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Abstract

Background: Local IgE production may play a role in asthma pathogenesis. The aim of the study was to assess sputum total
IgE and cytokines in asthmatics according to sputum cellular phenotype.

Methods: We studied 122 subjects including 22 non atopic healthy subjects, 41 eosinophilic (sputum eosinophils $3%), 16
neutrophilic (sputum neutrophils .76%) and 43 pauci-granulocytic asthmatics (sputum eosinophils ,3% and sputum
neutrophils #76%) recruited from the asthma clinic at CHU Liege. Sputum supernatant total IgE (tIgE) was measured by
ImmunoCAP and sputum supernatant cytokines (IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IFN-c and TNF-a) were measured with the
Luminex xMAP Technology by using commercially available Fluorokine MAP kits.

Results: After concentrating sputum samples, total IgE was detectable in the majority of subjects. Sputum IgE was raised in
asthmatics when compared to healthy subjects. Overall, asthmatics did not significantly differ from healthy subjects with
respect to cytokine levels. The eosinophilic asthma phenotype, however, was characterised by raised sputum tIgE, IL-5 and
IL-13 compared to healthy subjects (p,0.001, p,0.001 and p,0.05 respectively) and pauci-granulocytic asthma (p,0.01,
p,0.001 and p,0.05 respectively) and raised IL-5 compared to neutrophilic asthma (p,0.01). When patients were classified
according to sputum IgE levels, it appeared that IL-5, IL-6, IL-17 and TNF-a sputum supernatant levels were raised in the ‘‘IgE
high’’ asthmatics (IgE $0.1 kU/l) when compared to ‘‘IgE low’’ asthmatics (IgE,0.1 kU/l).

Conclusion: The eosinophilic asthma phenotype was associated with raised sputum IgE and a Th2 cytokine profile. Raised
sputum IgE was associated with a heterogeneous cytokine overproduction.
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Introduction

It is now recognised that asthma actually comprises several

inflammatory phenotypes and Simpson has proposed to break

down asthma according to the granulocyte fraction contained in

sputum cells [1]. Asthma is generally seen as an eosinophilic

disease [2]. However, several studies showed that a fraction of

asthmatic patients who exhibited the clinical symptoms of asthma

and airway hyperresponsiveness do not have raised sputum

eosinophils [3] and that this non-eosinophilic pattern of inflam-

mation occurs across the all spectrum of severity [4–6]. A fraction

of non-eosinophilic asthmatics actually exhibit raised airway

neutrophilic inflammation. Those patients with non-eosinophilic

asthma appear to be relatively resistant to corticosteroid therapy

and are likely to recognize different underlying molecular

mechanisms [7].

Local production of IgE might not be reflected by serum IgE or

atopic status. Very recent data have shown that tIgE and specific

IgE may be measurable in sputum from asthmatics irrespective of

their atopic status even if their ability to prime local mast cells is

still unclear [8]. However, it has also been demonstrated that local

IgE in nasal polyp samples is functional [9] and is associated with

comorbid asthma [10]. Monomeric IgE binding to its high affinity

receptor FceRI results in cell activation and survival independent

of the presence of any allergen [11;12]. This makes of local IgE an

important mediator in the mast cell activation pathway.

Recent studies demonstrated that total IgE in asthmatics is

related to specific IgE against Staphylococcus aureus enterotoxins,

which is found to be highly frequent in severe asthmatics

independent of the atopic status [13–15]. Interestingly, spec IgE

to Staphylococcus aureus enterotoxins is associated with lower

FEV1, and higher intake of oral glucocorticosteroids and

hospitalisation due to asthma exacerbations.

How local IgE production is related to the airway cellular

inflammatory profile remains poorly studied. It is assumed that

IgE production is tightly regulated by the balance between Th1
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and Th2 cytokines, interleukin-4 and 13 being involved in the

immunological switch towards IgE [16]. Il-5 is a cytokine

recognized to be critical in promoting eosinophilic inflammation

[17]. Beside classical Th2 profile there has been recent interest for

the IL-17 pathway in asthma and in particular in severe

neutrophilic asthma [18]. Whether IL-17 pathway and neutro-

philic asthma are related to disease severity and local IgE synthesis

has not been studied so far. Classically, IL-6 has been viewed as a

pro-inflammatory cytokine. Recent advances have documented a

series of IL-6 activities that are critical for resolving innate

immunity and promoting acquired immune responses [19]. TNF-

a is a potent pro-inflammatory cytokine that favours granulocytes

recruitment and which as been associated with asthma pathogen-

esis [20].

