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ABSTRACT 
 
This paper aims to develop a multiaxial concrete model for implementation in finite 

element softwares dedicated to the analysis of structures in fire. The need for proper concrete 
model remains a challenging task in structural fire engineering because of the complexity of 
the concrete mechanical behavior characterization and the severe requirements for the 
material models raised by the development of performance-based design. A fully three-
dimensional model is developed based on the combination of elastoplasticity and damage 
theories. The state of damage in concrete, assumed isotropic, is modeled by means of a fourth 
order damage tensor to capture the unilateral effect. The concrete model comprises a limited 
number of parameters that can be identified by three simple tests at ambient temperature. At 
high temperatures, a generic transient creep model is included to take into account explicitly 
the effect of transient creep strain. The numerical implementation of the concrete model in a 
finite element software is presented and a series of numerical simulations are conducted for 
validation. The concrete behavior is accurately captured in a large range of temperature and 
stress states. A limitation appears when modeling the concrete post-peak behavior in highly 
confined stress states, due to the coupling assumption between damage and plasticity, but the 
considered levels of triaxial confinement are unusual stress states in structural concrete.  
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Highlights:  

• A plastic-damage model for concrete at high temperature is proposed. 
• The unilateral effect is captured by a fourth-order damage tensor. 
• Transient creep strain is explicitly included in the model. 

• The model captures the main thermomechanical phenomena exhibited by concrete.  
• The implications of the coupling between plasticity and damage are discussed. 

  



1 Introduction 
1.1. Modeling the concrete mechanical behavior in structural fire engineering 

Although structural concrete is widely used in civil engineering, proper modelling of 
its thermo-mechanical behavior remains a challenging issue for engineers because of the 
complexity of the phenomena that result from the microcracking process in this material. 
Concrete is a complex composite material composed by aggregates and hydrated cement 
paste. The concrete mechanical behavior is highly nonlinear and influenced by microcracking, 
which causes softening behavior, stiffness degradation and unilateral effect. In compression, 
concrete exhibits inelastic volumetric expansion referred to as dilatancy in the literature; this 
phenomenon has a significant effect on the behavior of plain and reinforced concrete 
structures in multiaxial stress states (Lee and Fenves, 1998). In addition, the behavior is 
affected by other characteristic phenomena at elevated temperatures such as explosive 
spalling or transient creep.  

The difficulty to develop a concrete model suitable for the analysis of structures at 
high temperatures is also due to the severe requirements for the material models raised by the 
development of performance-based design. The increased use of performance-based approach 
for fire safety is related to the search for achieving fire safety through alternative, cost 
effective solutions (Meacham and Custer, 1992; Kodur, 1999). Performance-based design has 
extended the frontiers of the analysis, studying the response of entire structures instead of 
isolated structural elements or assuming natural fire scenarios instead of standard fires such as 
the ASTME fire (ASTME, 2007) or the ISO fire (ISO, 1975). As a consequence, the material 
models must be sufficiently robust for complex numerical calculations such as, for instance, 
the analysis of tensile membrane action in composite slabs. Besides, the models must be valid 
also during the cooling down phase of a natural fire and therefore the evolution of the material 
properties with decreasing temperatures must be established. Finally, the will to make 
available the models for practical applications in real projects leads to the necessity to limit 
the number of parameters in the models and to ensure an easy identification of these 
parameters by elementary tests. 

  
1.2. Review of the concrete models 

Plasticity theory offers a very interesting framework for modelling concrete because 
this theory is nowadays theoretically consolidated and computationally efficient (Wu, et al., 
2006) and it is suitable for capturing the phenomena of dilatancy, permanent strain and 
hardening and softening behavior of the material (Feenstra and de Borst, 1996; Lee and 
Fenves, 1998). The split of strains into elastic and plastic parts within the plasticity theory 
allows for convenient modelling of the inelastic deformations in concrete. Many researchers 
have used plasticity theory alone to model the concrete behavior (William and Warnke, 1974; 
Onate, et al., 1993; Feenstra and de Borst, 1996; Grassl, et al., 2002; Li and Crouch, 2010). 
The published models frequently use non-associative flow rules in order to capture the 
dilatancy in compression, and work or strain hardening to model the hardening and softening 
of the material. However, plasticity models are unable to address the process of damage due 
to microcracks growth, and therefore they fail to reproduce some of the phenomena observed 



in experiments such as the stiffness degradation and unilateral effect (Wu, et al., 2006). The 
unilateral effect is the sudden recovery of material stiffness during unloading from the tensile 
region to the compressive region, due to closure of the tensile cracks. As a consequence, 
recent research on concrete modelling tends to develop models that combine plasticity theory 
with other theories more suitable for the description of the concrete behavior in tension, such 
as fracture theory (Cervenka and Papanikolaou, 2008) or damage theory. 

Continuum damage mechanics (CDM) is commonly used for modelling concrete 
behavior; damage models rely on the assumption that the degradation due to micro-cracking 
can be taken into account through the variations of the elastic properties. Therefore damage 
models are particularly suitable for description of stiffness degradation and unilateral effect in 
concrete. Extensive research work has been performed on concrete modelling in the 
framework of CDM, in which damage is considered as an isotropic (e.g. Mazars, 1984; Lee 
and Fenves, 1998; Grassl and Jirasek, 2006; Wu, et al., 2006; Richard, et al., 2010) or an 
anisotropic process (e.g. Ortiz, 1985; Carol, et al., 2001a-b; Desmorat, et al., 2007; Voyiadjis, 
et al., 2008; Abu Al-Rub and Voyiadjis, 2009). Although CDM provides many advantages for 
modelling concrete, it is not suitable for capturing some important observed phenomena such 
as irreversible deformations and inelastic volumetric expansion (dilatancy) in compression. 
Therefore the combination of CDM with plasticity theory is certainly appealing to encompass 
the advantages of the two approaches in a single constitutive model and this approach has 
been elected in the present work. 

Constitutive models for concrete at ambient temperature based on plastic-damage 
formulation have been proposed by several authors. These models usually combine stress-
based plasticity with either isotropic or anisotropic damage. Models coupling plasticity with 
anisotropic damage address the characterization of the concrete damage behavior with 
different microcracking in different directions (Meschke, et al., 1998; Cicekli, et al., 2007; 
Voyiadjis, et al., 2008; Voyiadjis, et al., 2009). However, modeling anisotropic damage in 
concrete is complex; see for instance the works of Carol et al. (2001a-b). It has been noted by 
several authors that the applicability to structural analysis of anisotropic damage models for 
concrete is not straightforward due to the inherent complexities of the required numerical 
algorithms (Grassl and Jirasek, 2006; Wu, et al., 2006). As a consequence, isotropic damage 
has been widely used for concrete in combination with plasticity (Lee and Fenves, 1998; 
Krätzig and Pölling, 2004; Grassl and Jirasek, 2006; Taqieddin, et al., 2012). The isotropic 
damage process can be characterized by one scalar, several scalars or a tensor. Yet, the one-
scalar damage models are not adapted for concrete even when damage is modeled as an 
isotropic process. The use of different scalars to capture the damage process in concrete 
(Mazars, 1984; Lee and Fenves, 1998) is consistent with the experimental observation of 
different damage mechanisms developing in tension and in compression; a minimum of two 
scalar variables is necessary to describe these different damage mechanisms. Some authors 
have proposed a fourth-order damage tensor to characterize the state of isotropic damage in 
concrete (Ju, 1990; Wu, et al., 2006), showing that a fourth-order tensor is required to capture 
the unilateral effect; in fact, even for isotropic damage, proper description of the damage state 
in concrete requires a fourth-order tensor based on two scalar variables. 

Among the published plastic-damage models, stress-based plasticity is formulated 
either in the effective stress space (Lee and Fenves, 1998; Grassl and Jirasek, 2006; Wu, et al., 



2006; Cicekli, et al., 2007; Saritas and Filippou, 2009) or in the nominal (damaged) stress 
space (Lubliner, et al., 1989; Krätzig and Pölling, 2004; Voyiadjis, et al., 2008; Taqieddin, et 
al., 2012). According to the generally adopted nomenclature, effective stress σ  is meant as 
the average micro-level stress applied to the undamaged volume of the material whereas 
nominal stress σ  is meant as the macro-level stress and is defined as force divided by the 
total area. Formulation of the plastic response in the effective stress space relies on the 
assumption that plastic flow occurs in the undamaged material micro-bounds by means of 
effective quantities (Ju, 1989). It has been shown that local uniqueness is always guaranteed 
for the plastic-damage models with plasticity formulated in the effective stress space, whereas 
local uniqueness requires severe restriction when plasticity is formulated in the nominal stress 
space (Grassl and Jirasek, 2006). Besides, other authors have noted that plastic-damage 
models formulated in the effective stress space are numerically more stable and attractive 
compared with models formulated in the nominal stress space (Abu Al-Rub and Voyiadjis, 
2009). Formulation of the plastic response in the effective stress space allows for decoupling 
the plastic part from the damage part in the computation process; computation of the plastic 
response then constitutes a standard elastoplastic problem in the effective stress space. As a 
result, the combination of stress-based plasticity formulated in the effective stress space and 
isotropic damage constitutes an interesting approach for modelling the behavior of concrete. 

