

# Non-local multiscale analyzes of composite laminates based on a damage-enhanced meanfield homogenization formulation

L. Wu (ULg) , Ludovic Noels (ULg), L. Adam(e-Xstream), I. Doghri (UCL)

SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework.



CM3



# Content

#### • Introduction

Mean-field homogenization Multi-scale modelling

#### • Mean-Field-Homogenization with non-local damage

- Incremental secant approach idea
- Non-local damage-enhanced incremental secant approach

#### • Finite-element implementation

- Direct resolution
- Staggered resolution

# Applications

- Laminate with unloading
- Laminate with a hole

#### Conclusions



# Introduction

#### • Multiscale methods

- Macro-scale
  - FE model
  - At one integration point  $\overline{\epsilon}$  is know,  $\overline{\sigma}$  is sought





#### • Multiscale methods

- Macro-scale
  - FE model
  - At one integration point  $\overline{\epsilon}$  is know,  $\overline{\sigma}$  is sought



- Micro-scale
  - Semi-analytical model
  - Predict composite meso-scale response
  - From components material models



4

#### Multiscale methods

- Macro-scale \_
  - FE model
  - At one integration point  $\overline{\epsilon}$  is know,  $\overline{\sigma}$  is sought
- Transition \_
  - Downscaling:  $\overline{\epsilon}$  is used as input of the MFH model •
  - Upscaling:  $\sigma$  is the output of the MFH model
- Micro-scale \_
  - Semi-analytical model •
  - Predict composite meso-scale response •
  - From components material models •

### **Assumptions:**

 $L_{\text{macro}} >> L_{\text{RVF}} >> L_{\text{micro}}$ 







# Introduction

- Semi analytical Mean-Field Homogenization ۲
  - Based on the averaging of the fields \_

$$\langle a \rangle = \frac{1}{V} \int_{V} a(X) \mathrm{d}V$$

- Meso-response \_
  - From the volume ratios ( $v_0 + v_1 = 1$ )

$$\begin{cases} \overline{\boldsymbol{\sigma}} = \langle \boldsymbol{\sigma} \rangle = v_0 \langle \boldsymbol{\sigma} \rangle_{\omega_0} + v_{\mathrm{I}} \langle \boldsymbol{\sigma} \rangle_{\omega_{\mathrm{I}}} = v_0 \boldsymbol{\sigma}_0 + v_{\mathrm{I}} \boldsymbol{\sigma}_{\mathrm{I}} \\ \overline{\boldsymbol{\varepsilon}} = \langle \boldsymbol{\varepsilon} \rangle = v_0 \langle \boldsymbol{\varepsilon} \rangle_{\omega_0} + v_{\mathrm{I}} \langle \boldsymbol{\varepsilon} \rangle_{\omega_{\mathrm{I}}} = v_0 \boldsymbol{\varepsilon}_0 + v_{\mathrm{I}} \boldsymbol{\varepsilon}_{\mathrm{I}} \end{cases}$$



One more equation required •

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{\mathrm{0}}$$

Difficulty: find the adequate relations \_

$$\begin{cases} \boldsymbol{\sigma}_{\mathrm{I}} = f(\boldsymbol{\varepsilon}_{\mathrm{I}}) \\ \boldsymbol{\sigma}_{0} = f(\boldsymbol{\varepsilon}_{0}) \\ \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0} \end{cases} \qquad \boldsymbol{B}^{\varepsilon} ?$$





### Introduction

- Mean-Field Homogenization for different materials
  - Linear materials
    - Materials behaviours

$$\boldsymbol{\sigma}_{\mathrm{I}} = \overline{\boldsymbol{C}}_{\mathrm{I}} : \boldsymbol{\varepsilon}_{\mathrm{I}}$$
$$\boldsymbol{\sigma}_{0} = \overline{\boldsymbol{C}}_{0} : \boldsymbol{\varepsilon}_{0}$$

- Mori-Tanaka assumption  $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_0$
- Use Eshelby tensort  $\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} (\mathrm{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}}) : \boldsymbol{\varepsilon}_{0}$

with 
$$\boldsymbol{B}^{\varepsilon} = [\boldsymbol{I} + \boldsymbol{S} : \overline{\boldsymbol{C}}_0^{-1} : (\overline{\boldsymbol{C}}_1 - \overline{\boldsymbol{C}}_0)]^{-1}$$