The purpose of our study was to assess tIgE (sputum

supernatant total IgE) , serum IgE and sputum cytokines in a

large sample of asthmatics classified according to their sputum

cellular phenotype. We also aimed to determine whether IgE and

cytokines were related to disease severity or atopy.

Materials and Methods

Study design and subjects characteristics
Patient demographic, functional and treatment characteristics

are given in table 1. In this study we enrolled 100 subjects

consecutively recruited from our asthma clinic at CHU Liege (41

eosinophilic, 16 neutrophilic and 43 pauci-granulocytic asthmat-

ics). All asthmatics were diagnosed on the basis of significant FEV1

reversibility ($12% from baseline) to b2-agonists or bronchial

hyperresponsiveness to methacholine (PC20 M,16 mg/ml). Ato-

py was defined as a positive skin prick test reaction (weal $3 mm

compared with control) to common aeroallergens including house

dust mites, cat and dog dander, grass, tree, pollen and moulds.

Different groups of asthmatics were compared to 22 non atopic

healthy subjects. The eosinophilic asthma phenotype was defined

by a sputum eosinophil count $3% while sputum was considered

to be neutrophilic when neutrophil count exceeded 76% (mean

+1.7 SD of neutrophil count derived from a population of 113

healthy subjects with a mean age of 37 years). Contrary to

eosinophils, the range of the upper limit of the 90% confidence

interval for neutrophils can considerably vary according to the

different labs (from 49% to 93%) [21]. Those who had less than

3% eosinophil count and less than 76% neutrophil count were

considered as pauci-granulocytic. Those with eosinophil count

Table 1. Demographic, functional, airway inflammatory and treatment characteristics according to sputum cellular profile.

Healthy subjects
(N = 22)

Eosinophilic asthma
(N = 41)

Neutrophilic asthma
(N = 16)

Pauci-granulocytic asthma
(N = 43)

Age (years) 42613 54611* 51617 38614 {{{

Sex (m/f) 14/8 26/15 5/11 20/23

Tobacco status (ns/es/cs) 15/3/4 18/16/7 10/4/2 24/9/10

Pack-year 16611 (N = 7) 19621 (N = 19) 42617 { (N = 6) 16614 { (N = 18)

BMI 2566 2764 2666 2665

Atopy 0 23 (56%) 7 (43%) 25 (58%)

FENO50 (ppb) 21 (6–48) 52 (9–222)* 20 (6–200) 16 (5–81) {{{

FEV1 (%) 103616 82626** 70625*** 90616 *

FVC (%) 108613 95622 83620*** 97613

FEV1/FVC (%) 8167 70613** 67615* 76610

Reversibility (%) – 16619 9612 10615

PC20M (mg/ml) . 16 mg/ml 0.81 (0–15) 0.46 (0.1–14) 0.56 (0.2–14)

ACQ ND 1.6 (0–5.1) 2.1 (0–4.7) 1.7 (0–4.4)

Blood eosinophils (%) 1.7 (0.7–6) 5 (2–24)*** 2 (0.2–5){{ 2 (0.3–9) {{{

Blood neutrophils (%) 53 (47–69) 52 (40–65) 63 (50–79){{ 55 (42–72)

Sputum eosinophils (%) 0 (0–11) 14 (3–89)*** 0.2 (0–2.7){{{ 0.5 (0–2.6) {{{

Sputum neutrophils (%) 35 (0–88) 37 (3–68) 91 (80–100)*** {{{ 47 (0–76) {{{

ICS 0 26 (63%) 11 (69%) 25 (58%)

ICS (eq becl/day) 0 2000 (400–2000) 2000 (500–4800) 1000 (400–3000)

LABA 0 21 (51%) 10 (62%) 18 (42%)

LTRA 0 8 (20%) 1 (6%) 9 (21%)

Theophylline 0 2 (4.9%) 3 (19%) 2 (4.6%)

Hospi/patient/year 0 0.2460.43 0.2560.44 0.1960.39

Exacerbation/patient/year 0 1.0961.93 0.8161.64 0.962.07

Oral CS$50% time 0 1 (2.4%) 2 (12.5%) 2 (4.6%)

Age, BMI, lung function, hospi/patient/year and exacerbation/patient/year are expressed as mean 6 SD, PC20M as geometric mean and other parameters as median
(range), becl = beclomethasone, * p,0.05, ** p,0.01, *** p,0.001 vs healthy subjects; { p,0.05, {{ p,0.01, {{{ p,0.001 vs eosinophilic; { p,0.05, {{ p,0.01,
{{{ p,0.001 vs neutrophilic. ND = not defined.
doi:10.1371/journal.pone.0058388.t001
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.3% and neutrophil count .76% were considered as mixed

granulocytic but discarded from further analysis because only 3

patients satisfied these criteria. A subgroup of our asthmatic

population was considered as refractory asthmatics (N = 35). They

were defined according to the ATS criteria and had been followed

for at least 6 months in our department and received education

about their disease before entering this study.