Elevated temperatures are the cause of degradations at the micro-level that result in 
loss of stiffness and strength of the material. Elevated temperatures in concrete may also 
cause specific phenomena such as transient creep or explosive spalling, which have an 
influence on the structural response. Concrete models taking into account the effect of high 
temperatures and based on the plasticity theory have been developed by Khennane and Baker 
(1992) and Heinfling (1998); this latter contribution notably takes into account the increasing 
temperature sensitivity of compressive strength to hydrostatic pressure. Other authors have 
developed concrete models at high temperatures based on the damage theory (Gawin, et al., 
2004; Baker and de Borst, 2005). These damage models use a thermal damage variable to 
capture the degradation of elastic modulus with temperature. Although the theoretical 
framework of plastic-damage formulation has been found appealing by many researchers for 
modeling concrete at ambient temperature, the development of concrete plastic-damage 
models at high temperature has been hardly treated in the literature. Nechnech et al. (2002) 
proposed an interesting contribution which highlighted the interest of plastic-damage models 
for concrete at high temperature. This latter model also uses a thermal damage to account for 
the temperature variation of the elastic modulus and it incorporates the effect of transient 
creep using Anderberg and Thelandersson’s formula (1976). However, the modeling of 
damage by two scalars did not allow for capturing the unilateral effect and the authors had to 
introduce a specific parameter in the model to get around this limitation. Besides, the model 
was only developed in plane stress states and its applicability for practical applications of 
structural fire engineering has not been demonstrated beyond the analysis of one-way 
reinforced concrete slabs supported on two sides and subjected to heating. Consequently, 
research efforts are still required to give further insight into concrete modelling at elevated 
temperature and to extend the latest developments of ambient temperature models to elevated 
temperature, with special emphasis on the specific demands raised by the development of 
performance-based design. 



 
1.3. Significance of the research work 

This paper proposes a new multiaxial constitutive model for concrete in the fire 
situation based on the theoretical background of elastoplasticity and damage theories. The 
model extends to high temperatures several developments recently published for concrete 
modeling at ambient temperature and it incorporates original contributions notably for the 
evolution laws and for the transient creep strain. Following the requirements raised by 
performance-based design, special care is given to the numerical robustness of the model and 
the influence of the stress-temperature history on the strain response of the material. A series 
of numerical simulations of building structures in fire will be presented in a forthcoming 
paper for validating the applicability of the concrete model to structural fire engineering 
applications. 

 

2 Plastic-damage model for concrete 
2.1. Constitutive relationships 

The mechanical behavior of concrete at elevated temperatures is captured by 
constitutive relationships between the total strain tensor and the stress tensor. Assuming small 

strains, the total strain totε  is decomposed into elastic strain elε , plastic strain pε , free 

thermal strain thε  and transient creep strain trε  according to Eq. (1).  

tot p trel thε ε ε ε ε= + + +
 (1) 

The sum of the elastic strain and the plastic strain is referred to as instantaneous stress-
related strain σε .  

Basic creep, defined as the additional strain that develops when only time is changing 
with all other conditions such as stress and temperature being constant, is generally omitted 
for the structural calculation of building structures in the fire situation because, in this 
situation, this strain is often very small compared to the other strains in concrete due to the 
short period of the fire (Li and Purkiss, 2005). If necessary, it could easily be added to the 
strain decomposition in Eq. (1). 

The characterization of plastic response is formulated in the effective stress space. The 
strain equivalence hypothesis is adopted here, which means that the strain in the effective 
(undamaged) and nominal (damaged) configurations are equal. Considering that the plastic 
behavior occurs in the undamaged material, the constitutive relationship in the effective stress 
space can be written following the classical elastoplastic behavior. The elastic strain tensor is 
thus related to the effective stress tensor σ  by means of the fourth-order isotropic linear-

elastic stiffness tensor 0C , see Eq. (2). The plastic response accounts for the development of 

irreversible strains in the material. 

( ) ( )0 0 0: : :tot tr p pel thC C C σσ ε ε ε ε ε ε ε= = − − − = −
 (2) 



To capture the effects of microcracking on the elastic properties of the material, 
damage is introduced in the model using a fourth-order isotropic damage tensor D . This 

fourth-order damage tensor is used to map the effective stress tensor σ  into the nominal 

stress tensor σ  according to Eq. (3), where I  is the fourth-order identity tensor. 

( ) :I Dσ σ= −
 

(3) 

As the damage mechanisms that develop in concrete are different in tension and in 

compression, a damage scalar internal variable td  is considered for modelling of tensile 

damage and a damage scalar internal variable cd  is considered for modeling of compressive 

damage. The damage tensor is calculated from these two damage scalars using Eq. (4), which 
has been proposed by Wu, et al. (2006).  

t cD d P d P+ −= +
 

(4) 

In this latter equation, P+  and P−  are the fourth-order projection tensors calculated 

according to Eq. (5) 

( )( ) ,
i

i ii iiP H p p P I Pσ+ − += ⊗ = −∑
 

(5) 

where ( )iH σ  is the Heaviside function computed for the ith  eigenvalue iσ  of σ , and the 

second-order tensor iip  is defined by Eq. (6), with in  the ith normalized eigenvector 

corresponding to iσ . 

( )1

2ij ji i j j ip p n n n n= = ⊗ + ⊗
 

(6) 

The fourth-order projection tensors are built to allow for a decomposition of the 
effective stress tensor σ  into positive and negative components according to Eq. (7).  

: , :P Pσ σ σ σ σ σ+ + − + −= = − =
 

(7)
 

Consequently, the tensile damage scalar td  only affects the positive part of the 

effective stress tensor whereas the compressive damage scalar cd  only affects the negative 

part of the effective stress tensor: ( ) ( )1 1t cd dσ σ σ+ −= − + − . When the stress state in the 

material changes from tension to compression, the effect of the tensile damage scalar td  on 

the macroscopic behavior disappear, which corresponds physically to the closure of the tensile 
cracks and subsequent stiffness recovery in concrete. Thus, this representation of the state of 
damage allows for capturing properly the unilateral effect, as can be seen in Fig. 1; in this 
figure, the model response to a unilateral test is compared with experimental data given by 
Ramtani (1990). 

  



2.2. Plastic theory 

A multi-surface yield criterion is adopted to capture the behavior of concrete under 
different load paths. The use of dedicated yield surfaces for tension and for compression is 
convenient in concrete as this material exhibits a non-symmetrical behavior driven by 
different failure modes in tension and in compression. Feenstra and de Borst (1996) have 
proposed a multi-surface model for concrete in biaxial stress states combining the Drucker-
Prager criterion with the Rankine cutoff in tension. The same approach is adopted here for the 
concrete model in three-dimensional stress states, leading to the expressions of Eq. (8a) and 

Eq. (8b). In these equations, tF  is the Rankine yield function, Iσ  is the maximum principal 

effective stress, tτ  is the tensile hardening function depending on the tensile hardening 

parameter tκ , cF  is the Drucker-Prager yield function, 1I  is the trace (first invariant) of the 

effective stress tensor, 2J  is the second invariant of the deviatoric effective stress tensor, cτ  is 

the compressive hardening function depending on the compressive hardening parameter cκ  

and α  is a material parameter (coefficient of internal friction) defined by 

( ) ( )2b c b cf f f fα = − − , where cf  and bf  respectively represent the uniaxial and biaxial 

compressive strength of the material. The expressions of Eq. (8a-b) are written in terms of 
effective stress as the plastic response applies to the undamaged part of the material. 

 
( ) ( )
( ) ( )2 1

, 0

, 3 (1 ) 0

It t t t

c c c c

F

F J I

σ κ σ τ κ

σ κ α α τ κ

 = − ≤


= + − − ≤
 

(8a) 

(8b) 

The multi-surface yield criterion that results from the combination of Rankine yield 
function and Drucker-Prager yield function is plotted in the two-dimensional stress space, i.e. 

assuming that 0IIIσ = , in Fig. 2. The limit yield function corresponds to the failure envelope 

at the end of the hardening process; this limit yield function agrees with experimental data of 
the biaxial failure envelope given by Kupfer and Gerstle (1973). It is assumed that the yield 
function experiences isotropic hardening/softening; the value of the yield function at a certain 
stage of this hardening/softening process is also plotted in Fig. 2. 

