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ABSTRACT

This paper aims to develop a multiaxial concretelehdor implementation in finite
element softwares dedicated to the analysis ottstreis in fire. The need for proper concrete
model remains a challenging task in structural &ngineering because of the complexity of
the concrete mechanical behavior characterizatiod the severe requirements for the
material models raised by the development of peréorce-based design. A fully three-
dimensional model is developed based on the cormbmaf elastoplasticity and damage
theories. The state of damage in concrete, assisogdpic, is modeled by means of a fourth
order damage tensor to capture the unilateral tefléte concrete model comprises a limited
number of parameters that can be identified byetlsienple tests at ambient temperature. At
high temperatures, a generic transient creep medetluded to take into account explicitly
the effect of transient creep strain. The numericgllementation of the concrete model in a
finite element software is presented and a sefiesimerical simulations are conducted for
validation. The concrete behavior is accuratelytwaga in a large range of temperature and
stress states. A limitation appears when modelegconcrete post-peak behavior in highly
confined stress states, due to the coupling assompétween damage and plasticity, but the
considered levels of triaxial confinement are umlistress states in structural concrete.

Keywords: thermomechanical processes; concrete; consgtubehavior; elastic-plastic
material; damage model; fire.



Highlights:
» A plastic-damage model for concrete at high tentpegas proposed.
* The unilateral effect is captured by a fourth-ordemage tensor.
» Transient creep strain is explicitly included i tmodel.
* The model captures the main thermomechanical phenarmaxhibited by concrete.
» The implications of the coupling between plastieityd damage are discussed.



1 Introduction
1.1.Modeling the concrete mechanical behavior in structral fire engineering

Although structural concrete is widely used in kemgineering, proper modelling of
its thermo-mechanical behavior remains a challepgssue for engineers because of the
complexity of the phenomena that result from therogracking process in this material.
Concrete is a complex composite material compose@dgregates and hydrated cement
paste. The concrete mechanical behavior is higbihjimear and influenced by microcracking,
which causes softening behavior, stiffness degi@uand unilateral effect. In compression,
concrete exhibits inelastic volumetric expansidiened to as dilatancy in the literature; this
phenomenon has a significant effect on the behagfoplain and reinforced concrete
structures in multiaxial stress states (Lee andv&®nl1998). In addition, the behavior is
affected by other characteristic phenomena at tddvdemperatures such as explosive
spalling or transient creep.

The difficulty to develop a concrete model suitafde the analysis of structures at
high temperatures is also due to the severe ragairts for the material models raised by the
development of performance-based design. The isetease of performance-based approach
for fire safety is related to the search for acimgvfire safety through alternative, cost
effective solutions (Meacham and Custer, 1992; Ko#l899). Performance-based design has
extended the frontiers of the analysis, studying msponse of entire structures instead of
isolated structural elements or assuming naturalsitenarios instead of standard fires such as
the ASTME fire (ASTME, 2007) or the ISO fire (ISD975). As a consequence, the material
models must be sufficiently robust for complex nuo@ calculations such as, for instance,
the analysis of tensile membrane action in compasébs. Besides, the models must be valid
also during the cooling down phase of a naturaldind therefore the evolution of the material
properties with decreasing temperatures must babledted. Finally, the will to make
available the models for practical applicationgeal projects leads to the necessity to limit
the number of parameters in the models and to enauor easy identification of these
parameters by elementary tests.

1.2. Review of the concrete models

Plasticity theory offers a very interesting framekvéor modelling concrete because
this theory is nowadays theoretically consolidad@d computationally efficient (Wu, et al.,
2006) and it is suitable for capturing the phenoaen dilatancy, permanent strain and
hardening and softening behavior of the materige(fstra and de Borst, 1996; Lee and
Fenves, 1998). The split of strains into elastid gtastic parts within the plasticity theory
allows for convenient modelling of the inelastidatenations in concrete. Many researchers
have used plasticity theory alone to model the reiedbehavior (William and Warnke, 1974;
Onate, et al., 1993; Feenstra and de Borst, 198835 et al., 2002; Li and Crouch, 2010).
The published models frequently use non-associdtme rules in order to capture the
dilatancy in compression, and work or strain haigmo model the hardening and softening
of the material. However, plasticity models arehledo address the process of damage due
to microcracks growth, and therefore they failéproduce some of the phenomena observed



in experiments such as the stiffness degradatidnuaiateral effect (Wu, et al., 2006). The
unilateral effect is the sudden recovery of matestiffness during unloading from the tensile
region to the compressive region, due to closur¢heftensile cracks. As a consequence,
recent research on concrete modelling tends tolaleveodels that combine plasticity theory
with other theories more suitable for the desaniptof the concrete behavior in tension, such
as fracture theory (Cervenka and Papanikolaou, 2@0&amage theory.

Continuum damage mechanics (CDM) is commonly usedniodelling concrete
behavior; damage models rely on the assumptiontiigatiegradation due to micro-cracking
can be taken into account through the variationghefelastic properties. Therefore damage
models are particularly suitable for descriptiorstiffness degradation and unilateral effect in
concrete. Extensive research work has been perfbrore concrete modelling in the
framework of CDM, in which damage is consideredaassotropic (e.g. Mazars, 1984; Lee
and Fenves, 1998; Grassl and Jirasek, 2006; Wal.,e2006; Richard, et al., 2010) or an
anisotropic process (e.g. Ortiz, 1985; Carol, gt2l01a-b; Desmorat, et al., 2007; Voyiadijis,
et al., 2008; Abu Al-Rub and Voyiadjis, 2009). Altigh CDM provides many advantages for
modelling concrete, it is not suitable for captgrsbme important observed phenomena such
as irreversible deformations and inelastic volumetxpansion (dilatancy) in compression.
Therefore the combination of CDM with plasticityetiry is certainly appealing to encompass
the advantages of the two approaches in a singistibative model and this approach has
been elected in the present work.

Constitutive models for concrete at ambient tenpeeabased on plastic-damage
formulation have been proposed by several autfidrese models usually combine stress-
based plasticity with either isotropic or anisoitogamage. Models coupling plasticity with
anisotropic damage address the characterizatioth@fconcrete damage behavior with
different microcracking in different directions (BEhke, et al., 1998; Cicekli, et al., 2007;
Voyiadjis, et al., 2008; Voyiadjis, et al., 2008Jowever, modeling anisotropic damage in
concrete is complex; see for instance the workSabl et al. (2001a-b). It has been noted by
several authors that the applicability to strudtaraalysis of anisotropic damage models for
concrete is not straightforward due to the inhem@nhplexities of the required numerical
algorithms (Grassl and Jirasek, 2006; Wu, et 8l062. As a consequence, isotropic damage
has been widely used for concrete in combinatioth iasticity (Lee and Fenves, 1998;
Kratzig and Polling, 2004; Grassl and Jirasek, 200&jieddin, et al., 2012). The isotropic
damage process can be characterized by one seaaral scalars or a tensor. Yet, the one-
scalar damage models are not adapted for concvete when damage is modeled as an
isotropic process. The use of different scalarcdpture the damage process in concrete
(Mazars, 1984; Lee and Fenves, 1998) is consistitht the experimental observation of
different damage mechanisms developing in tensi@hia compression; a minimum of two
scalar variables is necessary to describe thesereht damage mechanisms. Some authors
have proposed a fourth-order damage tensor to ciesize the state of isotropic damage in
concrete (Ju, 1990; Wu, et al., 2006), showing #hfaturth-order tensor is required to capture
the unilateral effect; in fact, even for isotropi@mage, proper description of the damage state
in concrete requires a fourth-order tensor basetvorscalar variables.