The protocol had been approved by the local Ethics Committee

(Hospital-Faculty ethics committee of Liege University) and every

subject gave his written informed consent.

Peripheral blood sampling, serum IgE and cell count
measurement

Peripheral blood samples were collected in serum tubes with gel

(Venosafe, TERUMOH, Belgium). Tubes were centrifuged at

800 g for 10 min at 4uC and sera were conserved into aliquots at

280uC until assay. The total and differential blood cell counts

were obtained with an Advia 210 automatic counter (USA).

Counting and cell typing were based on flow cytometry with

bidimensionnal volume distribution, peroxydase concentration

and lobularity of leukocytes as parameters. Serum total IgE, serum

specific IgE against staphylococcus aureus and serum specific IgE

against the most common aeroallergens were measured with the

ImmunoCAP system with a detection limit of 2 kU/l, 0.1kU/l and

0.35 kU/l respectively (Phadia AB, Uppsala; Sweden).

Sputum induction and processing
After premedication with 400 mg inhaled salbutamol adminis-

tered by MDI (+ Spacer), sputum was induced by inhalation of

hypertonic saline (NaCl 5%) when FEV1 post salbutamol was

$65% predicted and isotonic saline (NaCl 0.9%) when FEV1 was

,65% predicted. Saline was combined with additional salbutamol

delivered by an ultrasonic nebuliser (Ultra-Neb 2000, Devilbiss)

with an output set at 0.9ml/min as previously described [22]. Each

subject inhaled the aerosol for three consecutive periods of 5 min

and for a total time of 15 min. For safety reasons, FEV1 was

monitored every 5 min and the induction stopped when FEV1 fell

by more than 20% from post-bronchodilatation values.

The whole sputum was collected in a plastic container, weighted

and homogenized by adding three volumes of phosphate-buffered

saline (PBS), vortexed for 30 sec and centrifuged at 800 g for

10 min at 4uC. Supernatant was separated from cell pellet. We

added DTT (dithiotreitol) to the cells which were agitated for

20 min. Cells were washed once more with PBS and resuspended

in 1ml. Squamous cells, total cell counts and cell viability checked

by trypan blue exclusion were performed with a manual

haemocytometer. When squamous cells were .80% the sample

was considered inappropriate. 90% of the samples used for our

study had squamous cell count ranging from 0 to 50% [23]. The

differential cell count was performed on cytospins stained with

Diff-Quick after counting 400 cells.

Sputum IgE and cytokines measurement
All induced sputum samples were concentrated by use of

centrifugal evaporator. 1 ml of induced sputum was entirely

airdried in a SpeedVac SC 100 centrifuge (Savant, Thermo

Scientific). Afterwards the pellet was resuspended in 100 ml

distilled water and mixed. Total sputum IgE was measured with

ImmunoCAP system with a detection limit of 0.1 kU/l (Phadia

AB, Uppsala; Sweden).

All samples were assayed for IL-4, IL-6, IL-10, IL-5, IL-17, IL-

13, IFN-c and TNF-a with the Luminex xMAP Technology by

using commercially available Fluorokine MAP Kits (R&D Systems

Europe Ltd, Abingdon, United Kingdom) following to the

manufacturers guidelines and measured on a Bio-Plex 200

Platform (Bio-Rad Laboratories S.A.-N.V, Nazareth Eke, Bel-

gium). The detection limits were 3pg/ml for IL-17, 1.5pg/ml for

IL-5, 4 pg/ml for IFN-c, 4 pg/ml for TNF-a, 2 pg/ml for IL-6, 1

pg/ml for IL-4, 11 pg/ml for IL-13 and 0.5 pg/ml for IL-10.

Spiking experiments of cytokines in sputum supernatants showed

that recovery ranged from 71% for IL-4 to 133% for interferon-

gamma.