Plastic flow rules have to be postulated to govern the evolution of plastic flow when 
the effective stress state reaches the yield surfaces. As concrete is a frictional material, in 
which dilatancy occurs when loaded in compression, a non-associated flow rule is adopted in 

compression. The plastic potential cG  is given by 2 13c gG J Iα= + , where gα  is a dilatancy 

parameter. The physical interpretation of this expression is that the compressive flow is 

associated in the deviatoric plane but its volumetric part uses a dilatancy coefficient gα  

different from the coefficient of internal friction α  (Feenstra and de Borst, 1996). In tension, 

an associated flow rule is used and the plastic potential tG  is thus taken equal to the plastic 

yield function: t tG F= . 

According to Koiter’s rule (1953), the total plastic strain rate tensor can be obtained as 
the sum of the tensile and the compressive plastic strain rate tensors, according to Eq. (9). 



t c t c
p p p t c

F Gε ε ε λ λ
σ σ

∂ ∂= + = +
∂ ∂
ɺ ɺɺ ɺ ɺ

 (9) 

The plastic multipliers tλɺ  and cλɺ  can be determined using the Kuhn-Tucker 

conditions and the consistency requirements respectively expressed by Eq. (10) and Eq. (11).  

( ) ( )0 , , 0 , , 0 ,j j j j j jF F j t cλ σ κ λ σ κ≥ ≤ = =ɺ ɺ

 
(10) 

( ), 0 ,j j jF j t cλ σ κ = =ɺ ɺ

 
(11) 

 
 

 
Fig. 1: The use of a fourth-order damage tensor allows for modeling the unilateral effect in 

concrete. 
 

 

  
Fig. 2: Multi-surface yield criterion plotted in the two-dimensional principal stress space 
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The hardening variables tκ  and cκ  respectively govern the evolution of the Rankine 

and the Drucker-Prager yield surfaces; this evolution is made by isotropic 
hardening/softening. In fact, the hardening variables are the plastic internal variables that 
characterize the plastic state of the material; they can be considered as indicators of the degree 
of yielding in the material and therefore are called accumulated plastic strains. These 
hardening variables are induced by plastic flow and they can be related to the plastic 
multipliers. Adopting a work-hardening hypothesis and assuming that the yielding 
mechanisms in tension and in compression are decoupled, the evolution of the hardening 

variables is given by: 0t tκ λ= ≥ɺɺ  and 0c cκ λ= ≥ɺɺ . 

The hardening variables can then be interpreted as effective plastic strain, although the 
formula in compression is adapted for non associated flow, see Eq. (12a) and Eq. (12b). 

( ): t
t p tκ σ ε τ=ɺ ɺ

 (12a) 

( ): c
c p cGκ σ ε=ɺ ɺ

 (12b)
 

The rate equations of the hardening variables can be expressed in the uniaxial case to 
give a more direct interpretation of these variables. Under uniaxial tension in direction x, the 

Rankine yield function leads to the equality ( )x t tσ τ κ=  during the yielding process and 

Eq. (12a) turns into ,
t

t p xκ ε=ɺ ɺ , so that it is possible to identify the tensile hardening law from 

the stress-strain curve in uniaxial tension. Similar developments in uniaxial compression lead 

to ( )x c cσ τ κ=  during the yielding process, with 0xσ <  the effective stress, and 

( ), 1c
c p x gκ ε α= −ɺ ɺ . The compressive hardening parameter is proportional to the plastic strain 

in the direction of applied stress and it is possible to identify the compressive hardening law 
from the stress-strain curve in uniaxial compression. 

The hardening functions tτ  and cτ  have the meaning of current uniaxial tensile and 

compressive strength of the material. However, these functions are written in the effective 
stress space and therefore they cannot be determined by direct identification with the 
experimental uniaxial stress-strain curves, which are in the nominal (apparent) stress space. 
The relationships between the effective and the nominal hardening functions are given by 

( ) ( ) ( )1t t t t tdτ κ τ κ= −  and ( ) ( ) ( )1c c c c cdτ κ τ κ= − , respectively. In these equations, tτ  and 

cτ  are the tensile and compressive hardening functions in the nominal stress space; therefore 

these functions can be directly identified to the current uniaxial tensile and compressive 

strengths of the material. The functions tτ  and cτ  can then be derived once the damage 

scalars td  and cd  have been defined.  

In uniaxial tension, the response in nominal (i.e. apparent) stress is elastic until peak 
stress, followed by a material softening until failure. The experimentally observed decrease of 
the uniaxial tensile strength with the strain can be modeled by a curve tending to zero-stress 
level asymptotically (Fig. 3). Consequently, the softening function is described by a 
combination of negative exponentials according to Eq. (13). The expression of Eq. (13) 

results from a numerical calibration on experimental data. In this equation, ta  is a non 



dimensional model parameter to be determined and tf  is the uniaxial tensile strength (i.e. 

peak stress).  

( ) ( ) ( )1 1
exp exp 6

2 2t t t t t t ta a fτ κ κ κ = − + −  
 (13)

 

In uniaxial compression, the concrete behavior presents first an elastic domain until 

the compressive limit of elasticity 0cf , followed by a hardening branch until the stress reaches 

the compressive strength cf  and finally a softening branch until failure. This behavior is 

modeled by the relationships of Eq. (14) in the nominal stress space. In this equation, 1cκ  is 

the accumulated plastic strain in compression at peak stress such that ( )1c cc fτ κ = , and cb  is a 

model parameter to be determined. The first expression of Eq. (14), which represents the 
hardening branch, is written following a similar formulation as the expression prescribed in 
the Eurocode 2 part 1-2 (2004-a). This formulation was adopted to ensure the consistency of 
the present multiaxial concrete model with the uniaxial concrete model of Eurocode, which is 
widely used in practical applications. Application of the multiaxial model therefore yields 
similar results as the Eurocode formula in a situation of uniaxial compression. The hardening 
laws in tension and compression are plotted in the nominal stress space in Fig. 3. 

 

( ) ( )

( ) ( )( ) ( )( )

0
0 12

1
1

1 1 1

2

1

1 exp

c cc
c c cc c

c
c

c

c c c c c c c cc c c

f f
f if

f b b if

κ
τ κ κ κ

κκ
κ

τ κ κ κ κ κ κ κ

 −
= + ≤

    +       
 = + − − − ≥

 (14) 

 
2.3. Damage evolution 

An important assumption of the model concerns the selection of the internal variables 
that are used for driving the damage mechanism. The models published in the literature 
notably differ by the type of coupling between plasticity and damage: plasticity and damage 
may be driven by the same internal variables or the evolution of these two phenomena may be 
driven separately using different internal variables. In the latter case, different thresholds are 
defined for each of these phenomena, which gives flexibility in the modelling as it allows for 
developing degradation of the elastic properties without developing irreversible strains or vice 
versa. This approach has been adopted by Wu, et al. (2006) who assume that the evolution of 
plasticity is driven by the equivalent plastic strains whereas the evolution of damage is driven 
by the damage energy release rates. In Wu, et al. ’s model, two damage criteria are defined 
with their damage thresholds, in addition with the yield criteria. However, this approach 
implies a large number of parameters.  

The number of model parameters is reduced by using the same internal variables, and 
consequently the same threshold, to govern the evolution of plasticity and damage. The 
models that use a single set of internal variables for driving plasticity and damage make the 



implicit assumption that the two phenomena are caused by the same physical mechanisms at 
the microscopic level. These physical mechanisms at the microscopic level can thus be 
represented by a single set of macroscopic variables, which are used to model all the 
phenomenological aspects of the behavior (irreversible strains, degradation of the elastic 
properties, unilateral effect, etc). The validity of this assumption may be questioned for 
concrete. Recent investigations by Poinard, et al. (2010) have shown that the concrete 
behavior can change from a cohesive-brittle behavior governed by damage phenomena at low 
confinement to that of a granular material governed by plasticity at high confinement; this 
observation tends to demonstrate that the damage and plastic mechanisms in concrete have 
different physical origins. Yet, the levels of confinement reached in the considered 
experiments (higher than 150 N/mm²) are very untypical of structural fire engineering 
applications. The assumption that the plasticity and damage phenomena in concrete can be 
driven by the same internal variables has been adopted in several models proposed in the 
literature (Nechnech, et al., 2002; Grassl and Jirasek, 2006; Matallah and La Borderie, 2009), 
despite its controversial basis, due to the resulting simplicity of the model and the limited 
number of parameters. Since it allows to capture the phenomenological behavior of concrete 
for stress levels typical of structural applications, this approach has been adopted here for its 
convenience. 

In the model, the accumulated plastic strains tκ  and cκ  are the plastic internal 

variables that drive the yield flow and the hardening process; these variables are also used to 
drive the evolution of damage. Accordingly, damage is initiated at the same time as 
permanent strains, and the process of material non-linearity in concrete consists in both 
damage and plasticity developing simultaneously. Evolution laws are postulated for the 
damage variables in order to describe the growth of microcracks in the material. Several 
authors have noted that the damage evolution as a function of the plastic strain is of an 
exponential form (Lee and Fenves, 1998; Matallah and La Borderie, 2009; de Sa and 
Benboudjema, 2011); therefore an exponential formulation is adopted here. The evolution 
laws for tensile and compressive damage as a function of the accumulated plastic strains are 

given by Eq. (15a) and Eq. (15b), respectively, with ca  a non dimensional model parameter to 

be determined.  