Among the published plastic-damage models, strase¢b plasticity is formulated
either in the effective stress space (Lee and Feri@98; Grassl and Jirasek, 2006; Wu, et al.,



2006; Cicekli, et al., 2007; Saritas and Filipp@009) or in the nominal (damaged) stress
space (Lubliner, et al., 1989; Kratzig and PolliB§04; Voyiadjis, et al., 2008; Tagieddin, et
al., 2012). According to the generally adopted nocregure, effective stresg is meant as
the average micro-level stress applied to the ulad@ch volume of the material whereas
nominal stresso is meant as the macro-level stress and is defasefbrce divided by the
total area. Formulation of the plastic responsdhie effective stress space relies on the
assumption that plastic flow occurs in the undardageterial micro-bounds by means of
effective quantities (Ju, 1989). It has been shdvat local uniqueness is always guaranteed
for the plastic-damage models with plasticity fotated in the effective stress space, whereas
local unigueness requires severe restriction witestipity is formulated in the nominal stress
space (Grassl and Jirasek, 2006). Besides, othttorauhave noted that plastic-damage
models formulated in the effective stress spacenaraerically more stable and attractive
compared with models formulated in the nominalsstrepace (Abu Al-Rub and Voyiadjis,
2009). Formulation of the plastic response in ttfiecéve stress space allows for decoupling
the plastic part from the damage part in the coatput process; computation of the plastic
response then constitutes a standard elastopfasiidem in the effective stress space. As a
result, the combination of stress-based plastfotynulated in the effective stress space and
isotropic damage constitutes an interesting appré@cemodelling the behavior of concrete.

Elevated temperatures are the cause of degradatiotie micro-level that result in
loss of stiffness and strength of the material.vaied temperatures in concrete may also
cause specific phenomena such as transient creexpbosive spalling, which have an
influence on the structural response. Concrete ldd&ing into account the effect of high
temperatures and based on the plasticity theorg baen developed by Khennane and Baker
(1992) and Heinfling (1998); this latter contrilmrtinotably takes into account the increasing
temperature sensitivity of compressive strengtlinytdrostatic pressure. Other authors have
developed concrete models at high temperatured lmas¢he damage theory (Gawin, et al.,
2004; Baker and de Borst, 2005). These damage sagel a thermal damage variable to
capture the degradation of elastic modulus with perature. Although the theoretical
framework of plastic-damage formulation has beamébappealing by many researchers for
modeling concrete at ambient temperature, the dpwetnt of concrete plastic-damage
models at high temperature has been hardly treatéue literature. Nechnech et al. (2002)
proposed an interesting contribution which highieghthe interest of plastic-damage models
for concrete at high temperature. This latter m@dsd uses a thermal damage to account for
the temperature variation of the elastic modulugd #rincorporates the effect of transient
creep using Anderberg and Thelandersson’s formug¥q). However, the modeling of
damage by two scalars did not allow for capturimg wnilateral effect and the authors had to
introduce a specific parameter in the model toagetind this limitation. Besides, the model
was only developed in plane stress states andpfiicability for practical applications of
structural fire engineering has not been demorstrdieyond the analysis of one-way
reinforced concrete slabs supported on two sides samjected to heating. Consequently,
research efforts are still required to give furtiresight into concrete modelling at elevated
temperature and to extend the latest developmérmbient temperature models to elevated
temperature, with special emphasis on the sped#imands raised by the development of
performance-based design.



1.3. Significance of the research work

This paper proposes a new multiaxial constitutivedet for concrete in the fire
situation based on the theoretical background asteplasticity and damage theories. The
model extends to high temperatures several develnfsmrecently published for concrete
modeling at ambient temperature and it incorporatéginal contributions notably for the
evolution laws and for the transient creep str&nllowing the requirements raised by
performance-based design, special care is givémetmumerical robustness of the model and
the influence of the stress-temperature historyhenstrain response of the material. A series
of numerical simulations of building structuresfire will be presented in a forthcoming
paper for validating the applicability of the coet model to structural fire engineering
applications.

2 Plastic-damage model for concrete
2.1. Constitutive relationships

The mechanical behavior of concrete at elevatedpéeatures is captured by
constitutive relationships between the total sttamsor and the stress tensor. Assuming small

strains, the total strairg,, is decomposed into elastic strag,, plastic straing,, free

thermal straing,, and transient creep strag according to Eq. (1).

§tot = §e| +£p +£th +£tr (1)

The sum of the elastic strain and the plasticrsisareferred to as instantaneous stress-
related straing,, .

Basic creep, defined as the additional strain deaelops when only time is changing
with all other conditions such as stress and teaipex being constant, is generally omitted
for the structural calculation of building structarin the fire situation because, in this
situation, this strain is often very small compatedhe other strains in concrete due to the
short period of the fire (Li and Purkiss, 2005) ndcessary, it could easily be added to the
strain decomposition in Eq. (1).

The characterization of plastic response is fortedlan the effective stress space. The
strain equivalence hypothesis is adopted here, lwiieans that the strain in the effective
(undamaged) and nominal (damaged) configuratioasegual. Considering that the plastic
behavior occurs in the undamaged material, thetitotge relationship in the effective stress
space can be written following the classical elalsistic behavior. The elastic strain tensor is
thus related to the effective stress tensorby means of the fourth-order isotropic linear-

elastic stiffness tensdt,, see Eqg. (2). The plastic response accounts édévelopment of

irreversible strains in the material.

T=Coifa=Co' (G —En & = 5) = S (& - £) @



To capture the effects of microcracking on the telaproperties of the material,
damage is introduced in the model using a fourtteoisotropic damage tens@. This

fourth-order damage tensor is used to map the teféestress tensog into the nominal

stress tensog according to Eq. (3), wherk is the fourth-order identity tensor.

o=[L-0):2 ©)

As the damage mechanisms that develop in concreteliierent in tension and in
compression, a damage scalar internal variablés considered for modelling of tensile

damage and a damage scalar internal varieples considered for modeling of compressive

damage. The damage tensor is calculated from thiesdamage scalars using Eq. (4), which
has been proposed by Wu, et al. (2006).

[E)=dt§++dcf 4)

In this latter equationP™ and P~ are the fourth-order projection tensors calculated

according to Eqg. (5)

P=YH(@)(n0p) P=1-P )

where H (&) is the Heaviside function computed for fitie eigenvalued; of &, and the

second-order tensop; is defined by Eq. (6), withn the ith normalized eigenvector

corresponding ta7, .

1
Py =P =5 (p0g+p0n) (6)

The fourth-order projection tensors are built ttowal for a decomposition of the
effective stress tensar into positive and negative components accordinigdo(7).

+ + . — +
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Consequently, the tensile damage scallaronly affects the positive part of the

effective stress tensor whereas the compressiveagiarscalard, only affects the negative

part of the effective stress tensar:=(1-d,) &* +(1-d,) &". When the stress state in the

material changes from tension to compression, tleeteof the tensile damage scaldr on

the macroscopic behavior disappear, which corredpphysically to the closure of the tensile
cracks and subsequent stiffness recovery in canciélus, this representation of the state of
damage allows for capturing properly the unilatesfiéct, as can be seen in Fig. 1; in this
figure, the model response to a unilateral testoisipared with experimental data given by
Ramtani (1990).



2.2. Plastic theory

A multi-surface vyield criterion is adopted to cagtuhe behavior of concrete under
different load paths. The use of dedicated yieldases for tension and for compression is
convenient in concrete as this material exhibit:iaam-symmetrical behavior driven by
different failure modes in tension and in compmssiFeenstra and de Borst (1996) have
proposed a multi-surface model for concrete in iblastress states combining the Drucker-
Prager criterion with the Rankine cutoff in tensidhe same approach is adopted here for the
concrete model in three-dimensional stress stéadijng to the expressions of Eq. (8a) and
Eq. (8b). In these equationk, is the Rankine yield functiong, is the maximum principal

effective stress,r; is the tensile hardening function depending on téwsile hardening
parameterk,, F. is the Drucker-Prager yield functiom, is the trace (first invariant) of the
effective stress tensod, is the second invariant of the deviatoric effeetitress tensor, is
the compressive hardening function depending onctimepressive hardening parameter

and a is a material parameter (coefficient of internatiction) defined by
a=(f,-f)/(2f,- f,), where f, and f, respectively represent the uniaxial and biaxial

compressive strength of the material. The exprassad Eqg. (8a-b) are written in terms of
effective stress as the plastic response applidfeetandamaged part of the material.

F(g.x)=0,-7(k)<0 (8a)
F.(2.k.) =33, +a T, - @-a)T (k)< 0 (8b)

The multi-surface vyield criterion that results frahre combination of Rankine yield
function and Drucker-Prager yield function is péottin the two-dimensional stress space, i.e.
assuming thatr,, =0, in Fig. 2. The limit yield function correspondsthe failure envelope
at the end of the hardening process; this limildyfanction agrees with experimental data of
the biaxial failure envelope given by Kupfer andr&le (1973). It is assumed that the yield
function experiences isotropic hardening/softenthg; value of the yield function at a certain
stage of this hardening/softening process is disivegl in Fig. 2.

