

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FIBER DRAWING PROCESS

Q. Chouffart and V. E. Terrapon

Multiphysics and Turbulent Flow Computation Research Group University of Liège, Belgium

3B The fibreglass company – Binani Group, Belgium

Outline

- Motivation
- Physical model
- Experimental setup
- Numerical investigation
 - Heat transfers
 - > Stresses
- Conclusion & future work

Motivation & objectives

Glass fibers are used for the reinforcement of composite materials

Main challenges: fiber breakage

- **Shut down** of forming position
- Unrecyclable glass waste
- Barrier to optimization

Overall Goal

- Understand fiber breaking:
 - Step 1: Physical modeling of forming glass
 - Step 2: Characterization of breaking mechanisms
 - → One single fiber
 - → Multi-filaments bushing

Fiberglass drawing process

General steps

RESEARCH GROUP

(20 m/s \rightarrow ~10 µm fibers diameter)

Fiberglass drawing process Bushing plate & tips

Outline

- Motivation
- Physical model
- Experimental setup
- Numerical investigation
 - Heat transfers
 - > Stresses
- Conclusion & future work

Physics of the forming of a single fiber

Glass state

Physics of the forming of a single fiber

.]	Glass state	Rheology	<u>Heat transfer</u>
	Glass melt T > T _g	Newtonian viscous flow	Inside the fiber: Conduction & Radiation Around the fiber: Convection & Radiation
	Glass transition $T \approx T_g$	Viscoelastic flow	Inside the fiber: Conduction Around the fiber: Convection
	Glassy state T < T _g	Elastic solid	Inside the fiber: Conduction Around the fiber: Convection

Physics of the forming of a single fiber

Governing equations

Mass conservation:

$$\frac{D\rho}{Dt} = 0$$

Momentum conservation:

$$\frac{D(\rho \boldsymbol{v})}{Dt} = \nabla \cdot \boldsymbol{\sigma} + f$$

Energy conservation:

$$\frac{D(\rho C_p T)}{Dt} = \sigma: \nabla v - \nabla. (q_{cond} + q_{rad})$$

Assumption: Internal radiation → neglected

Governing equations

Mass conservation:

$$\frac{D\rho}{Dt} = 0$$

Momentum conservation:

$$\frac{D(\rho v)}{Dt} = \nabla . \sigma + f$$

Newtonian flow:

$$\sigma = -p\mathbf{I} + 2\eta\mathbf{D}$$

Energy conservation:

$$\frac{D(\rho C_p T)}{Dt} = \sigma: \nabla v - \nabla. (q_{cond} + q_{rad})$$

Assumption: Internal radiation → neglected

Governing equations

Mass conservation:

$$\frac{D\rho}{Dt} = 0$$

Momentum conservation:

$$\frac{D(\rho \boldsymbol{v})}{Dt} = \nabla \cdot \boldsymbol{\sigma} + f$$

Energy conservation:

$$\frac{D(\rho C_p T)}{Dt} = \sigma: \nabla v - \nabla. (q_{cond} + q_{rad})$$

Assumption: Internal radiation → neglected

Newtonian flow:

$$\sigma = -p\mathbf{I} + \mathbf{P}\mathbf{D}$$

coupled through viscosity

Fulcher law

$$\eta = 10^{-A + \frac{B}{T - T_0}}$$

 $(\eta = dynamic viscosity)$

Boundary conditions

MTFC

At tip:

- Volumetric flow rate (Poiseuille law)
- T₀ constant

• At surface:

- Free surface conditions & surface tension

$$-q = \varepsilon \sigma (T^4 - T_{ext}^4(z)) + h(z) (T - T_{ext}(z))$$

• At outlet: Drawing velocity

Outline

- Motivation
- Physical model
- Experimental setup
- Numerical investigation
 - Heat transfers
 - > Stresses
- Conclusion & future work

Experimental investigation

Fiber drawing unit

Facilities

- 1. Velocity acquisition
- 2. Image acquisition
- 3. Diameter acquisition

Experimental investigation

Fiber drawing unit

Facilities

- 1. Velocity acquisition
- 2. Image acquisition
- 3. Diameter acquisition

Outline

- Motivation
- Physical model
- Experimental setup
- Numerical investigation
 - Heat transfers
 - > Stresses
- Conclusion & further work

Numerical investigation

Simulations are performed with ANSYS Polyflow software

Cases of study

- Validation
- Heat transfers:
 - > radiation
 - convection
- Stress: sensitive analysis

Numerical investigation

Validation

Case study

Material	Glass M5	Advantex®
T_0	1227 °C	1308 °C
Q_0	$3.17 \ 10^9 \ m^3/s$	$4.72\ 10^{10}\ m^3/s$
v_f	$25.88 \ m^3/s$	$1.55 \ m^3/s$

Glicksman 1964 Our experiment

Fiber radius

Good agreement between simulation and experimental data

Heat transfer Temperature profile

Cooling is critical:

- → impact on fiber properties
- → impact on break origins

What are the factors that lead to this high cooling?