( ) ( ) ( )1 1
1 exp exp 6

2 2t t t t t td a aκ κ κ = − − + −  
 

(15a)
 

( ) ( )1 expc c c cd aκ κ= − −
 (15b)

 
Inserting Eq. (13) and Eq. (15a) into the relationship between the effective and the 

nominal tensile hardening function, it leads to the following expression in the effective stress 

space: ( )t t tfτ κ = . The interpretation of this expression is that the softening response of the 

material in tension is assumed to be driven by the damage mechanism, i.e., it is due to the 
development of microcracks that progressively reduce the volume of the undamaged material. 
Consequently, the tensile hardening law in the effective stress space presents a horizontal 
plateau whereas the experimentally observed softening in concrete is driven by the evolution 



of the tensile damage parameter td  following the damage evolution law of Eq. (15a), see 

Fig. 4. 
In compression, the expressions of Eq. (14) and Eq. (15b) yields the compressive 

hardening law in the effective stress space. The resulting uniaxial compressive response in the 
nominal and in the effective stress space is plotted in Fig. 4. As can be seen in Fig. 4, the 
effective stress-strain response in compression is assumed to exhibit softening due to plastic 
mechanisms. This assumption is difficult to confirm or refute as separation of softening due to 
micro-cracking and plasticity in concrete remains an open question. An interesting 
contribution has been made by Abu Al-Rub and Kim (2010) who have shown, based on the 
analysis of stress-strain responses under loading-unloading conditions in tension and 
compression, that the stress-strain response in the effective space does not exhibit softening 
behavior for these particular loading conditions. Yet, plasticity in concrete is usually 
interpreted in terms of the friction mechanisms between microcracks surfaces. The friction 
between two rough microcracks lips leads to an erosion of these surfaces, which results in 
softening of the shear-slip curve. Based on these physical considerations, the stress-strain 
response of concrete in compression is expected to exhibit softening; this assumption has also 
been adopted by Nechnech, et al. (2002). 

 

   
Fig. 3: Hardening laws in the nominal stress space for tension (left) and compression (right) 

 
 
 

 
Fig. 4: Uniaxial tensile (left) and compressive (right) response in the effective and nominal 

stress spaces 
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2.4. Identification of model parameters 

The four non dimensional model parameters ca , cb , ta  and 1cκ  used in the evolution 

laws of the model can be formulated in terms of material parameters, which can be identified 
by experimental tests. 

The accumulated plastic strain in compression at peak stress, 1cκ , can be obtained as a 

function of the strain 1cε  and damage cdɶ  at peak stress under uniaxial compression, and the 

dilatancy parameter gα , see Eq. (16). The condition of non negativity of the accumulated 

plastic strain then leads to a maximum value of 0.50 for the parameter cdɶ , considering the 

fact that experimental evidence always yields values lower than 1 for the dilatancy parameter 

gα  in concrete. This condition is in line with experimental observations, as identification 

from cyclic compression tests (Karsan and Jirsa, 1969) indicates values around 0.30 for the 

parameter cdɶ . 

( )
( )( )1
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2 2 1
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cc

c g

d
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ε
κ

α

−
=

− −

ɶ

ɶ
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The parameter ca  that appears in the evolution law for compressive damage can be 

expressed as a function of the material parameters introduced here above; indeed rewriting of 

Eq. (15b) at peak stress for uniaxial compression leads to: ( ) 1ln 1c c ca d κ= − − ɶ . 

The model parameter ta  that appears in the hardening law in tension is determined 

based on energetic considerations. As the evolution laws for the hardening variables rely on a 
work-hardening hypothesis, the total plastic work can be related to the energy dissipation of 
the material (Feenstra and de Borst, 1996). In tension, the concept of crack energy is often 
introduced in the constitutive laws for regularization of the model with regards to the mesh 
sensitivity on the global structural response (Hillerborg, et al., 1976). The concept of 
equivalent length is also introduced to define a representative dimension of the mesh size in 
which it is assumed that the crack energy is uniformly dissipated. The total (apparent) plastic 

work in tension can thus be expressed by Eq. (17), where tG  is the crack energy in tension in 

N.m/m² and cl  is the characteristic length in m also referred to as the localization zone size. 

The crack energy and the characteristic length are material properties that ensure the 
objectivity of the numerical simulation at the structural level. However, in the local approach 
adopted here, the characteristic length is related to the mesh size (Rots, 1988) for 
regularization of the energy dissipated when strains are localized in a row of finite elements. 

( )
0

t
t t t

c

G
d

l
τ κ κ

∞

=∫  (17)
 

After transformation of Eq. (17), the model parameter ta  can be obtained as a function 

of the material parameters tG , cl  and tf : ( ) ( )7 12t t c ta f l G= . 



Similar energetic considerations are made for calculation of the parameter of the 

hardening law in compression cb . The crack energy in compression cG  in N.m/m² is 

introduced in the constitutive law with the internal length cl . The total (apparent) plastic work 

in compression is expressed by Eq. (18).   

( ) ( )
1

10

c c

c

c
c c c c c c

c

G
d d

l

κ κ

κ
τ κ κ τ κ κ+ =∫ ∫  (18)

 

The left term of the sum in Eq. (18) refers to the crack energy density dissipated before 
the peak stress, during hardening of the material, whereas the right term of the sum represents 
the crack energy density dissipated after the peak stress, during softening of the material. This 

equation allows for expressing the parameter cb  as a function of the material parameters in 

compression cf , 0cf , cG , cl  and 1cκ , see Eq. (19). The crack energy cG  and internal length 

cl  can be difficult to derive for practical applications and, if they are not correctly evaluated, 

Eq. (18) can lead to thermodynamically inconsistent results such as negative dissipation after 
peak stress. This is avoided by imposing that the total crack energy dissipated at failure be 
higher than the crack energy dissipated before the peak stress, see Eq. (20).  
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2.5. Material parameters 

The ten material parameters contained in the model are summarized in Table 1. These 
parameters can be obtained by three tests at ambient temperature: uniaxial compression test 
until failure comprising one unloading-reloading at peak stress, biaxial compression test until 
peak stress, and uniaxial tension test until failure. It is noted that the elastic modulus is not an 
independent parameter in the model and therefore it does not appear in Table 1; the elastic 
modulus is calculated from the uniaxial compressive strength and the peak stress strain. 

In addition, the characteristic length cl  has to be defined as a function of the model. 

This characteristic length depends on the chosen element type, element size, element shape 
and integration scheme (Feenstra and de Borst, 1996). A very simple formula has been 

proposed for biaxial cases (Rots, 1988), see Eq. (21). In this equation, eA  is the area of the 

element and lα  is a modification factor which is equal to 1 for quadratic elements and equal 

to 2  for linear elements. This formula gives good approximation for most practical 
applications. 
 

.c ell Aα=
 

(21)
 



Fig. 5 presents the effect of the material parameter cdɶ  on the unloading response in a 

uniaxial compression test, next to experimental data (Karsan and Jirsa, 1969). This parameter 
allows for controlling the relative importance of the damage process with respect to the plastic 
process in the model. For low values of this parameter, the plastic process prevails over the 
damage process in compression, which results in significant development of plastic strains 
and relatively limited degradation of the elastic properties. On the contrary, for high values of 
this parameter (but lower than 0.50) the response is mostly driven by the damage process. 
Based on these experimental data, it is found that the value for the compressive damage at 
peak stress is around 0.30. 

 
Symbol Parameter Units Required test 

ν  Poisson’s ratio [ ]−  Uniaxial compression 

0cf  Compr. limit of elasticity [N/m²]  Uniaxial compression 

cf  Uniaxial compr. strength [N/m²]  Uniaxial compression 

1cε  Peak stress strain [ ]−  Uniaxial compression 

gα  Dilatancy parameter [ ]−  Uniaxial compression 

cG  Compr. crack energy [Nm/m²] Uniaxial compression 

cdɶ  Compr. damage at peak stress [ ]−  Uniax. compr. + unloading 

bf  Biaxial compr. strength [N/m²]  Biaxial compression 

tf  Uniaxial tensile strength [N/m²]  Uniaxial tension 

tG  Tensile crack energy [Nm/m²] Uniaxial tension 

Table 1: Material parameters in the concrete model 
 

 
Fig. 5: Identification of the model parameter cdɶ  in a uniaxial compression test 

 
3 Extension to high temperatures 

The division of the total strain tensor into individual strain components according to  
Eq. (1) has been adopted in the present model. In Section 2, a plastic-damage model has been 
developed for capturing the relationship between the instantaneous stress related strain tensor 

σε  and the stress tensor σ  at ambient temperature. Section 3 presents the extension of this 

-40

-30

-20

-10

0

-0.6-0.4-0.20

S
tr

es
s 

[M
P

a]

Strain [%]

Karsan [test 1969]

Model dc=0.10

Model dc=0.30

Model dc=0.35



model to high temperatures and the relationships for calculation of the free thermal strain 

tensor thε  and the transient creep strain tensor trε  under multiaxial stress states. 