- Non-linear materials
  - Define a Linear Comparison Composite
  - Common approach: incremental tangent

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left( \mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \right) : \Delta \boldsymbol{\varepsilon}_{0}$$



- Material models
  - Elasto-plastic material
    - Stress tensor  $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
    - Yield surface  $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} \boldsymbol{R}(p) \leq 0$
    - Plastic flow  $\Delta \varepsilon^{\rm pl} = \Delta p N$  &  $N = \frac{\partial f}{\partial \sigma}$
    - Linearization  $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$





- Material models
  - Elasto-plastic material
    - Stress tensor  $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
    - Yield surface  $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
    - Plastic flow  $\Delta \varepsilon^{\rm pl} = \Delta p N$  &  $N = \frac{\partial f}{\partial \sigma}$
    - Linearization  $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
  - Local damage model
    - Apparent-effective stress tensors  $\boldsymbol{\sigma} = (1 D)\hat{\boldsymbol{\sigma}}$
    - Plastic flow in the effective stress space
    - Damage evolution  $\Delta D = F_D(\boldsymbol{\varepsilon}, \Delta p)$





9

- Finite element solutions for strain softening problems suffer from:
  - The loss the uniqueness and strain localization
  - Mesh dependence



The numerical results change with the size of mesh and direction of mesh





The numerical results change without convergence

- Implicit non-local approach [Peerlings et al 96, Geers et al 97, ...]
  - A state variable is replaced by a non-local value reflecting the interaction between \_ neighboring material points

$$\widetilde{a}(\mathbf{x}) = \frac{1}{V_{\rm C}} \int_{V_{\rm C}} a(\mathbf{y}) w(\mathbf{y}; \mathbf{x}) \mathrm{d}V$$

Use Green functions as weight w(y; x)

$$\implies$$
  $\widetilde{a} - c \nabla^2 \widetilde{a} = a \implies$  New degrees of freedom

CM3





- Material models
  - Elasto-plastic material
    - Stress tensor  $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
    - Yield surface  $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
    - Plastic flow  $\Delta \varepsilon^{\rm pl} = \Delta p N$  &  $N = \frac{\partial f}{\partial \sigma}$
    - Linearization  $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
  - Local damage model \_
    - Apparent-effective stress tensors  $\boldsymbol{\sigma} = (1 D) \hat{\boldsymbol{\sigma}}$ •
    - Plastic flow in the effective stress space
    - Damage evolution  $\Delta D = F_D(\boldsymbol{\varepsilon}, \Delta p)$ •
  - Non-Local damage model
    - $\Delta D = F_{D}(\boldsymbol{\varepsilon}, \Delta \boldsymbol{\widetilde{p}})$ Damage evolution
    - Anisotropic governing equation  $\tilde{p} \nabla \cdot (\boldsymbol{c}_{g} \cdot \nabla \tilde{p}) = p$ •
    - Linearization

$$\delta \boldsymbol{\sigma} = \left[ (1 - D) \boldsymbol{C}^{\text{alg}} - \hat{\boldsymbol{\sigma}} \otimes \frac{\partial F_D}{\partial \boldsymbol{\varepsilon}} \right] : \delta \boldsymbol{\varepsilon} - \hat{\boldsymbol{\sigma}} \frac{\partial F_D}{\partial \tilde{\boldsymbol{p}}} \delta \tilde{\boldsymbol{p}}$$





Université 🔰 Ø

CM3



#### • Problem

- We want the fibres to get unloaded during the matrix damaging process
  - For the incremental-tangent approach

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \Big( \mathrm{I}, (1-D) \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \Big) : \Delta \boldsymbol{\varepsilon}_{0}$$

- To unload the fibres (  $\boldsymbol{\varepsilon}_{\mathrm{I}} < 0$  ) with such approach would require  $\overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} < 0$
- We cannot use the incremental tangent MFH
- We need to define the LCC from another stress state



12

#### • Idea

- New incremental-secant approach
  - Perform a virtual elastic unloading from previous solution
    - Composite material unloaded to reach the stress-free state
    - Residual stress in components





