ω whose boundary is ∂Ω. This boundary 

comprises an inflow boundary                              and an 

outflow                             .      is the outward normal vector 

to   . The      equations are quasilinear first-order hyperbolic partial differential 
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equations that are similar to flow equations encountered in fluid dynamics. This 

interpretation of the PDEs is identical to the interpretation made by Touzé and its co-

workers [11] who interpreted the PDEs as a transport problem. The vector   can therefore 

be interpreted as the velocity vector of the master coordinates flow. The flow direction is 

called the characteristic direction and illustrates the propagation of the information into 

the domain. 

 

 

          
          
         

 

         
 

                                            (4) 

 

Figure 1(a) shows the flow of a 2DOF nonlinear conservative system. In the domain  , 

characteristic directions form curves called characteristic curves (or characteristics). In 

the present case, the conservation of the energy induces closed characteristics and results 

in a clear distinction between the dynamics of different energies. Indeed, the 

“information” related to a given energy is limited to the corresponding characteristic. This 

illustrates there is no mixing between different energy dynamics; high and low energy 

dynamics do not influence each other. In the non-conservative case, characteristics spiral 

toward the equilibrium point of the system (here, the origin) (see Figure 1(b)). 

 

  

Figure 1. PDEs are interpreted as flow equations where   is the velocity field (). (a) For a 

conservative system, the flow is tangent to iso-energy curves. (b) For a nonconservative system, 

the flow spirals to the equilibrium point. 

Solving hyperbolic PDEs requires boundary conditions at inflow     ), i.e. where the 

velocity vector   points inward the domain (cf. also [11]). In our first order problem, it 

requires to set the unknown field values (  
 ,   

 ) on this boundary. However, the domain 

boundary is away from the equilibrium point and corresponds to a region of high-energy 

where no theoretical information about the manifold is available. A first (classical) 

strategy would be to use an extrapolation technique to estimate the unknown values at the 

boundary using the solution computed inside the domain. According to the above 

interpretation in terms of characteristics, this will involve a mixing between different 

energy dynamics. Extrapolation was therefore not deemed useful. Nevertheless, we note 

that a domain with an iso-energy curve for boundary remains everywhere tangent to the 

flow and boundary conditions become theoretically obsolete. Assuming two different iso-

energy curves, they form the inner and outer boundaries of an annular domain. Since a 

clear partition of the dynamics exists, one can solve the PDEs in this region disregarding 
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the solution computed outside it. This strategy is key to our algorithm. It avoids setting 

disruptive boundary conditions and reduces the computational burden. This is particularly 

interesting as the number of degrees of freedom of the mechanical system becomes large. 

 

For nonconservative systems, there is no partition of the dynamics and the flow points 

inward the domain boundary. However, the methodology suggested previously remains 

applicable. Indeed, let's take an annular domain whose inner and outer boundaries 

correspond to iso-energy curves. Generally speaking, the flow points in and out at the 

outer and inner boundaries; respectively. However, mathematically, an “inverse” problem 

where boundary conditions have to be specified at the inner boundary can be solved. The 

flow can be “inverted” and spiral in and out at the inner and outer boundary; respectively. 

A recursive strategy can then be applied to progressively solve the PDEs using the 

previously computed solution as boundary conditions for the next domain. 

 

The proposed strategy suffers from a single limitation that is: iso-energy curves are only 

known at the solution. To circumvent this issue, a first guess of the iso-energy curve is 

computed using the previous domain boundary and solution. Then the shape of the new 

computational domain is iteratively modified as the new solution is computed. At the 

solution, the domain boundary fits the actual iso-energy curve. 

 

3.1 Resolution Strategy Overview 

The resolution strategy is illustrated in Figure 2. The computation starts in a small 

domain around the origin where the system is assumed to behave linearly. The domain 

boundary is established for a given initial energy and computed using the dynamics of a 

LNM. The LNM selected corresponds to the targeted NNM. The LNM is also considered 

as a first guess for the solution. To compute the actual solution, the domain boundary is 

corrected in order to fit the iso-energy corresponding to the current estimation of the 

solution. The correction is performed thanks to a mesh moving technique. It is applied a 

user-defined number of times until some criteria are fulfilled. Domain corrections precede 

each correction of the PDE solution in order to satisfy the boundary conditions. Once the 

solution is computed within a given accuracy, a new annular domain can be predicted. 

The prediction of the next iso-energy is performed using the previously computed 

solution. The new curve is considered as the new outer boundary whereas the old outer 

boundary becomes the inner one. Both boundaries define the new computational domain. 