Plastic flow rules have to be postulated to goweeevolution of plastic flow when
the effective stress state reaches the yield sesfa&s concrete is a frictional material, in
which dilatancy occurs when loaded in compressionon-associated flow rule is adopted in

compression. The plastic potent@l is given byG, =/3J, +a, 1, wherea, is a dilatancy
parameter. The physical interpretation of this egpion is that the compressive flow is
associated in the deviatoric plane but its voluioepart uses a dilatancy coefficiemt,

different from the coefficient of internal frictior (Feenstra and de Borst, 1996). In tension,
an associated flow rule is used and the plastiergiatl G, is thus taken equal to the plastic
yield function: G, = K.

According to Koiter's rule (1953), the total plasstrain rate tensor can be obtained as
the sum of the tensile and the compressive plastin rate tensors, according to Eq. (9).
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The plastic multipliers 4, and A, can be determined using the Kuhn-Tucker
conditions and the consistency requirements resedcexpressed by Eq. (10) and Eq. (11).

420, Fi(gk)so, 4 F(gk)=0 | j=te (10)
AFi(ga)=0 | j=te (11)
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Fig. 1: The use of a fourth-order damage tensomalifor modeling the unilateral effect in
concrete.
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Fig. 2: Multi-surface yield criterion plotted inghwo-dimensional principal stress space



The hardening variables, and «, respectively govern the evolution of the Rankine
and the Drucker-Prager vyield surfaces; this ewvofutiis made by isotropic
hardening/softening. In fact, the hardening vagabare the plastic internal variables that
characterize the plastic state of the materialy tta be considered as indicators of the degree
of yielding in the material and therefore are ahllaccumulated plastic strains. These
hardening variables are induced by plastic flow d@hely can be related to the plastic
multipliers. Adopting a work-hardening hypothesisida assuming that the yielding
mechanisms in tension and in compression are demhuthe evolution of the hardening
variables is given byk, =4, 20 and4, = 4. > 0.

The hardening variables can then be interpretedfastive plastic strain, although the
formula in compression is adapted for non assatitbev, see Eq. (12a) and Eq. (12b).

k=(2:8)/n (12a)

k. =(a:£5)/6, (12b)
The rate equations of the hardening variables eaexipressed in the uniaxial case to
give a more direct interpretation of these variablénder uniaxial tension in direction the

Rankine yield function leads to the equalidy :Tt(Kt) during the yielding process and

t
p.x?

the stress-strain curve in uniaxial tension. Simd@velopments in uniaxial compression lead
to |7,|=7,(k.) during the vyielding process, witto, <O the effective stress, and

Eq. (12a) turns intak, = £, ,, so that it is possible to identify the tensiledeing law from

K. = églx/(ag —1). The compressive hardening parameter is prop@itimnthe plastic strain

in the direction of applied stress and it is pdsstb identify the compressive hardening law
from the stress-strain curve in uniaxial comprassio

The hardening functiong, and 7, have the meaning of current uniaxial tensile and
compressive strength of the material. However, ghfesictions are written in the effective
stress space and therefore they cannot be detetnfigedirect identification with the
experimental uniaxial stress-strain curves, whiahia the nominal (apparent) stress space.
The relationships between the effective and theimalmhardening functions are given by
1 (k) =(1-d,) 7 («) and 7, (k) =(1-d,)7(«.), respectively. In these equatiorrs, and
I, are the tensile and compressive hardening furgtionhe nominal stress space; therefore

these functions can be directly identified to therent uniaxial tensile and compressive
strengths of the material. The functioms and 7, can then be derived once the damage

scalarsd, andd. have been defined.

In uniaxial tension, the response in nhominal @gparent) stress is elastic until peak
stress, followed by a material softening untildad. The experimentally observed decrease of
the uniaxial tensile strength with the strain canntodeled by a curve tending to zero-stress
level asymptotically (Fig. 3). Consequently, thefteming function is described by a
combination of negative exponentials according th (E3). The expression of Eqg. (13)
results from a numerical calibration on experimemtata. In this equationg, is a non



dimensional model parameter to be determined §nds the uniaxial tensile strength (i.e.
peak stress).

) =| yerol-a )+ ex{- 6 k) ¢ @s)

In uniaxial compression, the concrete behavior gmissfirst an elastic domain until
the compressive limit of elasticity,,, followed by a hardening branch until the stressches

the compressive strengtl, and finally a softening branch until failure. THighavior is
modeled by the relationships of Eq. (14) in the mahstress space. In this equatiaq, is
the accumulated plastic strain in compression ak g&ress such that (Kcl) =f,,andh, isa

model parameter to be determined. The first expmessf Eq. (14), which represents the
hardening branch, is written following a similarfaulation as the expression prescribed in
the Eurocode 2 part 1-2 (2004-a). This formulatias adopted to ensure the consistency of
the present multiaxial concrete model with the mialaconcrete model of Eurocode, which is
widely used in practical applications. Applicatioh the multiaxial model therefore yields
similar results as the Eurocode formula in a situadbf uniaxial compression. The hardening
laws in tension and compression are plotted imtimainal stress space in Fig. 3.

Z(fc_fCO)KC if K, <k,
c — C.

2
Ka [1+(:;j J (14)

7, (ko) = T (1+by(h = Ky)) exp(-b.(k —ky))  if K 2Ky

Tc (Kc) = ch +

2.3. Damage evolution

An important assumption of the model concerns #ection of the internal variables
that are used for driving the damage mechanism. mibdels published in the literature
notably differ by the type of coupling between pilgty and damage: plasticity and damage
may be driven by the same internal variables oetlwution of these two phenomena may be
driven separately using different internal variable the latter case, different thresholds are
defined for each of these phenomena, which giveeghility in the modelling as it allows for
developing degradation of the elastic propertighavit developing irreversible strains or vice
versa. This approach has been adopted by Wu, €Qfl6) who assume that the evolution of
plasticity is driven by the equivalent plastic siscawhereas the evolution of damage is driven
by the damage energy release rates. In Wu, e$ ahodel, two damage criteria are defined
with their damage thresholds, in addition with tield criteria. However, this approach
implies a large number of parameters.

The number of model parameters is reduced by ubmgame internal variables, and
consequently the same threshold, to govern theutwol of plasticity and damage. The
models that use a single set of internal variafdeglriving plasticity and damage make the



implicit assumption that the two phenomena are ediy the same physical mechanisms at
the microscopic level. These physical mechanismshatmicroscopic level can thus be
represented by a single set of macroscopic vasabidich are used to model all the
phenomenological aspects of the behavior (irrellrsstrains, degradation of the elastic
properties, unilateral effect, etc). The validit§ this assumption may be questioned for
concrete. Recent investigations by Poinard, et(2010) have shown that the concrete
behavior can change from a cohesive-brittle belayooerned by damage phenomena at low
confinement to that of a granular material goverbgdplasticity at high confinement; this
observation tends to demonstrate that the damagielastic mechanisms in concrete have
different physical origins. Yet, the levels of cm@ment reached in the considered
experiments (higher than 150 N/mm?) are very umgipiof structural fire engineering
applications. The assumption that the plasticityd damage phenomena in concrete can be
driven by the same internal variables has beentadop several models proposed in the
literature (Nechnech, et al., 2002; Grassl andsdka2006; Matallah and La Borderie, 2009),
despite its controversial basis, due to the regyl§implicity of the model and the limited
number of parameters. Since it allows to captueepthlenomenological behavior of concrete
for stress levels typical of structural applicaspthis approach has been adopted here for its
convenience.