#### Idea ۲

- New incremental-secant approach \_
  - Perform a virtual elastic unloading from • previous solution
    - Composite material unloaded to reach the stress-free state
    - Residual stress in components
  - Apply MFH from unloaded state •
    - New strain increments (>0)

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}/\mathrm{0}}^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/\mathrm{0}} + \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/\mathrm{0}}^{\mathrm{unload}}$$

Use of secant operators

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left( \mathrm{I}, (1-D) \overline{\boldsymbol{C}}_{0}^{\mathrm{Sr}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_{0}^{\mathrm{r}}$$

Possibility of have unloading

$$\begin{cases} \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} > 0 \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}} < 0 \end{cases}$$



CM<sub>3</sub>



Université 🛛 🦉

- New incremental-secant approach
  - Equations summary
    - Inputs
      - Internal variable at last increment
      - Residual tensor after virtual unloading
      - $\Delta \overline{\boldsymbol{\varepsilon}}, \Delta \widetilde{\boldsymbol{p}}$  from FE resolution
    - Solve iteratively the system

$$\begin{cases} \Delta \overline{\boldsymbol{\varepsilon}}^{(r)} = v_0 \Delta \boldsymbol{\varepsilon}_0^{(r)} + v_I \Delta \boldsymbol{\varepsilon}_I^{(r)} \\ \Delta \boldsymbol{\varepsilon}_I^r = \Delta \boldsymbol{\varepsilon}_I + \Delta \boldsymbol{\varepsilon}_I^{\text{unload}} \\ \Delta \boldsymbol{\varepsilon}_0^r = \Delta \boldsymbol{\varepsilon}_0 + \Delta \boldsymbol{\varepsilon}_0^{\text{unload}} \\ \Delta \boldsymbol{\varepsilon}_I^r = \boldsymbol{B}^{\varepsilon} \left( \mathbf{I}, (1 - D) \overline{\boldsymbol{C}}_0^{\text{Sr}}, \overline{\boldsymbol{C}}_I^{\text{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_0^r \end{cases}$$



• With the stress tensors

$$\begin{cases} \overline{\boldsymbol{\sigma}} = v_0 \boldsymbol{\sigma}_0 + v_{\mathrm{I}} \boldsymbol{\sigma}_{\mathrm{I}} \\ \boldsymbol{\sigma}_{\mathrm{I}} = \boldsymbol{\sigma}_{\mathrm{I}}^{\mathrm{res}} + \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} : \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} \\ \boldsymbol{\sigma}_0 = (1 - D) \hat{\boldsymbol{\sigma}}_0^{\mathrm{res}} + (1 - D) \overline{\boldsymbol{C}}_0^{\mathrm{Sr}} : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \end{cases}$$



- New incremental-secant approach (2)
  - Alternative
    - For soft matrix response
      - Remove residual stress in matrix
      - Avoid adding spurious internal energy
    - Solve iteratively the system

$$\begin{cases} \Delta \overline{\boldsymbol{\varepsilon}}^{(\mathrm{r})} = v_0 \Delta \boldsymbol{\varepsilon}_0^{(\mathrm{r})} + v_{\mathrm{I}} \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{(\mathrm{r})} \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_{\mathrm{I}} + \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{unload}} \\ \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_0 + \Delta \boldsymbol{\varepsilon}_0^{\mathrm{unload}} \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left( \mathbf{I}, (1-D) \overline{\boldsymbol{C}}_0^{\mathrm{S0}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \end{cases}$$

• With the stress tensors

$$\begin{cases} \overline{\boldsymbol{\sigma}} = v_0 \boldsymbol{\sigma}_0 + v_{\mathrm{I}} \boldsymbol{\sigma}_{\mathrm{I}} \\ \boldsymbol{\sigma}_{\mathrm{I}} = \boldsymbol{\sigma}_{\mathrm{I}}^{\mathrm{res}} + \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} : \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} \\ \boldsymbol{\sigma}_0 = (1 - D) \overline{\boldsymbol{C}}_0^{\mathrm{S0}} : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \end{cases}$$







CM3



- Weak formulation
  - Strong form  $\begin{cases}
    \nabla \cdot \overline{\sigma}^{T} + f = 0 & \text{for the homogenized composite material} \\
    \widetilde{p} - \nabla \cdot (c_{g} \cdot \nabla \widetilde{p}) = p & \text{for the matrix phase}
    \end{cases}$
  - Boundary conditions