Statistical analysis
Results were expressed as median (range) unless otherwise

stated. Comparisons between the four groups were performed by

Kruskall-Wallis Test (non parametric ANOVA) followed, in case

of significance, by Dunn’s multiple comparisons Test. Correlations

were performed by calculating the Spearman coefficient. A P value

,0.05 was considered as statistically significant.

Results

Patient characteristics
Demographic, lung function, airway inflammation and treat-

ment characteristics according to sputum cellular profile are given

in table 1. Exhaled nitric oxide (FeNO50) was higher in

eosinophilic asthmatics compared to healthy subjects (p,0.05)

and pauci-granulocytic asthmatics (p,0.001). FEV1 values were

clearly altered in eosinophilic (p,0.01), neutrophilic (p,0.05) and

pauci-granulocytic (p,0.001) when compared to healthy subjects.

FVC was diminished in the neutrophilic group when compared to

healthy subjects (p,0.001) and the ratio FEV1/FVC was also

significantly decreased in both eosinophilic and neutrophilic

Figure 1. Sputum total IgE in asthmatics according to sputum
cellular profile.
doi:10.1371/journal.pone.0058388.g001

Figure 2. Correlation between sputum total IgE and serum
total IgE in asthmatics.
doi:10.1371/journal.pone.0058388.g002
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asthmatics (p,0.01 and p,0.05 respectively). ACQ score was

quite similar between the asthmatic groups.

The majority of our asthmatics were taking inhaled corticoste-

roids combined for most of them with long-acting b-2 agonists.

Some of them were also receiving theophylline or leucotriene

receptor antagonists (Table 1).

Sputum IgE and cytokine levels in the all group of
asthmatics

Total IgE was detectable in the sputum supernatant from the

majority of subjects (70%). Overall, asthmatics had greater sputum

IgE levels when compared to healthy subjects {0.3 (0–31) vs 0.1 (0–

5.4)} (p,0.001). By contrast, there was no significant difference

between asthmatics and healthy subjects regarding cytokine levels

even if there was a trend for higher IL-5 levels in asthmatics {0 (0–

125) vs 0 (0–27)} (p = 0.07).

Sputum and serum IgE and sputum cytokine levels
according to sputum cellular phenotype

When patients were classified according to their sputum

cellularity, there were 41 eosinophilic ($3%), 16 neutrophilic

(.76%), 43 pauci-granulocytic and 3 mixed granulocytic. Sputum

tIgE were increased in eosinophilic asthmatics when compared to

healthy subjects (p,0.001) and pauci-granulocytic asthmatics

(p,0.01) (Fig. 1) (Table 2). Overall sputum IgE was correlated

with serum IgE (Fig 2). Serum total IgE (tIgE) were lower in

neutrophilic than in eosinophilic asthmatics and healthy subjects

(p,0.05 for both). Specific IgE towards classical aeroallergens or

Table 2. Total sputum and serum IgE, serum specific IgE and sputum cytokine levels according to sputum cellular phenotype.

Healthy subjects
(N = 22) Eosinophilic (N = 41) Neutrophilic(N = 16) Pauci-granulocytic(N = 43)

Sputum IgE (kU/l) 0.1 (0–5.4) 0.6 (0.02–31)*** 0.2 (0.02–8) 0.2 (0.02–6) {{

Serum IgE (kU/l) 72 (5–195) 222 (9–9235)*** 44 (7–1670){* 125 (7–2177) *

Serum spec IgE against Staph
aureus enterotoxins (kU/l)

ND 0.28 (0–23) 0.05 (0–44) 0.35 (0–2)

Serum spec IgE against Staph
aureus enterotoxins (positive-%)

ND 14 (82%) (N = 17) 4 (50%) (N = 8) 11 (79%) (N = 14)

House dust mite (positive-%) - 19 (46%) 4 (25%) 21 (49%)

Cat (positive-%) - 10 (24%) 5 (31%) 16 (37%)

Dog (positive-%) - 6 (15%) 5 (31%) 11 (26%)

Moulds (positive-%) - 5 (12%) 3 (19%) 6 (14%)

Grass pollen (positive-%) - 11 (27%) 5 (31%) 16 (37%)

Birch pollen (positive-%) - 12 (29%) 2 (13%) 8 (19%)

IL-17 (pg/ml) 0 (0–11) 0 (0–51) 0 (0–99) 0 (0–17)