 
3.1. Free thermal strain 

The relationship for calculation of the free thermal strain in multiaxial stress state is 
adapted from the uniaxial relationship of Eurocode 2 (2004-a). This latter relationship gives 
the free thermal strain as a nonlinear function of temperature that depends on the type of 
aggregate (siliceous or calcareous), see Eq. (22a-b). The expression is generalized to the 

multiaxial stress state using the assumption of isotropy: ( ) ( ), 2th th ECT T Iε ε= × , in which I  

is the second order identity tensor and ( ), 2th EC Tε  is the free thermal strain given by 

Eurocode 2. 
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The free thermal strain of concrete is partly irreversible (Schneider, 1988; Franssen, 

1993); a residual dilatation or residual contraction is observed after cooling down to ambient 
temperature depending on the maximum temperature reached in the material. This 
irreversibility is taken into account in the model; the value of the residual free thermal strain 
as a function of the maximum temperature is taken from experimental tests made by 
Schneider (1988). 

 
3.2. Transient creep strain 

The model for calculation of transient creep strain is adapted from the Explicit 
Transient Creep (ETC) Eurocode model, developed at University of Liege for uniaxial 
relationships (Gernay and Franssen, 2010; Gernay and Franssen, 2012). This ETC model, 
which includes an explicit term for transient creep strain, is built as a generalization of the 
current Eurocode concrete model. Whereas the Eurocode implicit model had been developed 
for prescriptive design, the ETC model is able to compute accurately the transient creep strain 
that develops in performance-based situations, which may include cooling phases or load 
redistributions (Gernay, 2012-a). Meanwhile, the ETC model remains generic and it yields the 
same results as the Eurocode model in the simple prescriptive situations, which is an 
advantage to the authors’ opinion as the Eurocode model has been widely used in the last 
decades and is well accepted by authorities and regulators for building design. 

Generalization of the transient creep strain formula to a multiaxial stress state is based 
on the assumption that the process of transient creep does not induce anisotropy. The 
formulation proposed by de Borst and Peeters (1989), which has been widely adopted in the 
literature (Khennane and Baker, 1992; Nechnech, et al., 2002; Gawin, et al., 2004; de Sa and 



Benboudjema, 2011), is used here and applied to the ETC model, see Eq. (23). In this 

equation, trεɺ  is the rate of the transient creep strain tensor, ( )Tφɺ  is the rate of the transient 

creep function which values are given in Table 2, σ −  is the negative part of the effective 

stress tensor, ,20cf  is the compressive strength at 20°C and H  is the fourth order tensor given 

by ( )( )0.5 1ijijkl kl ik jl il jkH γ δ δ γ δ δ δ δ= − + + + . The material parameter γ  that appears in 

this latter expression can be taken equal to Poisson’s ratio (Nechnech, et al., 2002), in 
accordance with Thelandersson’s multiaxial data (1987), whereas ijδ  is the Kronecker 

symbol. 

( )
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(23) 

 

T [°C] 20 100 200 300 400 500 600 700 800 

Silic. 0.0000 0.0010 0.0018 0.0024 0.0049 0.0106 0.0274 0.0389 0.0733 

Calc. 0.0000 0.0010 0.0017 0.0022 0.0043 0.0086 0.0206 0.0271 0.0407 

Table 2: Transient creep function Φ(T) for siliceous and calcareous aggregates concrete. 
 
The particularity of the formulation of Eq. (23) is that the calculation of the transient 

creep strain rate tensor is based on the negative part of the effective stress tensor. In models in 
which damage develops, it is consistent to use the effective stress rather than the nominal 
stress for calculation of transient creep strain because it can be assumed that the mechanism of 
transient creep occurs in the undamaged part of the material. In addition, it has been assumed 
in the ETC model that transient creep develops under compressive stress only; for this reason 
only the negative part of the effective stress tensor is considered in Eq. (23). 

After integration over a finite time step, and adopting an explicit numerical scheme, 
the transient creep strain tensor can be computed using Eq. (24). Computation of the transient 
creep strain increment takes into account the stress-temperature history. Between step (s+1) 
and (s), there is an increment in transient creep strain, which value is computed by Eq. (24), if 
and only if the three following conditions are fulfilled:  

i. The temperature at time step (s+1) exceeds the maximum temperature reached 
previously in the history of the material; 

ii.  The negative part of the (converged) effective stress at time (s) is non-null 
(material subjected to compressive stress); 

iii.  The material is in the ascending branch of the constitutive relationship, i.e. 

1c cκ κ≤ .  

It is assumed that the transient creep strain is irreversible at both load and temperature 
decrease. 
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3.3. Temperature-dependency of the material parameters 

Concrete subjected to elevated temperatures exhibits thermo-mechanical degradation 
of its properties of strength and stiffness; this effect is taken into account through proper 
temperature dependency of the material parameters. The evolution laws of the parameters 
with temperature are taken from design codes such as Eurocode 2, when available, or from 
experimental data published in the literature. 

The evolution of the uniaxial tensile and compressive strengths ,t Tf  and ,c Tf  with 

temperature is taken from Eurocode 2. Evolution of these parameters with temperature results 
in a modification of the yield surfaces; these surfaces experience isotropic contraction at high 
temperature due to the decrease of the hardening functions caused by the decrease of the 
strengths. 

Compressive strength of concrete does not recover during cooling. According to 
Eurocode 4 part 1-2 (2004-b), an additional loss of 10% in compressive strength is considered 
during cooling from maximum to ambient temperature. This assumption prescribed by the 
Eurocode has been recently confirmed by an analysis based on hundreds of experimental 
results reported in the literature (Li and Franssen, 2011), where it was shown that the 
additional reduction during cooling may be even higher than the 10% reduction considered in 
Eurocode 4. In fact, the residual strength of concrete after fire exposure depends on many 
parameters (Annerel, 2010) and its proper evaluation would probably require a more 
advanced model taking into account the effect of the different parameters, but the Eurocode 
formula has been adopted here because of its simplicity and its generic form and because it 
has the advantage of being a standard code formula. Consideration of the additional loss in 
compressive strength during cooling is of prime importance in the analysis of structures 
subjected to natural fire. Recent research based on numerical simulations have highlighted the 
possibility of collapse of reinforced concrete columns during or even after the cooling phase 
of a fire and one of the main mechanisms that lead to this type of failure is the additional loss 
of concrete strength during the cooling phase of the fire (Dimia, et al., 2011; Gernay and 
Dimia, 2011). 

The peak stress strain in uniaxial compression 1cε  increases with temperature, see 

Table 3. The value of the peak stress strain has been defined such that, for a concrete 
specimen subjected to heating under constant uniaxial compressive stress (situation of 
transient test), the new concrete model yields the same response as the current Eurocode 2 
model (Gernay and Franssen, 2012). During cooling, the peak-stress strain is considered as 
fixed to the value that prevailed at the maximum temperature, according to Eurocode 4. 

 
 
 



T [°C] 20 100 200 300 400 500 600 700 800 

1cε  [-] 0.0025 0.0030 0.0038 0.0050 0.0063 0.0087 0.0127 0.0133 0.0140 

Table 3: Evolution of the peak stress strain in uniaxial compression with temperature. 
 