In the model, the accumulated plastic straks and «, are the plastic internal

variables that drive the yield flow and the hardenprocess; these variables are also used to
drive the evolution of damage. Accordingly, damageinitiated at the same time as
permanent strains, and the process of materiallinearity in concrete consists in both
damage and plasticity developing simultaneouslyoliion laws are postulated for the
damage variables in order to describe the growtimmfocracks in the material. Several
authors have noted that the damage evolution ameidn of the plastic strain is of an
exponential form (Lee and Fenves, 1998; Matallad &a Borderie, 2009; de Sa and
Benboudjema, 2011); therefore an exponential foatma is adopted here. The evolution
laws for tensile and compressive damage as a maii the accumulated plastic strains are
given by Eg. (15a) and Eqg. (15b), respectivelyhvet a non dimensional model parameter to

be determined.
1 1
d, () :1—{5 exp(-a /(t)+—2 exf- 63 Kt)jl (15a)

d. («.) =1-exp(-a, «.) (15b)
Inserting Eqg. (13) and Eq. (15a) into the relatiopsbetween the effective and the
nominal tensile hardening function, it leads to fibléowing expression in the effective stress
space:T; (Kt) = f,. The interpretation of this expression is that sbéening response of the

material in tension is assumed to be driven bydéwmage mechanism, i.e., it is due to the
development of microcracks that progressively redhe volume of the undamaged material.
Consequently, the tensile hardening law in thectiffe stress space presents a horizontal
plateau whereas the experimentally observed sofgeini concrete is driven by the evolution



of the tensile damage parametr following the damage evolution law of Eq. (15ages

Fig. 4.

In compression, the expressions of Eqg. (14) and(ESb) yields the compressive
hardening law in the effective stress space. Theltiag uniaxial compressive response in the
nominal and in the effective stress space is moiteFig. 4. As can be seen in Fig. 4, the
effective stress-strain response in compressi@sssimed to exhibit softening due to plastic
mechanisms. This assumption is difficult to confonrefute as separation of softening due to
micro-cracking and plasticity in concrete remains apen question. An interesting
contribution has been made by Abu Al-Rub and Ki1( who have shown, based on the
analysis of stress-strain responses under loadif@pding conditions in tension and
compression, that the stress-strain response ieftbetive space does not exhibit softening
behavior for these particular loading conditionset,Yplasticity in concrete is usually
interpreted in terms of the friction mechanismswaein microcracks surfaces. The friction
between two rough microcracks lips leads to anienosf these surfaces, which results in
softening of the shear-slip curve. Based on thdssipal considerations, the stress-strain
response of concrete in compression is expectegHibit softening; this assumption has also
been adopted by Nechnech, et al. (2002).
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Fig. 3: Hardening laws in the nominal stress spaceension (left) and compression (right)
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2.4.Identification of model parameters

The four non dimensional model parametatsb., a and x, used in the evolution
laws of the model can be formulated in terms ofemak parameters, which can be identified
by experimental tests.

The accumulated plastic strain in compression ak g&ress 4, , can be obtained as a
function of the straire, and damagel, at peak stress under uniaxial compression, and the
dilatancy parameter,, see Eq. (16). The condition of non negativitytieé¢ accumulated

plastic strain then leads to a maximum value o0 0d¥ the parametedc, considering the

fact that experimental evidence always yields v@logver than 1 for the dilatancy parameter

a, in concrete. This condition is in line with expe&ntal observations, as identification

from cyclic compression tests (Karsan and Jirs@9)1ndicates values around 0.30 for the
parameterd, .

£q (1-24,)
(2-2d.)(1-a,)

The parametelg, that appears in the evolution law for compresslaenage can be

(16)

Kcl

expressed as a function of the material parametgiuced here above; indeed rewriting of
Eq. (15b) at peak stress for uniaxial compressads to:a, =-In (1— ac)//(cl .

The model parametes, that appears in the hardening law in tension ierdened

based on energetic considerations. As the evolldws for the hardening variables rely on a
work-hardening hypothesis, the total plastic woak de related to the energy dissipation of
the material (Feenstra and de Borst, 1996). Inidenshe concept of crack energy is often
introduced in the constitutive laws for regulariaatof the model with regards to the mesh
sensitivity on the global structural response @bbrg, et al., 1976). The concept of
equivalent length is also introduced to define @resentative dimension of the mesh size in
which it is assumed that the crack energy is umifgrdissipated. The total (apparent) plastic

work in tension can thus be expressed by Eq. (#figre G, is the crack energy in tension in
N.m/m2 andl, is the characteristic length in m also referreddsahe localization zone size.

The crack energy and the characteristic length raegerial properties that ensure the
objectivity of the numerical simulation at the stiwral level. However, in the local approach
adopted here, the characteristic length is relamdthe mesh size (Rots, 1988) for
regularization of the energy dissipated when s¢rane localized in a row of finite elements.

[7() dr, = Ii (17)
0 c
After transformation of Eq. (17), the model paragnet, can be obtained as a function

of the material paramete@,, I, and f,: a =(7f; IC)/(lzG_[).



Similar energetic considerations are made for daficin of the parameter of the
hardening law in compressioh.. The crack energy in compressidg, in N.m/m2 is
introduced in the constitutive law with the interfemgth |_. The total (apparent) plastic work
in compression is expressed by Eq. (18).

Ke1

[ (i) dieg [ (i) de,=C (18)

0 K1 c

|G)|

The left term of the sum in Eq. (18) refers to ¢hack energy density dissipated before
the peak stress, during hardening of the mateviaéreas the right term of the sum represents
the crack energy density dissipated after the g&alss, during softening of the material. This
equation allows for expressing the paramdieras a function of the material parameters in

compressionf,, f,, G, |, and x, see Eqg. (19). The crack ener@y and internal length

|, can be difficult to derive for practical applicats and, if they are not correctly evaluated,

Eq. (18) can lead to thermodynamically inconsistestilts such as negative dissipation after
peak stress. This is avoided by imposing that tha& track energy dissipated at failure be
higher than the crack energy dissipated befor@éad stress, see Eq. (20).

i 0 19
i (éC/lc) _I: fCO KC1+( fC_ ch) Kclln 2:' (19)
KCl B
G./I. > I ro(ko)dk, - Gifl> gk +(fe= o) KuIN2 (20)
0

2.5. Material parameters

The ten material parameters contained in the madesummarized in Table 1. These
parameters can be obtained by three tests at atrtbimperature: uniaxial compression test
until failure comprising one unloading-reloadingpaak stress, biaxial compression test until
peak stress, and uniaxial tension test until failliris noted that the elastic modulus is not an
independent parameter in the model and therefodeas not appear in Table 1; the elastic
modulus is calculated from the uniaxial compressivength and the peak stress strain.

In addition, the characteristic length has to be defined as a function of the model.

This characteristic length depends on the chosemezit type, element size, element shape
and integration scheme (Feenstra and de Borst,)1996&ery simple formula has been
proposed for biaxial cases (Rots, 1988), see ED. (8 this equationA, is the area of the

element andy, is a modification factor which is equal to 1 faragiratic elements and equal

to /2 for linear elements. This formula gives good appration for most practical
applications.

. =a, /A (21)



Fig. 5 presents the effect of the material param&geon the unloading response in a

uniaxial compression test, next to experimentah dgarsan and Jirsa, 1969). This parameter
allows for controlling the relative importance betdamage process with respect to the plastic
process in the model. For low values of this pataméhe plastic process prevails over the
damage process in compression, which results mfsignt development of plastic strains
and relatively limited degradation of the elastiogerties. On the contrary, for high values of
this parameter (but lower than 0.50) the respoasmastly driven by the damage process.
Based on these experimental data, it is found ttiatvalue for the compressive damage at
peak stress is around 0.30.

Symbol Parameter Units Required test
Vv Poisson’s ratio [-] Uniaxial compression
feo Compr. limit of elasticity [N/m2] Uniaxial compression
f. Uniaxial compr. strength [N/mZ] Uniaxial compression
Ey Peak stress strain [-] Uniaxial compression
a, Dilatancy parameter [-] Uniaxial compression
_C Compr. crack energy [Nm/m?] Uniaxial compression
dc Compr. damage at peak stress [-] Uniax. compr. + unloading
f, Biaxial compr. strength [N/mZ] Biaxial compression
f, Uniaxial tensile strength [N/m?] Uniaxial tension
_t Tensile crack energy [Nm/m?] Uniaxial tension

Table 1: Material parameters in the concrete model
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Fig. 5: Identification of the model parameti-g In a uniaxial compression test

3 Extension to high temperatures

The division of the total strain tensor into indival strain components according to
Eq. (1) has been adopted in the present modeled¢tidd 2, a plastic-damage model has been
developed for capturing the relationship betweenitistantaneous stress related strain tensor
£, and the stress tensar at ambient temperature. Section 3 presents thengiin of this



model to high temperatures and the relationshipscédculation of the free thermal strain
tensorg,, and the transient creep strain tengprunder multiaxial stress states.