IL-5 (pg/ml) 0 (0–27) 6 (0–125)*** 0 (0–15) {{ 0 (0–40) {{{

IFN-c (pg/ml) 0 (0–0) 0 (0–13) 0 (0–0) 0 (0–192)

TNF-a (pg/ml) 8 (0–146) 5 (0–54) 7 (0–830) 4 (0–194)

IL-6 (pg/ml) 70 (12–158) 59 (0–487) 35 (2–1183) 83 (5–1002)

IL-4 (pg/ml) 0 (0–0) 0 (0–19) 0 (0–0) 0 (0–15)

IL-13 (pg/ml) 0 (0–18) 11 (0–189)* 0 (0–26) 0 (0–75) {

IL-10 (pg/ml) ND 0 (0–3) 0 (0–0) 0 (0–21)

*p,0.05, **p,0.01, *** p,0.001 vs healthy subjects, { p,0.05, {{ p,0.01, {{{ p,0.001 vs eosinophilic asthmatics, ND = not done, spec = specific. Results are
expressed as median (range) except as otherwise stated.
doi:10.1371/journal.pone.0058388.t002

Figure 3. IL-5 and IL-13 levels in asthmatics according sputum cellular profile.
doi:10.1371/journal.pone.0058388.g003
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SA enterotoxins were not associated with any particular cellular

phenotype (Table 2).

As far as cytokines are concerned, IL-5 was increased in

eosinophilic asthmatics when compared to healthy subjects

(p,0.001), neutrophilic (p,0.01) and pauci-granulocytic

(p,0.001). Eosinophilic asthmatics were also characterized by

greater IL-13 levels when compared with healthy subjects and

pauci-granulocytic patients (p,0.05 for both) (Fig 3). No

difference was found regarding other tested cytokines (Table 2).

Patient’s characteristics and cytokine levels in ‘‘IgE high’’
vs ‘‘IgE low’’ asthmatics

When asthmatic patients were classified according to their

sputum IgE profile, there was no statistical difference regarding

age, FeNO, spirometric values or ACQ. However, asthmatics with

the ‘‘IgE high’’ phenotype were more atopic (p,0.01) than ‘‘IgE

low’’ asthmatics. They were also characterized by raised sputum

(p,0.001) and blood (p,0.01) eosinophils and raised blood

neutrophils (p,0.05) (Table 3).

Regarding the cytokine profile, ‘‘IgE high’’ distinguished from

‘‘IgE low’’ asthmatics by raised IL-5 (p,0.0001), IL-6 (p,0.01),

IL-17 (p,0.05) and TNF-a (p,0.01) from their sputum superna-

tant (Table 4) (Fig 4).

As for serum specific IgE in these two groups of asthmatics, we

found that the ‘‘IgE high’’ phenotype was characterized by raised

serum specific IgE directed against staphylococcus aureus

(p,0.01). The ‘‘IgE high’’ group had also more often detectable

IgE towards cat (p,0.05) and grass pollen (p,0.01) (Table 4).

Sputum and serum IgE and sputum cytokine levels
according to disease severity, atopy and smoking status

Mild-to-moderate treated and untreated asthmatics as well as

refractory asthmatics had higher tIgE than healthy subjects

(p,0.05 and p,0.01 for refractory) but groups of asthmatics did

not differ from each other. Similar to what was seen in sputum,

total serum IgE were not different between the asthmatic groups.

The demographic and functional characteristics of refractory

asthmatics are given in Table 5.

Atopic asthmatics distinguished from healthy subjects and non-

atopic asthmatics by raised sputum IgE levels {0.36 Ku/l (0–31.2)

vs 0.1 Ku/L (0–5.4) (p,0.001) and vs 0.16Ku/L (0–12.1)

(p,0.05) respectively}. However a few non atopic asthmatics

exhibited high sputum IgE levels. No difference was observed

regarding sputum cytokine levels between atopic asthmatics and

non atopic asthmatics and healthy subjects (data not shown).

However, when we split ‘‘IgE high’’ asthmatics into atopic and

non-atopic, we found that non-atopic were characterized by raised

IL-5 {6 (0–125) vs 2 (0–59)(p,0.05)} and TNF-a {14 (0–829) vs 5

(0–274) (p,0.05) } and a trend for raised IL-6 (p = 0.08) when

compared to IgE high atopic asthmatics. Excluding the current

smokers from the asthmatic group does not alter the main findings

regarding IgE and cytokines (data not shown).