A dependency of Poisson’s ratio with temperature has been experimentally observed 

by different authors (Maréchal, 1970 cited in Schneider, 1985; Luccioni, et al., 2003). This 
temperature-dependency has been approximated by the bilinear relationship of Eq. (25) in the 

model. The transition temperature Tν  is equal to 500°C. 
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Experimental results indicate that the confinement effect is more pronounced in heated 
concrete because elevated temperatures cause the degradation of the micro-structure and an 
increase in porosity. As a result, at a given temperature the decrease in biaxial compressive 
strength ,b Tf  is smaller than the decrease in uniaxial compressive strength ,c Tf . Based on the 

experimental results by Ehm and Schneider (1985), the ratio between these two parameters 

( ) , ,b T c TT f fβ = , equal to 1.16 at ambient temperature, is calculated using the formula of 

Eq. (26) at high temperature. The transitions temperature 1Tβ  and 2Tβ  are respectively equal 

to 350°C and 750°C. 
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Due to a lack of experimental data, it is difficult to assess the temperature-dependency 
of the other parameters; therefore, simplifying assumptions have been adopted. It is assumed 
that the approximately linear elastic concrete response in uniaxial compression for low stress 
levels remains proportionally unchanged at high temperature, i.e. the ratio between the 

compressive limit of elasticity 0,c Tf  and the uniaxial compressive strength ,c Tf  at high 

temperature is considered constant. It is also assumed that the plastic potential in compression 

cG  experiences isotropic contraction at high temperature with no modification in its shape; 

therefore the dilatancy parameter gα  does not vary with temperature. Based on similar 

considerations, the compressive damage at peak stress cdɶ  has been considered as constant 

with temperature. For the crack energy in compression, it has been assumed that the ratio 
between the crack energy dissipated before the peak stress and the total crack energy 

dissipated at failure cG  remains constant with temperature. As the former is defined from 

other material parameters, this assumption yields to a unequivocal definition of the 

temperature dependency of cG . Finally, different authors have tried to quantify the 



temperature dependency of the tensile crack energy ( )tG T  but experimental results show a 

significant scatter depending on the test specimens and test methods, so that it is difficult to 
derive a reliable model for the temperature dependency of this parameter.  As this energy 
parameter can be related to the area under the tensile softening function curve, it should be 
related to the uniaxial tensile strength ,t Tf . In particular for temperatures beyond 600°C, ,t Tf  

is equal to 0 and therefore the tensile crack energy parameters tG  must also be equal to 0. By 

convenience, it was assumed that the tensile crack energy tG  follows the same temperature 

dependency as the uniaxial tensile strength. 
 

4 Numerical implementation 

The model has been implemented within the framework of the nonlinear finite element 
method. The numerical implementation deals with the case of fully tridimensional stress states 
as well as plane stress states. 

For the local problem, it is assumed that at time step s the finite element code has 
converged, i.e. the values of the strains, stresses and internal variables are known at every 
integration point. The values of the displacements at the nodes are also defined. Then, from 
time step s to time step 1s+ , the variation of the displacements of the nodes calculated by 
the finite element code produces an increment in total strain. The problem is then to update 
the basic variables describing the local state of the material in a manner that is consistent with 
the constitutive law. This process should also yield the tangent modulus of the constitutive 
law, to be used by the finite element code in the global iteration process.  

It is assumed that the temperatures are known in all integration points, as a result of 
the thermal analysis that has been performed before the mechanical analysis. 

First, the mechanical properties, the free thermal strain ( 1)s
thε +  and the transient creep 

strain ( 1)s
trε +

 
are computed at time step 1s+ , for all integration points. This computation takes 

into account the temperatures at time step 1s+ , according to the relationships defined in 
Section 3.  

Then, the free thermal strain and the transient creep strain are subtracted to the total 
strain to yield the instantaneous stress-related strain. As the resolution of the equilibrium in 
the structure at a given time step is an iterative process, the increment in total strain produced 
by the finite element code is updated several times at each time step. The increment in total 

strain from converged time step s to iteration 1i +  of time step 1s+  is noted totε∆  and the 

total strain at iteration 1i +  of time step 1s+  is given by: ( 1) ( )i s
tot tot totε ε ε+ = + ∆ . Yet, the free 

thermal strain and the transient creep strain do not vary during the iteration process; they are 
only computed once at the beginning of the procedure, before entering into the iterative 
resolution of the equilibrium at the considered time step. At iteration 1i + , the instantaneous 
stress-related strain vector can thus be computed using Eq. (27). 

( 1) ( 1) ( 1) ( 1)i i s s
tot trthσε ε ε ε+ + + += − −  (27)

 



At each iteration, solving the local problem consists in finding the updated values of 
the stresses, the updated values of the internal variables and the tangent modulus 
corresponding to the instantaneous stress-related strain vector of Eq. (27), for all integration 
points. As this operation requires an iterative process, there is a second level of iterations in 
the general algorithm, referred to as “internal iterations” in the following. 

The constitutive relationship of Eq. (3) leads to Eq. (28) for the calculation of the 
stress at iteration 1i +  of time step 1s+ . 

( ) ( )( 1) ( 1) ( 1) ( 1)
0: :i i i i

pI D C σσ ε ε+ + + += − −  (28)
 

The computation of the stress from the instantaneous stress-related strain using 
Eq. (28) is decomposed into three parts in the numerical algorithm according to the concept of 
operator split (Simo and Hughes, 1998), i.e. into the computation of an elastic predictor, 
plastic corrector and damage corrector. Among the three parts of the algorithm, only the 
computation of the plastic corrector is an iterative process. As the damage variables are fixed 
during the elastic predictor and the plastic corrector steps, solving of these two steps 
constitutes a standard elastoplastic problem in the effective stress space. Then, computation of 
the damage variables is an explicit operation as these variables are driven by the plastic 
internal variables. 

The computation of the elastic predictor and the plastic corrector in the effective stress 

space are detailed herein. The effective stress 
( 1)iσ + , the plastic strain ( 1)i

pε +  and the plastic 

hardening variables ,t cκ κ  (equivalent to the plastic multipliers , )t cλ λ  must satisfy the stress-

strain equation of Eq. (29), the incremental Kuhn-Tucker conditions of Eq. (30) and the 
discretized form of the evolution laws (Eq. (31) and Eq. (32)). 

( )( 1) ( 1) ( 1)
0 :i i i
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( ) ( ) ( ) ( )1 10 , 0i is s
t t t c c cκ κ λ κ κ λ+ += + ∆ ≥ = + ∆ ≥

 
(32)

 

The trial elastic effective stress (elastic predictor) is first computed from the 
instantaneous stress-related strain increment using Eq. (33). It is checked whether this stress 

state is acceptable by inserting ( )1itrσ + , 0tλ∆ =  and 0cλ∆ =  into the Kuhn-Tucker conditions 

of Eq. (30). If these conditions are satisfied, i.e. if the trial stress is not outside the yield 
surfaces, the step is elastic and there is no variation in the plastic internal variables. The 
updated variables at iteration 1i +  of time step 1s+  are then given by Eq. (34). As the plastic 
internal variables govern the evolution laws of the model, there is no variation in the plastic 
strains neither in the damage variables. 



( ) ( ) ( )( ) ( )1 1
0 0: :i i s str

pC Cσ σσ ε ε σ ε+ += − = + ∆
 (33)

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1; ; ;i i i i tr is s s
p p t t c cε ε κ κ κ κ σ σ+ + + + += = = =

 
(34) 

Yet, if the Kuhn-Tucker conditions are not satisfied in the elastic predictor stress state, 
plastic strains develop in the material between time step s and (iteration i+1 of) time step s+1. 
The effective stress vector has to be corrected by a plastic corrector according to Eq. (35) to 
return on the yield surface. 

( ) ( )1 1
0 :i tr i

pCσ σ ε+ += − ∆
 (35)

 

The plastic strain increment pε∆  can be eliminated from the problem by substituting 

Eq. (31) into Eq. (35), which leads to the expression of Eq. (36). 
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The set of nonlinear equations can finally be rewritten as a function of the plastic 

multipliers { },t cλ λ∆ ∆  using Eq. (32) for the hardening parameters and Eq. (36) for the 

effective stress. By applying an implicit backward Euler difference scheme, the problem is 
transformed into a constrained-optimization problem governed by discrete Kuhn-Tucker 

conditions, with the plastic multipliers { },t cλ λ∆ ∆  as the two unknowns in Eq. (30).  

Solving of the system of equations is performed using a Newton iterative process. In 
multi-surface plasticity, the fact that a yield surface is ultimately active (at convergence) 
cannot be guaranteed in advance based on the trial elastic state. By definition, a yield surface 

jF  is termed active if 0jλ∆ > . The initial set of active yield surfaces is determined in the 

trial elastic state by the condition ( ) ( )( )1 , 0tr i s
j jF σ κ+ > . However, this initial configuration 

cannot provide a sufficient criterion for determining which surface is active at the end of the 
time step because the final location of the yield surfaces and the final location of their 
intersection are unknown at the beginning of the time step. Therefore, the set of active yield 
surfaces has to be updated during the iterative resolution of the system. As softening plasticity 
is considered here, a yield surface that was inactive in the trial elastic state can be activated 
during the return-mapping (Pramono and Willam, 1989; Feenstra and de Borst, 1996). A 
condition is therefore implemented in the iterative process for re-activation of yield surface 

jF  at iteration 1n+  if ( 1)n
jλ +∆  has become positive. On the opposite, yield surface jF  is 

deactivated at iteration 1n+  if ( 1)n
jλ +∆  has become negative. The details of the solving 

process are given in (Gernay, 2012-b). 
Finally, application of the Newton algorithm yields the updated values of the plastic 

multipliers tλ∆  and cλ∆  at iteration 1i +  of time step 1s+ . As a result, the plastic corrector 

step can be applied by updating the effective stress, the plastic strain and the plastic internal 



variables using Eq. (36), Eq. (31) and Eq. (32), respectively. It remains then to update the 
damage variables and to apply the damage corrector to the stress tensor. 