3.1.Free thermal strain

The relationship for calculation of the free thelrs@ain in multiaxial stress state is
adapted from the uniaxial relationship of Euroc@d@004-a). This latter relationship gives
the free thermal strain as a nonlinear functiorteshperature that depends on the type of
aggregate (siliceous or calcareous), see Eg. (R2&He expression is generalized to the

multiaxial stress state using the assumption dfapy: & (T) zeth,Ecz(T)x:I, in which |

is the second order identity tensor amg ..,(T) is the free thermal strain given by

Eurocode 2.
£, (T)=-1.8x10%+ % 10° T+ 2.8 10°T® ;2C<T< 70@ 22
& (T) =14x10° 1700C <T < 1200C (22a)
£ (T)=-1.2x10% + 6 10°T+ 1.4 10'T3 ;20C< T< 80K 22b
&n(T)=12x10° 1808C <T < 1200C (22b)

The free thermal strain of concrete is partly iemesible (Schneider, 1988; Franssen,
1993); a residual dilatation or residual contratti® observed after cooling down to ambient
temperature depending on the maximum temperatueesheel in the material. This
irreversibility is taken into account in the modeie value of the residual free thermal strain
as a function of the maximum temperature is takemmfexperimental tests made by
Schneider (1988).

3.2. Transient creep strain

The model for calculation of transient creep stra@nadapted from the Explicit
Transient Creep (ETC) Eurocode model, developedraversity of Liege for uniaxial
relationships (Gernay and Franssen, 2010; GerndyFaanssen, 2012). This ETC model,
which includes an explicit term for transient cresmin, is built as a generalization of the
current Eurocode concrete model. Whereas the Edeoroplicit model had been developed
for prescriptive design, the ETC model is abledmpute accurately the transient creep strain
that develops in performance-based situations, lwhiay include cooling phases or load
redistributions (Gernay, 2012-a). Meanwhile, theCEfodel remains generic and it yields the
same results as the Eurocode model in the simptscpptive situations, which is an
advantage to the authors’ opinion as the Eurocoddeinhas been widely used in the last
decades and is well accepted by authorities andateys for building design.

Generalization of the transient creep strain foartala multiaxial stress state is based
on the assumption that the process of transiergpcioes not induce anisotropy. The
formulation proposed by de Borst and Peeters (198Bich has been widely adopted in the
literature (Khennane and Baker, 1992; Nechnechl.e2002; Gawin, et al., 2004; de Sa and



Benboudjema, 2011), is used here and applied toEfh€ model, see Eq. (23). In this
equation, &, is the rate of the transient creep strain tenglF,) is the rate of the transient

creep function which values are given in TablegZ, is the negative part of the effective

stress tensorf, ,, is the compressive strength at 20°C ahds the fourth order tensor given

by Hyy ==V 9y + 0.5(1+ y)(a:k Oy +q 9 ) The material parametgr that appears in

this latter expression can be taken equal to Poiss@tio (Nechnech, et al., 2002), in
accordance with Thelandersson’s multiaxial data87)9 whereasd; is the Kronecker

symbol.

(23)

T[°C]| 20 100 200 300 400 500 600 700 800
Silic. | 0.0000 0.0010 0.0018 0.0024 0.0049 0.0106 0.0274 0.0389 0.0733
Calc. | 0.0000 0.0010 0.0017 0.0022 0.0043 0.0086 0.0206 0.0271 0.0407

Table 2: Transient creep functi@(T) for siliceous and calcareous aggregates concrete.

The particularity of the formulation of Eq. (23)tisat the calculation of the transient
creep strain rate tensor is based on the negadnepthe effective stress tensor. In models in
which damage develops, it is consistent to useeffextive stress rather than the nominal
stress for calculation of transient creep straicabise it can be assumed that the mechanism of
transient creep occurs in the undamaged part aintiterial. In addition, it has been assumed
in the ETC model that transient creep develops uodepressive stress only; for this reason
only the negative part of the effective stressdeinsconsidered in Eq. (23).

After integration over a finite time step, and amiog an explicit numerical scheme,
the transient creep strain tensor can be compugied &Eq. (24). Computation of the transient
creep strain increment takes into account the stexaperature history. Between s{gp1)
and(s), there is an increment in transient creep stramch value is computed by Eq. (24), if
and only if the three following conditions are fliéfd:

I.  The temperature at time stépr1) exceeds the maximum temperature reached
previously in the history of the material;
ii.  The negative part of the (converged) effectivesstrat time(s) is non-null
(material subjected to compressive stress);
lii.  The material is in the ascending branch of the ttioise relationship, i.e.
K< Kgy-

It is assumed that the transient creep strairrésersible at both load and temperature

decrease.



_-\(s)
rs,+1) =§$s) +|:¢(T(s+l)) —qa(T(S))] El : (g ) (24)
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3.3. Temperature-dependency of the material parameters

Concrete subjected to elevated temperatures exlittermo-mechanical degradation
of its properties of strength and stiffness; thifea is taken into account through proper
temperature dependency of the material parametées.evolution laws of the parameters
with temperature are taken from design codes sadBusocode 2, when available, or from
experimental data published in the literature.

The evolution of the uniaxial tensile and compressstrengthsf . and f_; with

temperature is taken from Eurocode 2. Evolutiothete parameters with temperature results
in a modification of the yield surfaces; these acek experience isotropic contraction at high
temperature due to the decrease of the hardenimgidns caused by the decrease of the
strengths.

Compressive strength of concrete does not recouengl cooling. According to
Eurocode 4 part 1-2 (2004-b), an additional los$@% in compressive strength is considered
during cooling from maximum to ambient temperatuFbis assumption prescribed by the
Eurocode has been recently confirmed by an anabas®d on hundreds of experimental
results reported in the literature (Li and Franssgdll), where it was shown that the
additional reduction during cooling may be everhbkigthan the 10% reduction considered in
Eurocode 4. In fact, the residual strength of ceteciafter fire exposure depends on many
parameters (Annerel, 2010) and its proper evaloatmould probably require a more
advanced model taking into account the effect efdlferent parameters, but the Eurocode
formula has been adopted here because of its sitypdind its generic form and because it
has the advantage of being a standard code forr@alasideration of the additional loss in
compressive strength during cooling is of prime am@nce in the analysis of structures
subjected to natural fire. Recent research basediorerical simulations have highlighted the
possibility of collapse of reinforced concrete eohs during or even after the cooling phase
of a fire and one of the main mechanisms that teatis type of failure is the additional loss
of concrete strength during the cooling phase efftre (Dimia, et al., 2011; Gernay and
Dimia, 2011).

The peak stress strain in uniaxial compressfpnincreases with temperature, see

Table 3. The value of the peak stress strain ha& lmefined such that, for a concrete
specimen subjected to heating under constant w@hisopampressive stress (situation of
transient test), the new concrete model yieldssdrae response as the current Eurocode 2
model (Gernay and Franssen, 2012). During coolimg,peak-stress strain is considered as
fixed to the value that prevailed at the maximumpgerature, according to Eurocode 4.



T[°C]| 20 100 200 300 400 500 600 700 800
&4 [-] |10.0025 0.0030 0.0038 0.0050 0.0063 0.0087 0.0127 0.0133 0.0140
Table 3: Evolution of the peak stress strain iraxial compression with temperature.

A dependency of Poisson’s ratio with temperature ibeen experimentally observed
by different authors (Maréchal, 1970 cited in Setiee 1985; Luccioni, et al., 2003). This
temperature-dependency has been approximated tylitnear relationship of Eq. (25) in the

model. The transition temperatufg is equal to 500°C.

T,-T
; T<T,

Tv—zoj ’ (25)

V(T)=0.2xv,, C T>T,

V(T) =Vy| 0.2+ 0.8

Experimental results indicate that the confinenedfect is more pronounced in heated
concrete because elevated temperatures cause ghaddion of the micro-structure and an
increase in porosity. As a result, at a given taipee the decrease in biaxial compressive
strength f, ; is smaller than the decrease in uniaxial compresstrengthf_. . Based on the
experimental results by Ehm and Schneider (198&),ratio between these two parameters
B(T)=f,;/f.r, equal to 1.16 at ambient temperature, is caledlatsing the formula of

Eqg. (26) at high temperature. The transitions teatpee T,, andT,, are respectively equal
to 350°C and 750°C.