Table 3. Demographic, functional, airway inflammatory and treatment characteristics in ‘‘IgE high’’ vs ‘‘IgE low’’ asthmatics.

‘‘IgE high’’ asthmatics (N = 74) ‘‘IgE low’’ asthmatics (N = 26)

Age (years) 47616 48617

Sex (m/f) 40/34 9/17

Tobacco status (ns/es/cs) 37/22/15 16/7/3

BMI 2665 2665

Atopy 51 (69%) ** 7 (27%)

FENO50 (ppb) 28 (4–222) 18 (8–104)

FEV1 (%) 82624 83625

FVC (%) 93619 91621

FEV1/FVC (%) 72613 71612

Reversibility (%) 12617 15616

PC20M (mg/ml) 0.65 (0.4–14) 0.4 (0.1–14)

ACQ 1.71 (0–5.14) 1.71 (0–4.2)

Blood eosinophils (%) 4 (0.3–24) ** 1.8 (0.2–7)

Blood neutrophils (%) 53 (40–72) * 63 (45–79)

Sputum eosinophils (%) 3 (0–89) *** 0.1 (0–24)

Sputum neutrophils (%) 49 (3–100) 54 (0–97)

ICS 51 (69%) 14 (52%)

ICS (eq bud/day) 1600 (400–4800) 2000 (400–4800)

LABA 41 (55%) 10 (38%)

LTRA 13 (18%) 5 (19%)

Theophylline 5 (7%) 4 (15%)

Hospi/patient/year 0.2260.42 0.1560.37

Exacerbation/patient/year 1.0262.07* 0.4660.98

Oral CS$50% time 3 (4%) 1 (3.8%)

*p,0.05, ** p,0.01, ***p,0.001 vs IgE low asthmatics. Age, BMI, lung function, hospi/patient/year and exacerbation/patient/year are expressed as mean 6 SD, PC20M
as geometric mean and other parameters as median (range).
doi:10.1371/journal.pone.0058388.t003
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Discussion

Our study shows that eosinophilic asthmatics have higher total

IgE concentrations in the sputum as compared to pauci-

granulocytic asthmatics and healthy subjects. Likewise eosinophilic

asthmatics exhibited a peculiar cytokine profile featuring raised

Th2 IL-5 and IL-13 levels. We provide evidence for an airway

Table 4. Total sputum and serum IgE and sputum cytokine levels in ‘‘IgE high’’ vs ‘‘IgE low’’ asthmatics.

‘‘IgE high’’ asthmatics (N = 74) ‘‘IgE low’’ asthmatics (N = 26)

Sputum IgE (kU/l) 0.5 (0.1–31) **** 0 (0–0)

Serum IgE (kU/l) 290 (9–9235) **** 33 (7–248)

Serum spec IgE against staph aureus enterotoxins (kU/l) 0.5 (0–44) ** 0.1 (0–0.15)

Serum spec IgE against staph aureus enterotoxins (positive-%) 26 (87%) (N = 30) 5 (62%) (N = 8)

House dust mite (positive-%) 37 (50%) 8 (31%)

Cat (positive-%) 30 (40%) * 3 (11%)

Dog (positive-%) 21 (28%) 2 (7%)

Moulds (positive-%) 13 (18%) 1 (4%)

Grass pollen (positive-%) 29 (39%) * 3 (11%)

Birch pollen (positive-%) 19 (26%) 2 (7%)

IL-17 (pg/ml) 3 (0–99) * 0 (0–12)

IL-5 (pg/ml) 3 (0–125) **** 0 (0–3)

IFN-c (pg/ml) 0 (0–193) 0 (0–0)

TNF-a (pg/ml) 6 (0–830) ** 0 (0–11)

IL-6 (pg/ml) 62 (0–1051) ** 27 (2–1182)

IL-4 (pg/ml) 0 (0–19) 0 (0–3)

IL-13 (pg/ml) 0 (0–188) 0 (0–37)

IL-10 (pg/ml) 0 (0–21) 0 (0–2)

*p,0.05, ** p,0.01, **** p,0.0001 vs IgE low asthmatics. ND = not done, spec = specific. Results are expressed as median (range) except as otherwise stated.
doi:10.1371/journal.pone.0058388.t004

Figure 4. Cytokine levels in ‘‘IgE high’’ and ‘‘IgE low’’ asthmatics.
doi:10.1371/journal.pone.0058388.g004
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‘‘IgE high’’ phenotype that was associated with raised IL-5, IL-6,

IL-17 and TNF-a.

