

Comparison of the heart-type fatty acid-binding protein (H-FABP) with the high sensitive cardiac troponin T

C. LE GOFF (1), P. MELON (2), E. BREVERS (1), M. FILLET (3), J-F KAUX (4), J.P. CHAPELLE (1), E. CAVALIER (1)

- (1) Department of Clinical Chemistry, University Hospital of Liege, Belgium (2) Department of Analytical Pharmaceutical Chemistry, University of Liege, Belgium
- (3) Department of Motility Sciences, University of Liege, Belgium (4) Department of Cardiology, University Hospital of Liege, Belgi Email: c.legoff@chu.ulg.ac.be

Introduction:

Heart-type fatty acid-binding protein (H-FABP) is a low molecular weight protein involved in the intracellular uptake and buffering of long chain fatty in the myocardium. It is an early marker for acute coronary syndrome. Troponin T (TnT) is a component of the contractile apparatus of the striated musculature. Cardiac TnT is a cardio-specific, highly sensitive marker for myocardial damage. The aim of our study was to compare the results obtained with the H-FABP and the highly sensitive cardiac troponins (hsTnT) and to test their cardiospecificity in healthy runners.

Results:

At T0, none of the subjects were positive for hsTnT but 35% were positive for H-FABP; at T1, 83% for hsTnT and 100% for H-FABP; at T3, 83% for hsTnT and 96% for H-FABP (table 1). At T0, the regression equation was H-FABP T0 = 3.9454 – 0.1001 x hsTnT T0; at T1: H-FABP T1 = 51.838 – 1.7026 x hsTnT T1; at T3: H-FABP T3 = 47.977 – 1.6193 x hsTnT T3 (figure 3). No correlation was observed between the two biomarkers at the different time.

ToThs TO ToThs T1 ToThs T3 bfabo T0

Table 1

Ininsio	Ininsii	Ininsis	nrabp 10	ппарр гт	mapp rs
0,011	0,132	0,093	2,58	43,93	37,26
0,005	0,031	0,068	2,16	8,27	6,9
0,009	0,058	0,062	2,24	33,06	31,87
0.005	0,117	0,1	1,57	50,62	41,07
0,007	0,054	0,038	3,01	33,38	22,07
0.005	0,068	0,038	1,65	8,78	6,01
0.005	0,041	0,063	1,93	21,56	38,25
0,008	0,065	0,127	4,12	17,73	13,83
0,007	0,02	0,076	1,93	9,53	9,25
0,008	0,16	0,088	3,86	79,5	47,07
0.005	0,057	0,039	2,47	120	120
0.005	0,07	0,065	3,06	64,67	53,1
0,006	0,144		1,83	7,06	
0,005	0,058	0,04	1,65	7,69	3,5
0,008	0,105	0,079	1,83	5,86	3,55
0,007	0,108	0,088	2,11	10,55	5,35
0,006	0,012	0,018	3,42	5,25	4,73
0.005	0,007	0,01	1,67	6,27	7,34
0.005	0,015	0,015	1,72	21,75	30,79
0,005	0,013	0,014	0,77	2,99	2,32
0,005	0,016	0,013	1,47	4,4	2,76
0.005	0.005	0.005	2,73	35,54	23,3
0.005	0,011	0,007	2,21	14,95	10,03

Materials and Methods:

Twenty three runners (marathon) were enrolled. We drowned samples at three times: just before (T0), just after (T1), and three hours after the end of the race (T3).

H-FABP was determined with a Randox immunoturbidimetric assay and hs-TnT with a Roche electrochemiluminescence immunoassay, both on Cobas 6000.

A linear regression was calculated to observe if there is any correlation between the two biomarkers. Values above the 95th percentile for H-FABP (2.5ng/mL) and the 99th percentile for hsTnT (14ng/L) were considered as positive.

<u>Conclusions</u>: We observed a significant increase of H-FABP and hsTnT in runners. These markers are independent to each other. These values could biologically correspond to a heart ischemia. However, we suggested that exercise-induced cardiac hsTnT and H-FABP release is not a marker of exercise-induced pathology but likely a physiologic response to effort or an exercise-induced cardiac remodelling.