NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FIBER DRAWING PROCESS

Q. Chouffart and V. E. Terrapon
Multiphysics and Turbulent Flow Computation Research Group
University of Liège, Belgium

P. Simon
3B The fibreglass company – Binani Group, Belgium

23rd International Congress on Glass
Prague - 5 July 2013
Outline

• Motivation
• Physical model
• Experimental setup
• Numerical investigation
 ➢ Heat transfers
 ➢ Stresses
• Conclusion & future work
Motivation & objectives

Glass fibers are used for the reinforcement of composite materials

Main challenges: fiber breakage
- **Shut down** of forming position
- Unrecyclable glass waste
- Barrier to optimization

Overall Goal

- Understand **fiber breaking**:
 - Step 1: Physical modeling of forming glass
 - Step 2: Characterization of breaking mechanisms
 - One single fiber
 - Multi-filaments bushing
Fiberglass drawing process

General steps

Four main steps

1. **Extrusion of glass melt through > 1000 holes**
 - Glass melt
 - Extrusion of glass melt through > 1000 holes
 - T ~ 1300°C

2. **Cooling by fins and water spray**
 - Cooling by fins and water spray

3. **Coating**
 - Coating

4. **Drawing by a winder**
 - Drawing by a winder
 - (20 m/s → ~10 µm fibers diameter)

Q. Chouffart et al. - Numerical and Experimental Investigation of Fiber Drawing Process
Fiberglass drawing process
Bushing plate & tips
Outline

- Motivation

Physical model

- Experimental setup
- Numerical investigation
 - Heat transfers
 - Stresses
- Conclusion & future work
Physics of the forming of a single fiber

Glass state

Rheology

Heat transfer

Coupling
Physics of the forming of a single fiber

Glass state

Glass melt

\[T > T_g \]

Newtonian viscous flow

Inside the fiber:
Conduction & Radiation

Around the fiber:
Convection & Radiation

Glass transition

\[T \approx T_g \]

Viscoelastic flow

Inside the fiber:
Conduction

Around the fiber:
Convection

Glassy state

\[T < T_g \]

Elastic solid

Inside the fiber:
Conduction

Around the fiber:
Convection

Q. Chouffart et al. - Numerical and Experimental Investigation of Fiber Drawing Process
Physics of the forming of a single fiber

<table>
<thead>
<tr>
<th>Glass state</th>
<th>Rheology</th>
<th>Heat transfer</th>
</tr>
</thead>
</table>
| **Glass melt**
$T > T_g$ | Newtonian viscous flow | Inside the fiber:
Conduction & Radiation
Around the fiber:
Convection & Radiation |
| **Glass transition**
$T \approx T_g$ | Viscoelastic flow | Inside the fiber:
Conduction
Around the fiber:
Convection |
| **Glassy state**
$T < T_g$ | Elastic solid | Inside the fiber:
Conduction
Around the fiber:
Convection |

Glass melt
$T > T_g$

Glass transition
$T \approx T_g$

Glassy state
$T < T_g$
Physical model

Governing equations

Mass conservation:
\[
\frac{D\rho}{Dt} = 0
\]

Momentum conservation:
\[
\frac{D(\rho v)}{Dt} = \nabla \cdot \sigma + f
\]

Energy conservation:
\[
\frac{D(\rho C_p T)}{Dt} = \sigma : \nabla v - \nabla \cdot (q_{cond} + q_{rad})
\]

Assumption: Internal radiation \rightarrow neglected
Physical model
Governing equations

Mass conservation:
\[
\frac{D \rho}{Dt} = 0
\]

Momentum conservation:
\[
\frac{D (\rho \mathbf{v})}{Dt} = \nabla \cdot \mathbf{\sigma} + f
\]

Energy conservation:
\[
\frac{D (\rho C_p T)}{Dt} = \mathbf{\sigma} : \nabla \mathbf{v} - \nabla \cdot (q_{\text{cond}} + q_{\text{rad}})
\]