The computation of the tensile and the compressive damage variables at iteration 1i +  

of time step 1s+  is explicitly performed as a function of the plastic internal variables ( 1)i
tκ +  

and ( 1)i
cκ + . The tensile damage variable is computed using Eq. (37). As it has been assumed in 

Section 3.3 that the temperature dependency of tf  and t cG l  is the same, the parameter ta  

does not depend on temperature and remains constant at each time step. 

( ) ( )( 1) ( 1) ( 1)1 1
1 exp exp 6

2 2
i i i

t t t t td a aκ κ+ + + = − − + −  
 

(37)
 

The compressive damage variable is computed using Eq. (38). The model parameter 
( 1)s
ca +  that appears in this equation depends on temperature and therefore it is calculated at 

each time step when the mechanical properties at temperature ( 1)sT +  are evaluated. 

( ) ( )( ) ( ) ( ) ( )( )( )1 1 11 exp ln 1i s is s
c c c c cd d a κ κ+ + += − − − −

 

(38)
 

The updated damage tensor is computed using Eq. (39), where the projection tensors 

apply to the effective stress ( 1)iσ +  at iteration 1i +  of time step 1s+ . Finally, the nominal 

stress is calculated using Eq. (40). 

( ) ( ) ( )1 1 1i i i
t cD d P d P+ −+ + += +

 (39) 

( ) ( )( 1) ( 1) ( 1) ( 1)
0

i i i i
pI D C σσ ε ε+ + + += − ⋅ ⋅ −

 (40)
 

The Newton-Raphson method is used in the global iteration process for solving the 
equilibrium of the structure. This method is based on the estimation of a tangent stiffness 
matrix, which is built for the structure from the operators linking the increment of stress to the 
linearized increment of strain at each integration point. These operators are computed for all 
integration points once the processes of plastic-corrector and damage-corrector have been 
performed, i.e. at the end of the process of internal iterations. The developments leading to the 
expression of these operators, which are written in the nominal stress space and are derived 
consistently with the algorithm for updating the nominal stress, can be found in (Gernay, 
2012-b). 

As the concrete model is developed as fully tridimensional, it can be used with three-
dimensional solid finite elements. However in many applications of structural engineering, it 
is interesting to use finite elements that develop plane stress states. Basically, two strategies 
can be adopted to obtain a plane stress constitutive model from a fully three-dimensional 
model. First, the model can be rewritten considering a plane stress state. The advantage of this 
method is that several simplifications can be made in the equations of the model and its 
numerical implementation due to the consideration of a plane stress state. However, the entire 
model has to be rewritten and implemented separately in the numerical code, which represents 
a considerable amount of work and leads to the necessity for the developer to handle two 



distinct models in parallel. The second strategy consists in implementing an additional piece 
of numerical code in the algorithm of the fully three-dimensional model to deal with the 
particular case of plane stress. The advantage of this method is its consistency as a single 
material model is used for the three-dimensional stress states and plane stress states. The 
disadvantage of this method is the fact that no benefit is taken in terms of CPU time from the 
fact that the stress state is simplified to a plane stress state. This second strategy is chosen 
here in order to avoid rewriting a different model for plane stress states. The numerical code 
developed by Charras (2010, implemented in the finite elements software CAST3M, 2003), 
which relies on the implementation of an additional constraint in the return mapping 
algorithm to find the particular solution corresponding to plane stress state, has been adopted 
in this work.  

 

5 Validation of the model based on experimental tests 
on concrete samples 

In this section, the model is tested by comparison against experimental data of 
concrete samples subjected to various situations of applied stress and/or temperature. To focus 
on the concrete constitutive model, the numerical simulations are conducted using a single 
cube-shaped three-dimensional finite element made of eight nodes. During the simulations, it 
is verified that all the integration points in this finite element have the same stress-strain 
response. The numerical simulations are performed with the software SAFIR (Franssen, 
2005), which allows to verify the correct implementation of the concrete model in this 
software. Numerical simulations of structural elements will be conducted in a forthcoming 
paper. 
 

 
Uniaxial 
comp. 

Uniaxial 
tension 

Bicomp. 
(ambient) 

Tricomp. 
(Imran) 

Tricomp. 
(Poinard) 

Transient 
test 

Bicomp. 
(hot) 

[ ]N/mm²cf  33.0 - 30.0 28.6 40.0 30 41 

 
0.30 - 0.30 0.30 0.30 0.30 0.30 

 0.21 - 0.25 0.25 0.25 0.25 0.25 

 
0.25 - 0.30 0.30 0.30 0.30 0.30 

[ ]N.mm/mm²cG  15.1 - 18.7 21.4 15.7 11.8 16.1 

 
0.18 - 0.20 0.20 0.20 0.20 0.20 

 
0.25 - 0.25 0.25 0.25 0.25 0.25 

[ ]N/mm²tf  - 3.5 - - - - - 

[ ]N.mm/mm²tG  - 0.045 - - - - - 

[ ]-b cf f  - - 1.16 1.16 1.16 1.16 1.16 

Table 4: Values of the material parameters. 
 

The values of the material parameters used in the numerical simulations are given in 
Table 4; these values are obtained by calibration of the numerical response on the 

[ ]0c cf f −

[ ]1 %cε

[ ]cd −ɶ

[ ]υ −

[ ]gα −



experimental behavior. The side dimension of the finite elements used in the model is 0.10 m; 
hence, the characteristic length is taken equal to 0.10 m, based on Eq. (21). The values of the 
compressive crack energy range between 11.8 and 21.4 N.mm/mm², which is consistent with 
the values given by Vonk (1992). 

 
5.1. At ambient temperature 

The concrete model is first tested in uniaxial compression at ambient temperature. In 
the test, one side of the concrete sample is subjected to increasing negative displacement in 
one direction whereas the two perpendicular directions are free. The numerical results are 
compared with the experimental results by Kupfer, et al. (1969) (see Fig. 6) which include 
data of the volumetric strains. A value of 0.25 for the dilatancy parameter gα  allows for 

capturing properly the volumetric behavior of the material.  
In uniaxial tension, the numerical results obtained with the new concrete model are 

compared with experimental results by Gopalaratnam and Shah (1985) in Fig. 7. The 

computed results have been obtained using a tensile crack energy 0.045 N.mm/mm²tG = . 

Application of the CEB formula (CEB-FIB, 1990) for the evaluation of the crack energy in 

tension tG  typically leads to values between 0.050-0.150 N.mm/mm². 

The concrete model captures the experimentally observed unilateral effect, 
characterized by a stiffness recovery due to closure of tensile cracks, as shown in Fig. 1. Full 
stiffness recovery is assumed when moving from tension to compression. Indeed, in the 
model, the tensile damage scalar is directly multiplied by the positive part of the effective 
stress tensor. Lee and Fenves (1998) have suggested introducing an additional parameter to 
set a minimum value to the factor multiplying the tensile damage scalar when the positive part 
of the stress becomes null, in order to account for partial stiffness recovery. This approach has 
not been adopted here for minimization of the number of parameters and because of 
reasonably good agreement with experimental results (Fig. 1). 

Fig. 8 shows the model response in case of cyclic uniaxial compressive-tensile 
loading. After crushing in compression, the concrete is unloaded into tension. Due to tensile 
loading beyond the concrete tensile strength, a tensile crack develops. When the sample is 
reloaded in compression, the crack is first partially closed before the stress comes back to 
compression; yet, it can be noted that plastic strains also develop in tension and consequently, 
the reloading in compression is slightly shifted from the unloading path, which indicates a 
plastic dissipation during the cycle. The material response then returns on the (shifted) 
softening branch in compression. A second cycle of uniaxial compression-tension-
compression is finally performed, showing the same phenomena as the first cycle. 

 
 



 
Fig. 6: Measured and computed results for concrete in uniaxial compression. 

 
 

 

 
Fig. 7: Measured and computed results for concrete in uniaxial tension. 

 

  
Fig. 8: Model response under uniaxial compression-tension-compression load sequences 
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Concrete is a pressure-sensitive material which exhibits increase in strength and 
ductility under multiaxial compression, as compared to uniaxial compression. The ability of 
the model to capture this behavior is verified by comparison against experimental data by 
Kupfer, et al. (1969), see Fig. 9. These tests are also used to calibrate the biaxial compressive 

strength parameter 20 cbf fβ = . Proper estimation of the increase in strength due to the 

confinement effect in biaxial compression is obtained for a value of 1.16 for this latter 
parameter; this value is typically found in the literature (Grassl and Jirasek, 2006). 