Heat fluxes

Heat flux:

$$\dot{q}(z) = h(T - T_{ext}) + \varepsilon \sigma (T^4 - T_{ext}^4)$$
Convection Radiation

Cooling rate:

$$\dot{T} = -\frac{\dot{q}(z)}{\rho C_p \, r_f(z)}$$

- Cooling depends both on heat flux and radius attenuation
- Radius history is important due to variation of viscosity

Cooling rate - Radiation

Radiation:

$$\dot{q}_{rad} = \varepsilon \sigma (T^4 - T_{ext}^4)$$

with

$$\varepsilon = \varepsilon(r^3, T)$$

Cooling rate:

$$\dot{T}_{c,s} = -\frac{\dot{q}(z)}{\rho C p \, r_f(z)}$$

→ Variability emissivity has a significant impact

Cooling rate - Radiation

RESEARCH GROUP

Cooling rate - Convection

Convection: $q_{conv} = h(T - T_{ext})$

Kase-Matsuo convective coefficient:

$$h = \frac{0.42 \, k_a}{D_f} \left(\frac{v_s \, D_f}{\mu_a}\right)^{0.334}$$

- \triangleright Fiber diameter D_f
- \triangleright Fiber velocity v_f
- \triangleright Air properties k_a , μ_a
- \triangleright Air temperature $T_{ext}(z)$

 Accurate description of air properties is needed

Case 1: Constant air temperature

Case 2: Variable air temperature with constant

air properties

Case 3: Variable air temperature and air

properties depending on temperature

Outline

- Motivation
- Physical model
- Experimental setup
- Numerical investigation
 - Heat transfers
 - > Stresses
- Conclusion & future work

StressesStress description

Newtonian stress in z direction:

$$\tau_{zz} = \eta(T) \frac{dv_z(z)}{dz}$$

- → Axial stress grows and takes a final constant value
- → Final value before the transition
- → Newtonian model seems to be sufficient

Stress description

Newtonian stress in z direction:

$$\tau_{zz} = \eta(T) \frac{dv_z(z)}{dz}$$

Key question:

What are the key parameters controlling the internal stress?

StressesMain parameters

Given a target radius

→ how the stress can be reduced?

Mass conservation:

$$r_f^2 = \frac{Q_0(r_0, T_0)}{\pi v_f} = cst$$

de Liège

StressesMain parameters

Given a target radius

→ how the stress can be reduced?

Mass conservation:

$$r_f^2 = \frac{Q_0(r_0, T_0)}{\pi v_f} = cst$$

Main parameters:

Winder velocity v_f

 T_0 $\downarrow z$ Free surface $\leftarrow r_f$ de Liège

StressesTip flow rate

Given a target radius

→ how the stress can be reduced?

Mass conservation:

$$r_f^2 = \frac{Q_0(r_0, T_0)}{\pi v_f} = cst$$

Main parameters:

Winder velocity v_f

StressesWinder velocity

Given a target radius

→ how the stress can be reduced?

Mass conservation:

$$r_f^2 = \frac{Q_0(r_0, T_0)}{\pi v_f} = cst$$

Main parameters:

Winder velocity v_f

Axial stress

Increase of v_f

StressesMain parameters

Given a target radius

→ how the stress can be reduced?

- Decrease tip radius
- Increase the tip temperature
- Decrease the winder velocity

Outline

- Motivation
- Physical model
- Experimental setup
- Numerical investigation
 - Heat transfers
 - > Stresses
- Conclusion & future work

Conclusion & further work

Conclusion

- Physical model of one fiber drawing has been developed
- Numerical solutions give a good way to understand the process
- Fiber forming is strongly coupled with the air environment
- Stress in the fiber can be reduced by:
 - decreasing the winder velocity
 - decreasing the tip diameter
 - increasing the tip temperature

Further work

- Add a radiation model for the heat transfer inside the glass
- Investigate the viscoelasticity
- Investigate the origins of the fiber breaks

Acknowledgements

- Our industrial partner: 3B the fibreglass company, Binani group
- Financial support: 3B the fibreglass company & Walloon region
- R&D team from 3B: D. Laurent, Y. Houet, B. Roekens, S. Pirard, P. Delit and technicians