Assumption: Internal radiation → neglected

Newtonian flow:
\[
\mathbf{\sigma} = -\rho \mathbf{I} + 2\eta \mathbf{D}
\]
Physical model

Governing equations

Mass conservation:
\[\frac{D\rho}{Dt} = 0 \]

Momentum conservation:
\[\frac{D(\rho v)}{Dt} = \nabla \cdot \sigma + f \]

Energy conservation:
\[\frac{D(\rho C_p T)}{Dt} = \sigma : \nabla v - \nabla \cdot (q_{\text{cond}} + q_{\text{rad}}) \]

Assumption: Internal radiation \(\rightarrow \) neglected

Newtonian flow:
\[\sigma = -pI + 2\eta \nabla v \]

coupled through viscosity

Fulcher law
\[\eta = 10^{-A+\frac{B}{T-T_0}} \]
\((\eta = \text{dynamic viscosity}) \)
Physical model

Boundary conditions

- **At tip:**
 - Volumetric flow rate (Poiseuille law)
 - T_0 constant

- **At surface:**
 - Free surface conditions & surface tension
 - $q = \varepsilon \sigma (T^4 - T_{ext}^4(z)) + h(z)(T - T_{ext}(z))$

- **At outlet:** Drawing velocity

\[q_{rad} + q_{conv} \]
Outline

• Motivation
• Physical model
• Experimental setup
 • Numerical investigation
 ➢ Heat transfers
 ➢ Stresses
• Conclusion & future work
Experimental investigation
Fiber drawing unit

Facilities
1. Velocity acquisition
2. Image acquisition
3. Diameter acquisition
Experimental investigation
Fiber drawing unit

Facilities
1. Velocity acquisition
2. Image acquisition
3. Diameter acquisition
Outline

• Motivation
• Physical model
• Experimental setup

• Numerical investigation
 ➢ Heat transfers
 ➢ Stresses

• Conclusion & further work
Numerical investigation

Introduction

Simulations are performed with ANSYS Polyflow software

Cases of study

• Validation

• Heat transfers:
 ➢ radiation
 ➢ convection

• Stress: sensitive analysis
Numerical investigation
Validation

<table>
<thead>
<tr>
<th>Material</th>
<th>Glass M5</th>
<th>Advantex®</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>1227 °C</td>
<td>1308 °C</td>
</tr>
<tr>
<td>Q_0</td>
<td>$3.17 \times 10^9 \text{ m}^3/\text{s}$</td>
<td>$4.72 \times 10^{10} \text{ m}^3/\text{s}$</td>
</tr>
<tr>
<td>v_f</td>
<td>25.88 \text{ m}^3/\text{s}</td>
<td>1.55 \text{ m}^3/\text{s}</td>
</tr>
</tbody>
</table>

Good agreement between simulation and experimental data
Cooling is critical:
→ impact on fiber properties
→ impact on break origins

What are the factors that lead to this high cooling?
Heat transfer

Heat fluxes

Heat flux: \[
\dot{q}(z) = h(T - T_{\text{ext}}) + \varepsilon\sigma(T^4 - T_{\text{ext}}^4)
\]

Cooling rate: \[
\dot{T} = -\frac{\dot{q}(z)}{\rho C_p r_f(z)}
\]

- Cooling depends both on heat flux and radius attenuation
- Radius history is important due to variation of viscosity
Heat transfer

Cooling rate - Radiation

Radiation:
\[\dot{q}_{rad} = \varepsilon \sigma (T^4 - T_{ext}^4) \]
with
\[\varepsilon = \varepsilon(r^3, T) \]

Cooling rate:
\[\hat{T}_{c,s} = -\frac{\dot{q}(z)}{\rho C_p r_f(z)} \]

Variability emissivity has a significant impact

Cooling rate

\[\varepsilon = \varepsilon(r^3, T) \]
\[\varepsilon = 0.5 \]
\[\varepsilon = 0.35 \]
Cooling rate: \[\dot{T}_{c,s} = -\frac{\dot{q}(z)}{\rho C_p r_f(z)} \]