 $\begin{cases} \boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{T} \\ \boldsymbol{n} \cdot \left( \boldsymbol{c}_{g} \cdot \nabla \widetilde{p} \right) = 0 \end{cases}$ 

Finite-element discretization

$$\begin{cases} \widetilde{p} = N_{\widetilde{p}}^{a} \widetilde{p}^{a} \\ u = N_{u}^{a} u^{a} \end{cases}$$
$$\implies \begin{bmatrix} K_{uu} & K_{u\widetilde{p}} \\ K_{\widetilde{p}u} & K_{\widetilde{p}\widetilde{p}} \end{bmatrix} \begin{bmatrix} du \\ d\widetilde{p} \end{bmatrix} = \begin{bmatrix} F_{ext} - F_{int} \\ F_{p} - F_{\widetilde{p}} \end{bmatrix}$$





- Resolution strategies
  - Fully coupled resolution

$$\begin{bmatrix} \boldsymbol{K}_{uu} & \boldsymbol{K}_{u\tilde{p}} \\ \boldsymbol{K}_{\tilde{p}u} & \boldsymbol{K}_{\tilde{p}\tilde{p}} \end{bmatrix} \begin{bmatrix} d\boldsymbol{u} \\ d\tilde{\boldsymbol{p}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{ext} - \boldsymbol{F}_{int} \\ \boldsymbol{F}_{p} - \boldsymbol{F}_{\tilde{p}} \end{bmatrix}$$

- Staggered dynamic resolution
  - Explicit resolution of the displacement dofs

$$\ddot{\boldsymbol{u}}^{n+1} = \frac{1}{1-\alpha_M} \boldsymbol{M} \left[ \boldsymbol{F}_{ext}^n - \boldsymbol{F}_{int}^n \right] - \frac{\alpha_M}{1-\alpha_M} \boldsymbol{u}^n$$
$$\dot{\boldsymbol{u}}^{n+1} = \dot{\boldsymbol{u}}^n + \Delta t \left[ 1 - \gamma_M \right] \ddot{\boldsymbol{u}}^n + \Delta t \gamma_M \ddot{\boldsymbol{u}}^{n+1}$$
$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \Delta t \dot{\boldsymbol{u}}^n + \Delta t^2 \left[ \frac{1}{2} - \beta_M \right] \ddot{\boldsymbol{u}}^{n+1} + \Delta t^2 \beta_M \ddot{\boldsymbol{u}}^{n+1}$$

• Resolution of the non-local equation once every *N* steps

$$\boldsymbol{K}_{\widetilde{p}\widetilde{p}}d\widetilde{\boldsymbol{p}}=\boldsymbol{F}_{p}-\boldsymbol{F}_{\widetilde{p}}$$



# Finite-element implementation

#### • Mesh-size effect

- Fictitious composite
  - 30%-UD fibres
  - Elasto-plastic matrix with damage
- Notched ply





Université de Liège



Laminate: calibration

50

- Carbon-fibres reinforced epoxy \_
  - 60%-UD fibres •
- [-45<sub>2</sub>/45<sub>2</sub>]<sub>S</sub> staking sequence





- Laminate plate with hole ۲
  - Carbon-fibres reinforced epoxy \_
    - 60%-UD fibres •
    - Elasto-plastic matrix with damage
  - $[-45_2/45_2]_S$  staking sequence



ICCS17

- Laminate plate with hole (2)
  - Carbon-fibres reinforced epoxy
    - 60%-UD fibres
    - Elasto-plastic matrix with damage
  - [-45<sub>2</sub>/45<sub>2</sub>]<sub>S</sub> staking sequence















- Laminate plate with hole (3)
  - Carbon-fibres reinforced epoxy
    - 60%-UD fibres
    - Elasto-plastic matrix with damage
  - $[-45_2/45_2]_S$  staking sequence





# Conclusions

- New damage-enhanced incremental secant MFH approach
  - Efficient computationally
  - Allows fibres unloading during matrix softening

#### • Non-local damage-enhanced MFH

- Good description of the meso-scale response
- Can be used to study coupons problems
- Perspective
  - From damage to crack