B(T)=1.16 , T<Ty
A(T)=1 16[1+ oa{ﬂﬁ LTy <T<T,
: : CIm<Tslp (26)
Tso=Tp
B(T)=1.86 D Ty <T

Due to a lack of experimental data, it is diffictdtassess the temperature-dependency
of the other parameters; therefore, simplifyinguaggtions have been adopted. It is assumed
that the approximately linear elastic concrete oasp in uniaxial compression for low stress
levels remains proportionally unchanged at high perature, i.e. the ratio between the

compressive limit of elasticityf,,; and the uniaxial compressive strength, at high
temperature is considered constant. It is alsonasduhat the plastic potential in compression
G, experiences isotropic contraction at high tempeeatvith no modification in its shape;

therefore the dilatancy parameter, does not vary with temperature. Based on similar

considerations, the compressive damage at peadassigehas been considered as constant

with temperature. For the crack energy in compoessit has been assumed that the ratio
between the crack energy dissipated before the pe&lss and the total crack energy
dissipated at failureG, remains constant with temperature. As the forrseddfined from
other material parameters, this assumption yielsat unequivocal definition of the
temperature dependency db,. Finally, different authors have tried to quantifiiet



temperature dependency of the tensile crack ené{dﬂ) but experimental results show a

significant scatter depending on the test specinagistest methods, so that it is difficult to
derive a reliable model for the temperature depecygl®f this parameter. As this energy
parameter can be related to the area under theetadtening function curve, it should be
related to the uniaxial tensile strengthy . In particular for temperatures beyond 600%C;

is equal to 0 and therefore the tensile crack e;npagameterfi must also be equal to 0. By

convenience, it was assumed that the tensile ceaekgyC_S[ follows the same temperature
dependency as the uniaxial tensile strength.

4 Numerical implementation

The model has been implemented within the framewbtke nonlinear finite element
method. The numerical implementation deals withcdge of fully tridimensional stress states
as well as plane stress states.

For the local problem, it is assumed that at tinep $ the finite element code has
converged, i.e. the values of the strains, streasdsinternal variables are known at every
integration point. The values of the displacemexttthe nodes are also defined. Then, from
time steps to time steps+1, the variation of the displacements of the noddsutated by
the finite element code produces an incrementta &irain. The problem is then to update
the basic variables describing the local statdhefmbaterial in a manner that is consistent with
the constitutive law. This process should alsodyible tangent modulus of the constitutive
law, to be used by the finite element code in tloba@ iteration process.

It is assumed that the temperatures are knownl imtalgration points, as a result of
the thermal analysis that has been performed b#ferenechanical analysis.

First, the mechanical properties, the free therstrain gt(hS*l) and the transient creep

strain ét(fﬂ) are computed at time stepr1, for all integration points. This computation take

into account the temperatures at time sgepl, according to the relationships defined in
Section 3.

Then, the free thermal strain and the transiergpcistrain are subtracted to the total
strain to yield the instantaneous stress-relatednstAs the resolution of the equilibrium in
the structure at a given time step is an iterginoeess, the increment in total strain produced
by the finite element code is updated several tiatesach time step. The increment in total
strain from converged time stepto iterationi +1 of time steps+1 is notedAg,, and the

total strain at iteration +1 of time steps+1 is given by: 0 = £8) +Ag,,. Yet, the free

thermal strain and the transient creep strain dovary during the iteration process; they are
only computed once at the beginning of the proaedbefore entering into the iterative
resolution of the equilibrium at the considereddistep. At iteration +1, the instantaneous
stress-related strain vector can thus be compuied &Eq. (27).

é((7i+1) — étgtJrl) _é‘tﬁSJrl) _ér(s+1) (27)



At each iteration, solving the local problem cotssis finding the updated values of
the stresses, the updated values of the interndhbles and the tangent modulus
corresponding to the instantaneous stress-relataith ¥ector of Eq. (27), for all integration
points. As this operation requires an iterativecpss, there is a second level of iterations in
the general algorithm, referred to as “internatitens” in the following.

The constitutive relationship of Eqg. (3) leads tq. E28) for the calculation of the
stress at iteration+1 of time steps+1.

g =(' -D“”’) Cot (&l -£1") (28)

The computation of the stress from the instantasmestness-related strain using
Eq. (28) is decomposed into three parts in the migadealgorithm according to the concept of
operator split (Simo and Hughes, 1998), i.e. irite tomputation of an elastic predictor,
plastic corrector and damage corrector. Among tireet parts of the algorithm, only the
computation of the plastic corrector is an itemfprocess. As the damage variables are fixed
during the elastic predictor and the plastic cdmecsteps, solving of these two steps
constitutes a standard elastoplastic problem iretteetive stress space. Then, computation of
the damage variables is an explicit operation @sehvariables are driven by the plastic
internal variables.

The computation of the elastic predictor and tfestat corrector in the effective stress

space are detailed herein. The effective str:@%?), the plastic strairggﬂ) and the plastic

hardening variableg;, . (equivalent to the plastic multiplier}, A,) must satisfy the stress-

strain equation of Eg. (29), the incremental KulueKer conditions of Eg. (30) and the
discretized form of the evolution laws (Eq. (31§dty. (32)).

g—.(i+1) :go:(égﬂ)_égﬂ)) (29)

M 20, F(g.x)<0, B F(gk)=0 | j=tc (30)
(i+) _ () G, 0G

£ " T& +AAtE+AAC agc (31)

K=, eprz0, K" =kd4nr 20 (32)

The trial elastic effective stress (elastic premfictis first computed from the
instantaneous stress-related strain increment ENE33). It is checked whether this stress

state is acceptable by inserti@’(iﬂ) , AA, =0 and A/, =0 into the Kuhn-Tucker conditions

of Eqg. (30). If these conditions are satisfied, ifethe trial stress is not outside the yield
surfaces, the step is elastic and there is no ti@rian the plastic internal variables. The
updated variables at iteratior-1 of time steps+1 are then given by Eq. (34). As the plastic
internal variables govern the evolution laws of thedel, there is no variation in the plastic
strains neither in the damage variables.



Q—_tr(i+1) — Co : (£g+l) _éi(:)S)) = g—-(s) + CO : Aga (33)

g =

Yet, if the Kuhn-Tucker conditions are not satidfia the elastic predictor stress state,
plastic strains develop in the material betweere tsteps and (iteratiori+1 of) time steps+1.
The effective stress vector has to be corrected phastic corrector according to Eqg. (35) to
return on the yield surface.

g—@”) :gtr(“;l (34)

(i+2) — <tr(i+1) _CO :Agp (35)

1Q

The plastic strain incremertg,, can be eliminated from the problem by substituting
Eq. (31) into Eqg. (35), which leads to the expm@ssif Eq. (36).

o),

I+1
g 0 ) (36)

5(i +1)

)
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The set of nonlinear equations can finally be riami as a function of the plastic
multipliers {Mt,AAC} using Eq. (32) for the hardening parameters and (Bg) for the
effective stress. By applying an implicit backwdtdler difference scheme, the problem is
transformed into a constrained-optimization problgoverned by discrete Kuhn-Tucker
conditions, with the plastic multiplief\},,AA.} as the two unknowns in Eq. (30).

Solving of the system of equations is performeagsi Newton iterative process. In

multi-surface plasticity, the fact that a yield faze is ultimately active (at convergence)
cannot be guaranteed in advance based on thela&tlc state. By definition, a yield surface

F; is termed active ifAA; >0. The initial set of active yield surfaces is detgred in the

trial elastic state by the conditioR, (_"('+1) KJ(S))>0. However, this initial configuration

cannot provide a sufficient criterion for determigiwhich surface is active at the end of the
time step because the final location of the yialdfaces and the final location of their

intersection are unknown at the beginning of theetstep. Therefore, the set of active yield
surfaces has to be updated during the iterativautsn of the system. As softening plasticity
is considered here, a yield surface that was w@gdti the trial elastic state can be activated
during the return-mapping (Pramono and Willam, 1988enstra and de Borst, 1996). A
condition is therefore implemented in the iteratprecess for re-activation of yield surface

F, at iterationn+1 if A\ has become positive. On the opposite, yield sarfagc is
deactivated at iteratiom+1 if A/lj(”*l) has become negative. The details of the solving

process are given in (Gernay, 2012-b).
Finally, application of the Newton algorithm yieltlse updated values of the plastic
multipliers A4 and AA. at iterationi +1 of time steps+1. As a result, the plastic corrector

step can be applied by updating the effective strim plastic strain and the plastic internal



variables using Eq. (36), Eqg. (31) and Eq. (323peetively. It remains then to update the
damage variables and to apply the damage corrictbe stress tensor.
The computation of the tensile and the compressareage variables at iteratior1

of time steps+1 is explicitly performed as a function of the piashternal variables'(t(”l)
and Ké”l). The tensile damage variable is computed usind¥q. As it has been assumed in

Section 3.3 that the temperature dependency, aind G, /I, is the same, the parametar
does not depend on temperature and remains costeath time step.

d i+ :1—{% exp(—q K +1))+% exp(— 64 Kt“l))jl (37)

The compressive damage variable is computed usind3B). The model parameter
af*l) that appears in this equation depends on temperand therefore it is calculated at

each time step when the mechanical propertiesrataatureT " are evaluated.

di*y =1- exp( In( ¥ ) — g (K(ci+1) —x\3 )) (38)

The updated damage tensor is computed using E}. WB@re the projection tensors
apply to the effective stresg"™? at iterationi +1 of time steps+1. Finally, the nominal

stress is calculated using Eq. (40).