The solution on this new annular region can be computed following a similar sequence of 

domain-correction and solution-correction. The NNM computation stops when the 

manifold is folded such that it cannot be described in terms of a single pair of master 

coordinates (e.g., during modal interactions). Post-processing is performed in order to 

merge the different annular domains computed. This operation is a simple “global” mesh 

interpolation over all “local” meshes. 

 

We here stress the importance of the iterative approach in annular regions. It first comes 

from the need to impose boundary conditions close to the origin for nonconservative 

systems (where the manifold is “known”). This strategy reveals particularly interesting in 

“complicated” problems where the initial LNM is too far from the actual manifold. 

Finally, in the presence of numerous DOFs, it dramatically reduces the computational 

burden. 
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Figure 2. Schematics of the alogirthm resolution strategy. 

 

3.2 Streamline Upwind Petrov-Galerkin 

In order to solve hyperbolic PDEs using the FEM, specific numerical techniques are 

employed. Indeed, classical Galerkin finite element formulations using similar shape and 

test function spaces have demonstrated poor results, for instance, in the context of fluid 

dynamics [14, 15]. In a similar way to off-centred schemes in the finite difference 

framework, several finite element formulations deal with transport phenomena using 

alternative test functions. The SUPG method is used herein and consists in over-

weighting the shape functions that are upstream. This method falls within the general 

category of Petrov-Galerkin formulations where test and shape functions are taken in 

different spaces. The approach is rather standard and its description is out of the scope of 

our paper. We briefly present the major points of our formulation and the interested 

reader can refer to [15] for practical details about SUPG. 

 

To derive our finite element formulation, a weighted residual approach is applied to eqs. 

(4). The formulation is presented in eqs. (5) where           with     and where 

shape functions are considered as simple first-order Lagrange shape functions:      . 

The test functions are               . As already mentioned, test functions differ 

from classical Galerkin test functions via an upstream overweighting (      ). As a 

consequence, discontinuous test functions are employed [16]. 

 

                              
 

   
          (5) 

                              
 

   
           

 

The parameter   can be defined according to various definitions [17-20]. Here,    
  

      
 

and    is the characteristic size of mesh elements. 

 

After the FE discretization, the set of PDEs is transformed to a set of coupled nonlinear 

algebraic equations. These equations are solved using a Newton-Raphson procedure 

where the Jacobian matrix is provided analytically. Each iteration involves the solution of 

a large linear system. It is computed using the GMRes (“Generalized Minimal Residual”) 

iterative solver and left and right ILU preconditioners (“Incomplete LU”).  An important 

feature of our problem is that equations to solve remains nonlinear even if the mechanical 

system considered is linear. 
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3.3 Domain Prediction 

The prediction of the domain     is performed using an approach similar to 

continuation. Consider the outer boundary   . This outer boundary becomes the inner 

boundary of the next domain    . To compute the new outer boundary, an energy 

increment     is applied and an estimation of the iso-energy curve at              

is determined. Linearizing the energy around each point   of the boundary   and solving 

eq. (6) transforms energy increments in terms of displacements             to apply to 

boundary nodes. Figure 3 illustrates the result of this procedure. 

 

       

  
 
 

 
       

  
 
 

 
                     (6) 

 

 

 
Figure 3. Prediction of the next domain boundary using the last converged solution. 

 

3.4 Domain Correction using a Mesh Moving Technique 

As introduced, the shape of the computational domain is chosen in order to avoid 

imposing boundary conditions. Such a domain needs to be everywhere tangent to the flow 

 . In the particular case of a conservative system, the flow is everywhere tangent to iso-

energy curves. An iso-energetic domain boundary would therefore meet our requirement. 

Unfortunately, such curves are known at the solution and only a prediction of it can be 

performed. In order to satisfy the need of boundary conditions to solve the hyperbolic 

problem, the domain is modified at each iteration such that it is an iso-energy curve for 

the current estimation of the solution. At each iteration, BCs are thus satisfied and the 

hyperbolic problem is well posed.  

 

To modify the domain's shape, the mesh is considered as a pseudo-elastic medium and a 

linear elasticity problem is solved. The inner boundary is considered as clamped 

(displacements are set to zero) while the outer boundary is moved in order to equal a 

reference energy. This reference energy is considered to be the smallest energy of all 

boundary points. This choice has the advantage to consider a new boundary completely 

enclosed into the previous one. The data interpolation between both meshes is therefore 

obvious and does not require any extrapolation. The formula used to compute the 

displacements imposed to the boundary nodes are similar to formula used for domain 

prediction (cf. Eq. (6)). The only difference is the energy increment    that is now 

determined to equal the reference energy. Additional information about mesh moving 

techniques can be found in [21]. 