Cooling rate is very sensitive to the cooling history.
Heat transfer

Cooling rate - Convection

Convection: \(q_{\text{conv}} = h(T - T_{\text{ext}}) \)

Kase-Matsuo convective coefficient:

\[
h = \frac{0.42 k_a}{D_f} \left(\frac{v_s D_f}{\mu_a} \right)^{0.334}
\]

- Fiber diameter \(D_f \)
- Fiber velocity \(v_f \)
- Air properties \(k_a, \mu_a \)
- Air temperature \(T_{\text{ext}}(z) \)

Case 1: Constant air temperature

Case 2: Variable air temperature with constant air properties

Case 3: Variable air temperature and air properties depending on temperature

- Surrounding air has a significant impact on the cooling rate
- Accurate description of air properties is needed
Outline

- Motivation
- Physical model
- Experimental setup
- Numerical investigation
 - Heat transfers
 - Stresses
- Conclusion & future work
Stresses
Stress description

Newtonian stress in z direction:

\[\tau_{zz} = \eta(T) \frac{dv_z(z)}{dz} \]

Axial stress grows and takes a final constant value
Final value before the transition
Newtonian model seems to be sufficient
Stresses

Stress description

Newtonian stress in z direction:

$$\tau_{zz} = \eta(T) \frac{dv_z(z)}{dz}$$

Key question:

What are the key parameters controlling the internal stress?
Stresses

Main parameters

Given a target radius → how the stress can be reduced?

Mass conservation:

\[r_f^2 = \frac{Q_0(r_0,T_0)}{\pi v_f} = \text{cst} \]
Given a target radius \(r_0 \) how the stress can be reduced?

Mass conservation:

\[
 r_f^2 = \frac{Q_0(r_0, T_0)}{\pi v_f} = \text{cst}
\]

Main parameters:

- Tip flow rate \(Q_0 \)
- Tip geometry \(r_0 \)
- Tip temperature \(T_0 \)
- Winder velocity \(v_f \)
Mass conservation:

\[r_f^2 = \frac{Q_0(r_0,T_0)}{\pi v_f} = \text{cst} \]

Main parameters:

- Tip flow rate \(Q_0 \)
- Tip geometry \(r_0 \)
- Tip temperature \(T_0 \)
- Winder velocity \(v_f \)

Given a target radius \(r_0 \) → how the stress can be reduced?

![Graph showing the relationship between tip diameter and axial stress with temperature and flow rate variations.](image-url)
Stresses

Winder velocity

Given a target radius → how the stress can be reduced?

Mass conservation:

\[r_f^2 = \frac{Q_0(r_0,T_0)}{\pi v_f} = \text{cst} \]

Main parameters:

- Tip flow rate \(Q_0 \)
- Tip geometry \(r_0 \)
- Tip temperature \(T_0 \)
- Winder velocity \(v_f \)

Axial stress

Final diameter = 10 µm

Increase of \(T^\circ \)

Increase of \(v_f \)

1260°C

1325°C
Stresses
Main parameters

Given a target radius
→ how the stress can be reduced?

- Decrease tip radius
- Increase the tip temperature
- Decrease the winder velocity
Outline

• Motivation
• Physical model
• Experimental setup
• Numerical investigation
 ➢ Heat transfers
 ➢ Stresses

• Conclusion & future work
Conclusion & further work

Conclusion
- Physical model of one fiber drawing has been developed
- Numerical solutions give a good way to understand the process
- Fiber forming is strongly coupled with the air environment
- Stress in the fiber can be reduced by:
 - decreasing the winder velocity
 - decreasing the tip diameter
 - increasing the tip temperature

Further work
- Add a radiation model for the heat transfer inside the glass
- Investigate the viscoelasticity
- Investigate the origins of the fiber breaks
Acknowledgements

- **Our industrial partner:** 3B – the fibreglass company, Binani group
- **Financial support:** 3B – the fibreglass company & Walloon region
- **R&D team from 3B:** D. Laurent, Y. Houet, B. Roekens, S. Pirard, P. Delit and technicians