[=)(i+1) :dt(i+1) P+ dg”) P (39)
g_(i+1) =(|E_[E)G+1)) Ego [qé.a@+l)_£é+1)) (40)

The Newton-Raphson method is used in the globedtitsn process for solving the
equilibrium of the structure. This method is basedthe estimation of a tangent stiffness
matrix, which is built for the structure from thperators linking the increment of stress to the
linearized increment of strain at each integrapomt. These operators are computed for all
integration points once the processes of plasticector and damage-corrector have been
performed, i.e. at the end of the process of irtldtarations. The developments leading to the
expression of these operators, which are writteth@nnominal stress space and are derived
consistently with the algorithm for updating themmpal stress, can be found in (Gernay,
2012-b).

As the concrete model is developed as fully tridisienal, it can be used with three-
dimensional solid finite elements. However in mapyplications of structural engineering, it
is interesting to use finite elements that develtgne stress states. Basically, two strategies
can be adopted to obtain a plane stress consétutiodel from a fully three-dimensional
model. First, the model can be rewritten considgdrplane stress state. The advantage of this
method is that several simplifications can be madéhe equations of the model and its
numerical implementation due to the consideratiba plane stress state. However, the entire
model has to be rewritten and implemented separatehe numerical code, which represents
a considerable amount of work and leads to the ssétgefor the developer to handle two



distinct models in parallel. The second strategys@is in implementing an additional piece
of numerical code in the algorithm of the fully ékrdimensional model to deal with the
particular case of plane stress. The advantagéisfniethod is its consistency as a single
material model is used for the three-dimensiongdsst states and plane stress states. The
disadvantage of this method is the fact that nebels taken in terms of CPU time from the
fact that the stress state is simplified to a plsiness state. This second strategy is chosen
here in order to avoid rewriting a different mofl@ plane stress states. The numerical code
developed by Charras (2010, implemented in theefiaslements software CAST3M, 2003),
which relies on the implementation of an additiomalnstraint in the return mapping
algorithm to find the particular solution corresgorg to plane stress state, has been adopted
in this work.

5 Validation of the model based on experimental tests
on concrete samples

In this section, the model is tested by comparisgainst experimental data of
concrete samples subjected to various situatioapplied stress and/or temperature. To focus
on the concrete constitutive model, the numerigaukations are conducted using a single
cube-shaped three-dimensional finite element maaggbt nodes. During the simulations, it
is verified that all the integration points in tHisite element have the same stress-strain
response. The numerical simulations are performét the software SAFIR (Franssen,
2005), which allows to verify the correct implemaiin of the concrete model in this
software. Numerical simulations of structural eletsewill be conducted in a forthcoming
paper.

Uniaxial ~ Uniaxial Bicomp. Tricomp.  Tricomp. Transient Bicomp.

comp. tension  (ambient) (Imran) (Poinard) test (hot)
f.[N/mm?] 33.0 - 30.0 28.6 40.0 30 41

foo/ o [] 0.30 - 0.30 0.30 0.30 0.30 0.30
£, [%] 0.21 - 0.25 0.25 0.25 0.25 0.25
d.[-] 0.25 - 0.30 0.30 0.30 0.30 0.30
G, [Nmm/mmi] 151 - 18.7 21.4 15.7 11.8 16.1
u[-] 0.18 - 0.20 0.20 0.20 0.20 0.20
a,[-] 0.25 - 0.25 0.25 0.25 0.25 0.25

f, [N/mm?] - 3.5 - - - - -

G, [N.mm/mm] - 0.045 - - - - -
fo/ f[] - - 1.16 1.16 1.16 1.16 1.16

Table 4: Values of the material parameters.

The values of the material parameters used in timeenical simulations are given in
Table 4; these values are obtained by calibratibnthe numerical response on the



experimental behavior. The side dimension of thidielements used in the model is 0.10 m;
hence, the characteristic length is taken equ@l16 m, based on Eq. (21). The values of the
compressive crack energy range between 11.8 add\2dhm/mm?2, which is consistent with
the values given by Vonk (1992).

5.1. At ambient temperature

The concrete model is first tested in uniaxial cogspion at ambient temperature. In
the test, one side of the concrete sample is si#oig¢o increasing negative displacement in
one direction whereas the two perpendicular dioestiare free. The numerical results are
compared with the experimental results by Kupferale (1969) (see Fig. 6) which include
data of the volumetric strains. A value of 0.25 fbe dilatancy parameter, allows for

capturing properly the volumetric behavior of thaterial.

In uniaxial tension, the numerical results obtaiméth the new concrete model are
compared with experimental results by Gopalaratreaxd Shah (1985) in Fig. 7. The
computed results have been obtained using a teosiltk energyG, =0.045 N.mm/mm.

Application of the CEB formula (CEB-FIB, 1990) ftre evaluation of the crack energy in
tensionG, typically leads to values between 0.050-0.150 N/mim®?.

The concrete model captures the experimentally rebde unilateral effect,
characterized by a stiffness recovery due to cosfitensile cracks, as shown in Fig. 1. Full
stiffness recovery is assumed when moving fromidenso compression. Indeed, in the
model, the tensile damage scalar is directly miigtibby the positive part of the effective
stress tensor. Lee and Fenves (1998) have suggesteducing an additional parameter to
set a minimum value to the factor multiplying tleaesile damage scalar when the positive part
of the stress becomes null, in order to accounpéotial stiffness recovery. This approach has
not been adopted here for minimization of the numbk parameters and because of
reasonably good agreement with experimental regkilgs 1).

Fig. 8 shows the model response in case of cydi@xial compressive-tensile
loading. After crushing in compression, the coreristunloaded into tension. Due to tensile
loading beyond the concrete tensile strength, aileecrack develops. When the sample is
reloaded in compression, the crack is first pdytialosed before the stress comes back to
compression; yet, it can be noted that plastiéretralso develop in tension and consequently,
the reloading in compression is slightly shiftednfr the unloading path, which indicates a
plastic dissipation during the cycle. The mater@sponse then returns on the (shifted)
softening branch in compression. A second cycle uofaxial compression-tension-
compression is finally performed, showing the sgmenomena as the first cycle.
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Concrete is a pressure-sensitive material whichibé&ghincrease in strength and
ductility under multiaxial compression, as compatediniaxial compression. The ability of
the model to capture this behavior is verified lmynparison against experimental data by
Kupfer, et al. (1969), see Fig. 9. These testsab@ used to calibrate the biaxial compressive
strength parametep,, = f,/f.. Proper estimation of the increase in strength @u¢he

confinement effect in biaxial compression is obkedirfor a value of 1.16 for this latter
parameter; this value is typically found in thedéture (Grassl and Jirasek, 2006).

Finally, the concrete behavior under triaxial coegsion has been investigated. In the
three tests of Fig. 10, the concrete, which hasiaxial compressive strength of 28.6 N/mm?2,
was subjected to hydrostatic stress of 2.1 N/mm2Ndmmz2 and 21 N/mmz? respectively, and
then to increasing deviatoric stress in one dioectintil failure (Imran, 1994). It is observed
that the concrete strength and ductility increagk wonfinement; for significant confinement
the behavior becomes highly ductile. The modelitptalely captures the increase of strength
with increasing level of confinement but this sggdnincrease is underestimated by the
model. Similarly, the model predicts an increasedunctility with increasing level of
confinement but this effect is not as pronounceexgerimentally observed.