There are limited data in the literature on soluble IgE in the

airways of asthmatics. Our data are in keeping with the recent

finding of Mouthuy et al and extend our knowledge in the field by

showing that sputum IgE levels are not related to disease severity

but clearly increased in those exhibiting airway eosinophilic

inflammation. The role of IgE has been traditionally assigned to

allergic reaction towards an aeroallergen in sensitized patients. In

the nineties, Humbert et al have drawn attention to the potential

role of IgE in non-atopic asthma by showing increased expression

of the receptor FceRI in the bronchial mucosa in asthmatics

irrespective of the atopic status [24]. Mast cells are major effector

cells in IgE dependent immediate hypersensitivity reactions and in

IgE associated immune responses against certain parasites [25;26].

The liaison of an allergen to IgE bound at the mast cell surface is a

powerful event leading to mast cell degranulation [11]. However,

it is now admitted that the binding of IgE itself to its high affinity

receptor at cell surface is an event sufficient to trigger cell

activation [12]. More than 10 years ago, Nahm et al validated the

induced sputum model as a non-invasive method for studying

allergen-specific IgE antibodies in airway secretion from asthmatic

patients [27]. They found that house dust mite specific IgE were

detected in induced sputum supernatant from 7 of 10 house dust

mite sensitive asthmatics based on skin prick tests. Moreover, a

very recent study has shown that IgE production occurs both in

atopic and in intrinsic asthma and that part of this IgE recognizes

Der p antigens [8]. In contrast to what Mouthuy et al reported, we

found that sputum IgE levels were higher in atopic than in non

atopic asthmatics and that, overall, non atopic asthmatics did not

distinguish from non atopic healthy subjects [8]. This, however,

does not preclude the possibility that non atopic asthmatics still

have greater levels of sputum IgE directed towards common

aeroallergens as shown by Mouthuy et al with respect to IgE

against house dust mites. Moreover we found a convincing

relationship between sputum and serum IgE in our group of

asthmatics suggesting that part of the sputum IgE may be related

to plasma exsudation. Alternatively this might reflect a global

predisposition to produce IgE in several compartments of the

body.

Here, in a large group of asthmatics, we have assessed whether

sputum IgE and cytokines may be related to the sputum cellular

profile. Eosinophilic asthmatics clearly distinguished from healthy

subjects and pauci-granulocytic asthmatics by raised sputum IgE.

Our study reveals, but not explores, the mechanisms underlying

this strong relationship. It is well known from bronchial allergenic

challenge experiments that mast cell activation by an allergen

exposure is a powerful event to stimulate eosinophil tissular

recruitment [28]. We currently lack predictive factors of a good

response to anti-IgE [29]. Our study supports suggestions that

treatment with anti-IgE may be particularly efficient in eosino-

philic asthmatics. By contrast to what is seen in eosinophilic

asthmatics, neutrophilic asthmatics were characterised by lower

IgE both at the airway and at the systemic level. This is in

agreement with the view that neutrophilic asthma is less

dependent on IgE mediated reaction but rather related to

pollutant exposure or infections [30]. Here, neutrophilic asthma

was defined by at least 76% neutrophils in the sputum. This was

based on our own lab references values. In the literature, the

definition can vary considerably according to the authors.

However, performing the analysis with a threshold set at 61%

for the sputum neutrophil count did not change the main message

of this paper (data not shown). The reasons why there is such a

variation in sputum neutrophils in healthy subjects remain

controversial but may be linked to age of the population as well

as its current exposure to aero-pollutants.

