Modeling and forecasting the occurrence of ionospheric irregularities in mid-latitude regions

Gilles Wautelet

Geomatics Unit University of Liège

July 10, 2013

2013 Beacon Satellite Symposium, Bath, UK

Ionospheric variability is a major error source for real-time, high-accuracy positioning techniques with GNSS

Ionospheric models exist foF2, TEC models (IRI, Nequick)

Models reproduce recurrent patterns Variability remains unmodeled and unpredicted

Develop a climatological model of the ionospheric variability that could be used by GNSS users in the field

1st step: data acquisition

 σ_{RoTEC} series

Wautelet et al. (2012), Local climatological modeling of ionospheric irregularities detected by GPS in mid-latitude regions, JASTP, 89:132-143.

Extraction of high-frequency variability using dual-frequency GPS observations

- 1. Extraction of the vertical ionospheric term Geometric-free combination on L1/L2 + mapping function
- 2. Compute TEC rate of change Time differencing, accuracy of phase measurements
- 3. High-pass filtering → Rate of TEC (RoTEC) Remove low-order effect of regular gradients
- 4. Variability computed every 15 min : σ_{RoTEC} For each satellite in view

Constituting the 10 year time series...

- From 2002 to 2011, Belgian observations only As a prototype...
- Merges observations from 3 GPS stations Reduce measurement noise Mitigate local effects (multipath)
- Merges all satellites in view Simulates a GPS user in the field

2nd step: decomposition

DailyVS long term

Wautelet et al. (2012), Local climatological modeling of ionospheric irregularities detected by GPS in mid-latitude regions, JASTP, 89:132-143.

Because ionospheric variability is varying with...

- Solar activity
- Season
- Local time
- Geomagnetic activity

The variability model is divided into 2 parts:

- 1. Long-term component \rightarrow solar cycle, season
- 2. Daily component

 \rightarrow local time dependence

■ The model is climatological → filter out disturbed conditions

Kp < 4 BST < 50 nT $R Xrays < 10^{-5} W/m^2$

2nd step: decomposition

Daily VS long term

3rd step: Principal Component Analysis (PCA)

daily model

Wautelet et al. (2012), Local climatological modeling of ionospheric irregularities detected by GPS in mid-latitude regions, JASTP, 89:132-143.

Principal Component Analysis (PCA) – principles

Idea = extract the most recurrent patterns from the series

 σ_{ROTEC} series : 3652 days with 15-min time interval

	3052 variables (days)				
	01/01/02	01/02/02		12/31/11	
00:00 00:15 00:30 : 23:45	0.023 0.023 0.023 ÷ 0.052	0.057 0.064 0.070 ÷ 0.018	···· ··· ···	- 0.004 - 0.004 - 0.005 : - 0.005	96 observations epochs

2652 variables (days)

Principal Component (PC) = linear combination of variables (eigenvectors)

$$CX_i = \lambda_i X_i$$

C = inertial matrix (= correlation matrix, 3652x3652) $X_i = i^{\text{th}} PC$

 λ_i = eigenvalue related to the ith PC

Principal Component Analysis (PCA) – analysis

Loadings = correlation between PCs and original variables

Wautelet et al. (2012), Local climatological modeling of ionospheric irregularities detected by GPS in mid-latitude regions, JASTP, 89:132-143.

Offset model: solar cycle and seasonal components

Offsets(t) =
$$a_0 + a_1 t + a_2 t^2 + a_3 \cos\left(\frac{2\pi t}{T_1}\right)$$

+ $a_4 \cos\left(\frac{2\pi t}{T_2}\right)$

Offset model: solar cycle and seasonal components

Offsets(t) =
$$a_0 + a_1 t + a_2 t^2 + a_3 \cos\left(\frac{2\pi t}{T_1}\right)$$

+ $a_4 \cos\left(\frac{2\pi t}{T_2}\right)$

ARMA = Autoregressive and Moving Average

Offset model: solar cycle and seasonal components

Offsets(t) = $a_0 + a_1 t + a_2 t^2 + a_3 \cos \theta$	$s\left(\frac{2\pi t}{T_1}\right)$
$+a_4\cos\left(\frac{2\pi t}{T_2}\right)$	

ARMA = Autoregressive and Moving Average

Offset model \rightarrow solar cycle + seasons

Wautelet et al. (2012), Local climatological modeling of ionospheric irregularities detected by GPS in mid-latitude regions, JASTP, 89:132-143.

Final model: validation on low and moderate solar conditions

2008 (low solar activity)

Final model: validation on low and moderate solar conditions

2011 (moderate solar activity)

2008 (low solar activity)

In conclusion...

- Local climatological model divided into 2 components
 Daily, seasonal, solar cycle variations
- Performance of 10 15% (summer) and 20 25% (winter)

Next steps :

- Improve solar cycle modeling
- Include geomagnetic component
- Validation on other regions (lat/lon)

Thank you!

Modeling and forecasting the occurrence of ionospheric irregularities in mid-latitude regions

Gilles Wautelet

Geomatics Unit University of Liège

July 10, 2013

2013 Beacon Satellite Symposium, Bath, UK