Finally, the concrete behavior under triaxial compression has been investigated. In the 
three tests of Fig. 10, the concrete, which has a uniaxial compressive strength of 28.6 N/mm², 
was subjected to hydrostatic stress of 2.1 N/mm², 8.4 N/mm² and 21 N/mm² respectively, and 
then to increasing deviatoric stress in one direction until failure (Imran, 1994). It is observed 
that the concrete strength and ductility increase with confinement; for significant confinement 
the behavior becomes highly ductile. The model qualitatively captures the increase of strength 
with increasing level of confinement but this strength increase is underestimated by the 
model. Similarly, the model predicts an increase in ductility with increasing level of 
confinement but this effect is not as pronounced as experimentally observed. 

In fact, the model is relatively good at capturing the experimental response until it 
reaches the model peak stress. The increase in stiffness at the different levels of confinement 
is quite accurately modeled, as well as the pre-peak evolution of the transversal strains ε1 and 
ε2. The relationship between the stress and the strain in the direction of the applied deviatoric 

stress is also relatively well assessed until approximately 3 1cε ε= . Then, the model reaches a 

peak stress and the computed results beyond this level of strain significantly differ from the 
experimental results. The experimental results show that the post-peak behavior of concrete 
changes from softening to hardening behavior with increasing level of confinement, whereas 
this effect is not represented in the model and the post-peak behavior remains a softening 

behavior in the simulations of the three tests. At 2.1 N/mm² confinement (=0.07 cf× ), the 

experimental response exhibits softening and the computed response reasonably agree with 

the experimental response. However at 8.4 N/mm² confinement ( 0.29 cf= × ), the 

experimental response exhibits hardening and, as the model fails at reproducing this effect, 

the computed response stops being accurate beyond a strain of approximately 3 12 cε ε= × . 

Modeling of the concrete post-peak behavior in triaxial compression thus constitutes a 
limitation of the model in case of significant confinement. The following example helps to 
give a further insight into this limitation.     

The test by Poinard, et al. (2010) is interested in the behavior of concrete at very high 
confinement level. It was conducted on a concrete cylinder of 40 N/mm² uniaxial compressive 
strength subjected to 200 N/mm² confinement, see Fig. 11. The sample was then subjected to 
increasing axial deviatoric stress. The computed response agrees with the experimental results 
in the first part of the test, until reaching a deviatoric stress of approximately 115 N/mm² and 

an axial strain equal to 12 cε× . However, the computed response beyond this level of stress 

completely differs from the experimental response, because the computed response then 
presents a softening behavior whereas the experimental results clearly indicate a hardening 
behavior. Very interesting information can be obtained from Poinard’s test owing to the fact 



that several unloading-reloading sequences have been applied to the sample. Indeed, the 
analysis of the slope of the unloading branches indicates that no damage develops in concrete 
under such very high confinement level, as these unloading branches remain parallel to the 
initial stiffness of the material. On the contrary, the model assumes that damage starts to 
develop in the concrete as soon as plasticity develops, as these two phenomena have been 
linked in the model. Consequently, significant damage develops during the numerical 
simulation of the triaxial test; this is confirmed by the degradation of the elastic properties that 
can be observed on the computed curves in Fig. 11. The fact that damage develops in the 
model for concrete under high confinement contributes to explain why the model is not able 
to properly capture the post-peak behavior of concrete in these situations. In order to enhance 
the modeling in case of important triaxial compressive stress states, it would be necessary to 
govern the evolutions of plasticity and damage with distinct internal variables. Yet, it is noted 
that this high level of triaxial confinement is very unusual in buildings; it only concerns very 
specific applications such as the study of impact loading in the design of nuclear vessels. 

 

 
Fig. 9: Measured and computed results for concrete in biaxial compression test. 

 

 
Fig. 10: Measured (Imran, 1994) and computed results for concrete in triaxial compression 

under three levels of confinement. 
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Fig. 11: Measured (Poinard, et al., 2010) and computed results for concrete in triaxial 

compression at 200 N/mm² confinement. 
 

5.2. At high temperature 

It is experimentally observed that the total strain that develops in heated concrete 
strongly depends on the applied stress during heating; therefore, transient tests aim to measure 
the total strain-temperature relationship for different load levels. The transient tests conducted 
by Anderberg and Thelandersson (1976) have been simulated using the new concrete model. 
In these tests, calcareous concrete samples have been subjected to constant applied stress and 
increasing temperature. Three levels of applied stress α were considered, with α defined as the 
ratio between the applied stress and the compressive strength at ambient temperature. 

The measured and computed results given in Fig. 12 reasonably agree. The 
temperature at which the failure arises is well predicted by the model, as well as the decrease 
in total strain with increasing applied stress level during heating. The development of 
transient creep strain is thus accurately taken into account by the model. 

The computed results show rather abrupt changes in the slope of the curves at every 
100°C. This is due to the fact that the temperature-dependent laws of some parameters of the 
concrete model are defined as linear interpolations between discrete values defined every 
100°C. This is the case, for instance, for the compressive strength the temperature-dependent 
law of which has been adopted from Eurocode. As a result, this abrupt variation in the 
derivative of the temperature-dependent laws is reflected on the results of Fig. 12. This effect 
is usually not perceived in numerical simulations of concrete elements because the model 
usually comprises an important number of integration points which reach the transition 
temperatures at different times. 

Biaxial compression tests at high temperature have been conducted by Ehm and 
Schneider (1985). The experiments on siliceous concrete samples have been simulated and the 
comparison between measured and computed results is plotted in Fig. 13. In these steady-state 
tests, the samples are first heated and then subjected to stress increase in directions 1 and 2 
simultaneously and of the same magnitude, whereas direction 3 is free. 

The concrete model qualitatively captures the decrease in stiffness and equibiaxial 
compressive strength with temperature. Besides, the model takes into account the 
experimentally observed increase in the confinement effect with increasing temperature; 
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namely, the decrease in equibiaxial compressive strength is less pronounced than the decrease 
in uniaxial compressive strength at a given temperature.  

It can be noted that the maximum relative stress ,20cfσ  yield by the numerical 

simulations does not fit perfectly with the experimental results at high temperatures. This is 
due to the fact that the concrete tested by Ehm and Schneider does not follow the Eurocode 
model for the decrease in the uniaxial compressive strength, whereas the equibiaxial 
compressive strength at high temperature calculated in the model using Eq. (26) is related to 
the uniaxial compressive strength at high temperature prescribed by the Eurocode. 

 

 
Fig. 12: Measured (Anderberg and Thelandersson, 1976) and computed results for concrete in 

transient tests for different applied stress levels. 
 

 
 

 
Fig. 13: Measured (Ehm and Schneider, 1985) and computed results for concrete in 

equibiaxial compressive loading at elevated temperatures. 
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6 Conclusion 

This paper has presented a multiaxial constitutive model for concrete based on a 
plastic-damage formulation and taking into account the effect of high temperatures on the 
mechanical behavior. Combination of the elastoplastic and the damage theories offers an 
interesting framework for the development of a phenomenological model for concrete as it 
encompasses the capabilities of the plasticity theory for capturing the phenomena of dilatancy 
and permanent strains and the capabilities of damage theory for modeling of stiffness 
degradation and unilateral effect. Meanwhile, this approach is appealing with regard to the 
applicability to practical situations of structural fire engineering because it belongs to the class 
of continuum constitutive models based on a smeared crack approach. The proposed model 
adopted the fourth-order tensor representation of isotropic damage developed by Wu, et al. 
(2006) at ambient temperature, and extended its application to high temperatures.  

The generalization of the multiaxial concrete model to take into account the effect of 
high temperatures is done by incorporating into the model the free thermal strain, the transient 
creep strain and proper relationships for the temperature-dependency of the material 
parameters. The original model of transient creep strain implemented in the model captures 
accurately this phenomenon including in performance-based situations, which may include 
cooling phases or load redistributions. The obtained multiaxial concrete model can therefore 
be used in any situation of unsteady temperature and multiaxial stress state; yet, it has been 
developed to yield back the same results as the uniaxial Eurocode concrete model in case of 
simple prescriptive uniaxial situations, which was found interesting as the Eurocode model 
has been widely used in the last decades and is well accepted by authorities and regulators for 
building design. 

The concrete model has been implemented in the finite elements software SAFIR 
dedicated to the analysis of structures in fire. As it is a fully three-dimensional model it can be 
used for any stress state; besides, the particularization to plane stress states has been treated in 
order to provide a model for shell finite elements. In this paper, the model has been tested 
against experimental data at the material level in order to validate its ability to capture the 
different phenomena that develop in concrete at ambient and at high temperature. The 
concrete behavior is accurately captured in a large range of temperature and stress states using 
a limited number of parameters. Yet, the validity domain of the model does not include high 
levels of triaxial confinement because of the coupling assumption between damage and 
plasticity; in case of specific applications with high confinement such as the study of impact 
loading in the design of nuclear vessels, the constitutive model should use distinct internal 
variables to drive the evolution of plasticity and damage in the material.  

The model has been developed for applications in structural fire engineering. In a 
forthcoming paper, several examples of numerical simulations of structural experiments will 
be presented, including a large-scale fire test. 
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