In fact, the model is relatively good at capturithg experimental response until it
reaches the model peak stress. The increase fimestfat the different levels of confinement
is quite accurately modeled, as well as the pré-pealution of the transversal straifisand
g2. The relationship between the stress and thenstrahe direction of the applied deviatoric
stress is also relatively well assessed until apprately ¢, = ¢.,. Then, the model reaches a

peak stress and the computed results beyond thes & strain significantly differ from the
experimental results. The experimental results stiaw the post-peak behavior of concrete
changes from softening to hardening behavior witttaasing level of confinement, whereas
this effect is not represented in the model andpibst-peak behavior remains a softening
behavior in the simulations of the three tests.24t N/mm? confinement (=0.&7f,), the

experimental response exhibits softening and tmepobed response reasonably agree with
the experimental response. However at 8.4 N/mm?fimement & 0.2%f.), the

experimental response exhibits hardening and, @sntbdel fails at reproducing this effect,
the computed response stops being accurate beysticiia of approximatelys, =2x¢_.

Modeling of the concrete post-peak behavior inxtabh compression thus constitutes a
limitation of the model in case of significant cor@ment. The following example helps to
give a further insight into this limitation.

The test by Poinard, et al. (2010) is interesteth@behavior of concrete at very high
confinement level. It was conducted on a concrglieder of 40 N/mmz2 uniaxial compressive
strength subjected to 200 N/mm?2 confinement, sgeJHi. The sample was then subjected to
increasing axial deviatoric stress. The computegarse agrees with the experimental results
in the first part of the test, until reaching a idéeric stress of approximately 115 N/mmz2 and
an axial strain equal t@x¢,. However, the computed response beyond this lefvetress
completely differs from the experimental respongecause the computed response then

presents a softening behavior whereas the expetanessults clearly indicate a hardening
behavior. Very interesting information can be omtai from Poinard’s test owing to the fact



that several unloading-reloading sequences hava bpplied to the sample. Indeed, the
analysis of the slope of the unloading branchegates that no damage develops in concrete
under such very high confinement level, as thedeadimg branches remain parallel to the
initial stiffness of the material. On the contratfie model assumes that damage starts to
develop in the concrete as soon as plasticity dpgelas these two phenomena have been
linked in the model. Consequently, significant dgmadevelops during the numerical
simulation of the triaxial test; this is confirmby the degradation of the elastic properties that
can be observed on the computed curves in FigThé.fact that damage develops in the
model for concrete under high confinement contebub explain why the model is not able
to properly capture the post-peak behavior of cetecin these situations. In order to enhance
the modeling in case of important triaxial compresstress states, it would be necessary to
govern the evolutions of plasticity and damage wlitinct internal variables. Yet, it is noted
that this high level of triaxial confinement is yarmnusual in buildings; it only concerns very
specific applications such as the study of impaatling in the design of nuclear vessels.
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Fig. 9: Measured and computed results for conénebéaxial compression test.
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5.2. At high temperature

It is experimentally observed that the total striiat develops in heated concrete
strongly depends on the applied stress duringiggatierefore, transient tests aim to measure
the total strain-temperature relationship for dif@ load levels. The transient tests conducted
by Anderberg and Thelandersson (1976) have beemlati®a using the new concrete model.
In these tests, calcareous concrete samples haveshbjected to constant applied stress and
increasing temperature. Three levels of appliessstr were considered, witt defined as the
ratio between the applied stress and the compeesti@ngth at ambient temperature.

The measured and computed results given in Fig.rd&sonably agree. The
temperature at which the failure arises is weldmted by the model, as well as the decrease
in total strain with increasing applied stress ledaring heating. The development of
transient creep strain is thus accurately takemantount by the model.

The computed results show rather abrupt changéseiislope of the curves at every
100°C. This is due to the fact that the temperatiegendent laws of some parameters of the
concrete model are defined as linear interpolatioesveen discrete values defined every
100°C. This is the case, for instance, for the a@sgive strength the temperature-dependent
law of which has been adopted from Eurocode. A®slt, this abrupt variation in the
derivative of the temperature-dependent laws igectfd on the results of Fig. 12. This effect
is usually not perceived in numerical simulatiorisconcrete elements because the model
usually comprises an important number of integratpmints which reach the transition
temperatures at different times.

Biaxial compression tests at high temperature hasen conducted by Ehm and
Schneider (1985). The experiments on siliceousred@camples have been simulated and the
comparison between measured and computed respltstted in Fig. 13. In these steady-state
tests, the samples are first heated and then $abjéu stress increase in directions 1 and 2
simultaneously and of the same magnitude, whereastion 3 is free.

The concrete model qualitatively captures the demen stiffness and equibiaxial
compressive strength with temperature. Besides, rimel takes into account the
experimentally observed increase in the confinemedféct with increasing temperature;



namely, the decrease in equibiaxial compressiength is less pronounced than the decrease
in uniaxial compressive strength at a given tempeea
It can be noted that the maximum relative stregs,,, yield by the numerical

simulations does not fit perfectly with the expegimtal results at high temperatures. This is
due to the fact that the concrete tested by EnmSaiheider does not follow the Eurocode
model for the decrease in the uniaxial compressirength, whereas the equibiaxial
compressive strength at high temperature calculatéide model using Eq. (26) is related to
the uniaxial compressive strength at high tempeegttescribed by the Eurocode.
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Fig. 12: Measured (Anderberg and Thelanderssor)1&1d computed results for concrete in
transient tests for different applied stress levels

Experimental o/f 20
= = Model
L 1.4 > hf_;
20cC L 12 20°C v

€3 €.=¢

0.006 0.004 0.002 0.000 -0.002 -0.004 -0.006 -0.008
Strain

Fig. 13: Measured (Ehm and Schneider, 1985) anguated results for concrete in
equibiaxial compressive loading at elevated tentpeza.



6 Conclusion

This paper has presented a multiaxial constitutihvedel for concrete based on a
plastic-damage formulation and taking into accoinet effect of high temperatures on the
mechanical behavior. Combination of the elastoashd the damage theories offers an
interesting framework for the development of a mimanological model for concrete as it
encompasses the capabilities of the plasticityrthéar capturing the phenomena of dilatancy
and permanent strains and the capabilities of dantagory for modeling of stiffness
degradation and unilateral effect. Meanwhile, @ggproach is appealing with regard to the
applicability to practical situations of structufsie engineering because it belongs to the class
of continuum constitutive models based on a smearack approach. The proposed model
adopted the fourth-order tensor representatiorsatfopic damage developed by Wu, et al.
(2006) at ambient temperature, and extended itcagipn to high temperatures.

The generalization of the multiaxial concrete maetake into account the effect of
high temperatures is done by incorporating intortieglel the free thermal strain, the transient
creep strain and proper relationships for the teatpee-dependency of the material
parameters. The original model of transient creegarsimplemented in the model captures
accurately this phenomenon including in performamased situations, which may include
cooling phases or load redistributions. The obthimailtiaxial concrete model can therefore
be used in any situation of unsteady temperatudenamtiaxial stress state; yet, it has been
developed to yield back the same results as thexiahiEurocode concrete model in case of
simple prescriptive uniaxial situations, which wiasnd interesting as the Eurocode model
has been widely used in the last decades and Isaeadpted by authorities and regulators for
building design.

The concrete model has been implemented in théefielements software SAFIR
dedicated to the analysis of structures in fireitAs a fully three-dimensional model it can be
used for any stress state; besides, the partizataon to plane stress states has been treated in
order to provide a model for shell finite elementsthis paper, the model has been tested
against experimental data at the material levedrorer to validate its ability to capture the
different phenomena that develop in concrete ati@mband at high temperature. The
concrete behavior is accurately captured in a leagge of temperature and stress states using
a limited number of parameters. Yet, the validipnain of the model does not include high
levels of triaxial confinement because of the couplassumption between damage and
plasticity; in case of specific applications witlglh confinement such as the study of impact
loading in the design of nuclear vessels, the dotise model should use distinct internal
variables to drive the evolution of plasticity as@image in the material.

The model has been developed for applications ructsiral fire engineering. In a
forthcoming paper, several examples of numerigaukations of structural experiments will
be presented, including a large-scale fire test.
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