 

Prediction 
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4. FREQUENCY COMPUTATION 

A key step in the derivation of the PDEs governing the manifold is the removal of the 

time dependence of the equations. As a consequence, time does not appear anymore in 

the equations and NNMs are geometrically described with PDEs. Therefore, contrary to 

methods using the system's ODEs where explicit time dependence is present, the 

invariant manifold approach does not provide a straightforward access to the motion 

frequency. 

 

However, in the restrictive case of conservative systems, “post-processing” operations 

can be applied in order to combine standard continuation techniques on the reduced-

dynamic ODEs. In the present study, we developed a novel approach to estimate the 

motion frequency as a byproduct of our finite element strategy. This approach is based on 

the interpretation of PDEs as hyperbolic equations and on the "iso-energetic" resolution 

strategy we employ. It does not rely on the reduced-dynamic ODEs, so time integration 

and continuation are not needed. 

 

PDEs are solved in the  , i.e.       plane where each domain boundary corresponds to 

an iso-energy curve. If the reduced dynamics was integrated with initial conditions on one 

of these curves, all the points belonging to the time series would geometrically lie on a 

domain boundary. Therefore the points describing the contour of the finite element mesh 

also belong to this time series and the contour corresponds to one period of motion. In 

order to compute the motion frequency, the contour length is divided by the averaged 

norm of the velocity   along each edge. As evidenced in Section 5, a very good 

agreement with reference results is achieved. 

 

For conservative systems, this method efficiently replaces a continuation algorithm but its 

extension to nonconservative problems is left for future work.  

 

5. A GEOMETRICALLY NONLINEAR 2DOF SYSTEM 

In this section, we first demonstrate the applicability of our method on a conservative 

two-degree-of-freedom system governed by Equations (7). This system was first 

presented in [8, 11, 22]. In [22], the authors showed the importance of NNMs for 

dynamical analysis and reduced-order modelling. The influence of linear damping was 

also evidenced as it could turn a hardening system to softening behaviour. In the present 

paper, we also consider this 2DOF system as a benchmark. Our finite element method 

will be validated in both conservative and nonconservative cases. 

 

  
         

    
    

  
 

 
    

    
     

      
  

    
 

 
     

    
     (7) 

  
         

    
    

  
 

 
    

    
     

      
  

    
 

 
     

    
      

 

System’s nonlinearities arise from second order terms in the stress tensor. Due to the 

geometrical configuration, equations are naturally uncoupled at the linear stage. As 

illustrated in [23] the hardening and softening behaviour of the conservative system is 

fully determined with    and   ; the linear parameters. We first consider the 

conservative case where the linear modal damping parameters from eqs. (7),    and   , 

equal zero. 
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Figure 4(a-b) present the two-dimensional invariant manifold with both    and    slave 

coordinates for the first NNM.   
    and   

   . The solution of our finite element 

method is depicted in green. For this conservative system, a reference solution coming 

from a continuation of periodic solutions algorithm [5] is presented in yellow. A very 

good agreement between both surfaces is observed. In Figure 4(c), the frequency 

dependence of the first NNM versus energy is presented in a frequency-energy plot 

(FEP). The black line is the reference solution from the continuation algorithm. Full and 

dashed parts illustrate the stable and unstable character of the periodic solutions. The 

computation of the frequency using the different domain boundaries is presented with 

blue markers. We observe a softening effect in perfect agreement with the reference. The 

frequency-energy discretization is linked to the energy steps performed by the algorithm 

computing for the invariant manifold.  

 

We now consider the second NNM. Likewise the first NNM, the geometry of the 

invariant manifold perfectly matches the reference solution and the FEP is well 

reproduced (Figure 5(a)). To further evidence these accurate results, Figure 5(b) 

compares the dynamics reduced on the invariant manifold (in black) with respect to the 

full-system dynamics (in red). The excellent correspondence between both slave velocity 

time series demonstrates the accurate computation of the invariant manifold. As already 

mentioned, the computation of the dynamics is based on the finite element interpolation 

mesh and does not require any additional interpolation procedure. It results in an 

efficiently and accurately computed dynamics that perfectly reflects the accuracy of the 

method on the invariant manifold. 

 

We finally note the computation of the manifold for unstable regimes. In these unstable 

regions, a small error performed on the computation of the manifold results in an error on 

initial conditions that are no more in the invariant manifold and the “true dynamics” drifts 

apart from the reduced one. Figure 5(c) shows    for larger initial conditions. Over 8 

periods, both dynamics accurately match. Then, as the small error on initial conditions 

gets bigger, the true dynamics rapidly branches off the reduced one. As a consequence, 

accurate time integration over multiple periods requires a finer mesh compared to stable 

regions. The investigation of the NNMs stability is not considered in the present paper. 