Regarding the cytokine profile, eosinophilic asthmatics display

raised IL-5 and IL-13 sputum supernatant levels when compared

with healthy subjects, neutrophilic and pauci-granulocytic asth-

matics. IL-5 is a Th2 cytokine known to be able to promote

eosinophil differentiation and release from the bone marrow into

the blood stream. Moreover, this cytokine has also a chemotactic

effect on eosinophils and enhances secretion, cytotoxicity and

survival [31]. Therefore, it is not surprising that IL-5 appears to be

strikingly linked to the eosinophilic pathway [32]. IL-13 is another

Th2 cytokine thought to be a central mediator of inflammation in

asthma. It has pleiotropic effects that mimics key features of

asthma like increased smooth muscle contractility [33] or mucus

secretion [34] and shares the same heterodimer receptor as IL-4

by binding to the a chain [35]. Berry M et al have investigated

whether IL-13 expression and production was increased in

asthma. They found greater IL-13 protein expression in bronchial

biopsies by immunohistochemistry with eosinophils being the

major source of IL-13 within the bronchial mucosa. Furthermore

levels of IL-13 measured by ELISA were also raised in asthmatics

[36]. Those findings are in keeping with our demonstration that

raised sputum IL-13 levels were only found in eosinophilic

asthmatics. However the fact that IL-13, like IL-5, is not increased

in non eosinophilic asthma indicates that these Th2 cytokines are

essentially related to a peculiar inflammatory profile rather than to

asthma itself. This is in keeping with the study of Erin et al who

showed that IL-5 and IL-13 were elevated in patients with severe

eosinophilic asthma although in contrast to what found Erin et al

we did not find an increase of IL-4 in our study [37]. Nevertheless

eosinophilic bronchitis, while showing high IL-5 production, fails

to discriminate from healthy subjects by increased IL-13

production [36;38].

It is common belief that a Th2 microenvironment is crucial in

underlying atopy, this inherited predisposition to mount an IgE

response towards common aeroallergens. Our data show, howev-

er, that Th2 profile is rather associated with eosinophilic

inflammation than with atopy. Moreover, our data show IgE high

non-atopic asthmatics were characterized by a cytokine profile

featuring raised IL-5, IL-6 and TNF-a. On the other hand, it is

well recognised that eosinophilic inflammation may develop in

asthma irrespective of the atopic status [39]. However, it is

noteworthy to highlight that the non-eosinophilic phenotype

including pauci-granulocytic and neutrophilic asthma represents

a major part of asthmatic population which is in agreement with a

recent study by Mc Grawth et al. Our data clearly indicate that

non-eosinophilic asthma is characterized by different molecular

mechanisms than eosinophilic asthma. This is likely to have

important consequences in terms of treatment efficacy [3;40].

Here we propose a new biochemical asthma phenotype based

on the detection of IgE in the sputum. When patients were

classified according to their IgE phenotype, we found raised IL-5,

IL-6, IL-17 and TNF-a in the ‘‘IgE high’’ asthmatic subgroup.

The role of IL-5 in asthma and its relationship with eosinophils has

already been discussed (see above). Besides, IL-5 together with IL-

6 can promote IgE synthesis and increases IL-4-dependent IgE

synthesis [41]. It may appear somewhat surprising that IL-17 was

associated with the high sputum IgE and not with the neutrophilic

phenotype as IL-17 has been shown to promote neutrophil

recruitment and activation [42] and as some patients with hyper-

IgE syndrome were shown to be deficient in IL-17 secreting T cells

as a result of STAT3 mutation [43]. Our finding also contrast to

what Bullens et al reported using sputum mRNA but mRNA and

proteins levels are not necessarily tightly related [44]. The reason
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why IL-17 was not associated with neutrophilic inflammation in

our study is not clear but our data point out the fact that Th2 and

Th17 pathways may be operating together in those asthmatics

exhibiting high IgE levels in their airways. The association

between the high IgE phenotype and high TNF-a and IL-6

sputum levels is in keeping with the fact that mast cells are a potent

source of TNF-a and IL-6 that may be activated by monomeric

IgE [12]. Treatment with anti-TNF-a has generally proved rather

disappointing in asthma [45;46]although some reports had shown

convincing and promising responses [47;48]. Our study shows that

those patients with high IgE in the sputum might perhaps be

suitable targets for anti TNF-a treatment. In our hands, cytokines

like IL-4, IFN-c and IL-10 were undetectable in the majority of

patients. Sputum processing with a mucolytic agent may influence

the level of cytokines measured in the supernatant [49]. In our

study we cannot, however, incriminate the use of DTT as the

supernatant was only diluted with PBS, the mucolytic agent being

reserved to the cellular part for improving the quality of cytospins.

Furthermore, recovery from spiking experiments was excellent

indicating that the poor detection of some of them cannot be

accounted for by cytokine trapping in sputum supernatant

heterogeneous milieu.

Conclusion

Our study shows that asthmatics have raised sputum IgE levels

associated with the eosinophilic phenotype and that the airway

‘‘IgE high’’ is characterized by a global cytokine overproduction

not limited to a Th2 profile. Overall, our study point to the cellular

and molecular heterogeneity in asthma, which calls upon targeted

treatments. If new biologicals for asthma treatment have to fulfil

our expectations, they certainly must be tested in selected

asthmatic population.
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