 

A further validation of our frequency computation is presented in Figure 6 with 

   
    

          . The hardening behaviour of the system rapidly turns to softening. 

This is a characteristic phenomenon of geometrically nonlinear systems involving 

quadratic and cubic stiffnesses [22, 23]. Here it is well reproduced by our method. 
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 (a) 

 

 (b) 

 
(c) 

Figure 4. First NNM. (a,b) Slave displacement    and valocity    (in green) are compared to reference 

results from a continuation of periodic solutions algorithm (in yellow). Very good agreement is observed. (c) 

Comparison between the frequencies extracted from the invariant manifold (O) and the reference FEP from 

continuation. The dashed line corresponds to the unstable part of the backbone. 

We now turn to the analysis of the system including linear damping (         ). We 

specifically consider the case where    
    

            In Figure 7, the system forced 

response is computed for different excitation amplitudes. For increasing values of the 

damping ratio   , i.e. from Figure 7(a) to Figure 7(b), the hardening behaviour of the 

system is modified into softening.  

 

Computing the invariant manifold for both system parameters offers a way to observe this 

frequency dependence. In this nonconservative case, the reduced dynamics is integrated 

versus time and a time-frequency analysis is performed using the wavelet transform. For 

both systems (Figure 7(a-b)), the NNM backbone is depicted with a dash-dot line. The 

steps that appear result from the time-frequency resolution of the transformation. In spite 

of this time-frequency resolution compromise, NNMs backbones reproduce the system 

resonances under harmonic forcing. 
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(a) 

  
(b) 

  
(c) 

Figure 5. Second NNM. (a) Comparison between the frequency extracted from the invariant manifold (O) and 

the reference FEP from continuation. The dashed line corresponds to the unstable part of the backbone. (b-c) 

Slave velocity    time series reduced on the manfold (black) and for the full-system (red). Perfect matcing 

for low amplitude initial conditions (b). Large discrepancies are observed after 40 seconds. 

 

 
Figure 6. FEP for the first NNM with system parameters   

      and   
   . Hardening behaviour turns 

to softening. Frequency extracted from the invariant manifold (O). 
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(a) 

 
(b) 

Figure 7. Frequency response curves to harmonic forcing. The hardening behaviour of the system at low 

linear damping (a)                       turns to softening for higher damping values (b)         

           . Frequency parameters are    
    

            The dashed-dot lines correspond to the NNM 

prediction using the invariant manifold approach. The frequency is computed by means of time integration 

and wavelet time-frequency analysis. 

 

6. COUPLED VAN DER POL OSCILLATORS 

 
A 2DOF example with nonlinear damping is now considered. It is a system of two 

coupled Van der Pol oscillators (cf. eq. (8)). System parameters are          , 

            ,          ,        . We note here the presence of velocity 

dependent but however conservative terms (     ). These terms have to be considered to 

properly fit iso-energy curves.  

 

                         
      

           (8) 

                           
    

                

 

Figure 8 presents the first invariant manifold computed starting from the first LNM. The 

slave DOFs are presented in Figure 8(a, b). The computation of the dynamics shows that 

a limit cycle is enclosed into the surface (Figure 8(c)). In the presence of damping, the 

validation of our results only relies of the accurate prediction of the dynamics. Figure 8(d) 

presents the time series of    and compares it to the full-system dynamics. A perfect 

agreement is observed. To further validate this dynamics, a quantitative comparison is 

performed using the normalized mean square error (NMSE). In the present situation, the 

NMSE values reaches 1e-4% which is a sign of perfect matching. 

 

7. CONCLUSIONS 

In this paper, a novel method to solve NNMs as invariant manifold was presented. The 

key feature of the method is the interpretation of manifold governing PDEs as hyperbolic 

equations. These equations require specific numerical treatment in terms of discretization 

techniques as well as boundary conditions. The finite element method as the advantage to 

directly propose a way to compute the system reduced dynamics. Additional 

interpolations are not necessary. For conservative cases, a method proposed to retrieve 

the motion frequency as a byproduct of the invariant manifold computation.  It is 

arguably the first method that addresses both conservative and nonconservative systems 

including linear as well as nonlinear damping. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Invariant manifold computed from the first LNM. (a-b) Slave displacement    and velocity   . (c) 

The manifold encloses the limit cycle. (d) Slave displacement    dynamics versus time. The reduced 

dynamics perfectly reproduces the full-system dynmics. The NMSE equals      . 
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