JOURNAL OF CLINICAL ONCOLOGY

Impact of Azacitidine Before Allogeneic Stem-Cell Transplantation for Myelodysplastic Syndromes: A Study by the Société Française de Greffe de Moelle et de Thérapie-Cellulaire and the Groupe-Francophone des Myélodysplasies

Gandhi Damaj, Alain Duhamel, Marie Robin, Yves Beguin, Mauricette Michallet, Mohamad Mohty, Stephane Vigouroux, Pierre Bories, Alice Garnier, Jean El Cheikh, Claude-Eric Bulabois, Anne Huynh, Jacques-Olivier Bay, Faeyzeh Legrand, Eric Deconinck, Nathalie Fegueux, Laurence Clement, Charles Dauriac, Natacha Maillard, Jérôme Cornillon, Lionel Ades, Gaelle Guillerm, Aline Schmidt-Tanguy, Zora Marjanovic, Sophie Park, Marie-Thérèse Rubio, Jean-Pierre Marolleau, Federico Garnier, Pierre Fenaux, and Ibrahim Yakoub-Agha

Т

Listen to the podcast by Dr Finke at www.jco.org/podcasts

A B S

Author affiliations appear at the end of this article.

Submitted May 18, 2012; accepted September 6, 2012; published online ahead of print at www.jco.org on October 29, 2012.

Presented in part at the 53rd Annual Meeting of the American Society of Hematology, San Diego, CA, December 10-13, 2011; at the European Bone Marrow Transplantation Congress, Geneva, Switzerland, April 1-4, 2012; and at the 48th Annual Meeting of the American Society of Clinical Oncology, Chicago, IL, June 1-7, 2012.

Authors' disclosures of potential conflicts of interest and author contributions are found at the end of this article.

Corresponding author: Ibrahim Yakoub-Agha, MD, PhD, UAM Allogreffes de CSH, CHRU, F-59037 Lille CEDEX, France; e-mail: i-yakoub-agha@ chru-lille.fr.

© 2012 by American Society of Clinical Oncology

0732-183X/12/3036-4533/\$20.00

DOI: 10.1200/JCO.2012.44.3499

Purpose

To investigate the impact of prior-to-transplantation azacitidine (AZA) on patient outcome after allogeneic stem-cell transplantation (alloSCT) for myelodysplastic syndrome (MDS).

R A

СТ

Patients and Methods

Of the 265 consecutive patients who underwent alloSCT for MDS between October 2005 and December 2009, 163 had received cytoreductive treatment prior to transplantation, including induction chemotherapy (ICT) alone (ICT group; n = 98), AZA alone (AZA group; n = 48), or AZA preceded or followed by ICT (AZA-ICT group; n = 17). At diagnosis, 126 patients (77%) had an excess of marrow blasts, and 95 patients (58%) had intermediate-2 or high-risk MDS according to the International Prognostic Scoring System (IPSS). Progression to more advanced disease before alloSCT was recorded in 67 patients. Donors were sibling (n = 75) or HLA-matched unrelated (10/10; n = 88). They received blood (n = 142) or marrow (n = 21) grafts following either myeloablative (n = 33) or reduced intensity (n = 130) conditioning.

Results

With a median follow-up of 38.7 months, 3-year outcomes in the AZA, ICT, and AZA-ICT groups were 55%, 48%, and 32% (P = .07) for overall survival (OS); 42%, 44%, and 29% (P = .14) for event-free survival (EFS); 40%, 37%, and 36% (P = .86) for relapse; and 19%, 20%, and 35% (P = .24) for nonrelapse mortality (NRM), respectively. Multivariate analysis confirmed the absence of statistical differences between the AZA and the ICT groups in terms of OS, EFS, relapse, and NRM.

Conclusion

With the goal of downstaging underlying disease before alloSCT, AZA alone led to outcomes similar to those for standard ICT.

J Clin Oncol 30:4533-4540. © 2012 by American Society of Clinical Oncology

INTRODUCTION

Allogeneic hematopoietic stem-cell transplantation (alloSCT) remains the only potentially curative available therapeutic approach in patients with myelodysplastic syndrome (MDS). Despite the beneficial effects of alloSCT, these patients are at substantial risk of relapse after transplantation, especially in case of reduced-intensity conditioning (RIC). Whether a treatment should be administered before transplantation and the type of such treatment are still controversial. In particular, acute myeloid leukemia (AML) induction chemotherapy (ICT) has been recommended in young patients when MDS was associated with more than 5% marrow blasts,^{1,2} but this approach is associated with toxicities that could prohibit proceeding to transplantation and may interfere with the transplantation outcome.

Demethylating agents or DNMTi (DNA methyltransferase inhibitors), including azacitidine (AZA)

© 2012 by American Society of Clinical Oncology **4533**

Information downloaded from jco.ascopubs.org and provided by at UNIV/ MEDECINE/ LIEG/22827242 on July 8, 2013 from Copyright © 2012 American Society655.99611281 Oncology. All rights reserved.

and decitabine, have emerged as new therapeutic approaches that significantly prolong overall survival (OS) and are considered the current standard of care for most patients with intermediate-2 and high-risk MDS, although they have no curative potential.^{3,4} DNMTi have a good toxicity profile compared with ICT, appear to be active in MDS with unfavorable karyotype, and may therefore be of interest if used before transplantation. Nevertheless, their role in this MDS setting has not yet been established.

The aim of this study was to assess the impact of treatment prior to transplantation with AZA on survival, relapse, and nonrelapse mortality (NRM). We report an analysis of 163 patients with MDS who underwent alloSCT following different prior treatments.

PATIENTS AND METHODS

The study was approved by the board of the French Society of Bone Marrow Transplantation and Cell Therapy (SFGM-TC) and was conducted according to the Declaration of Helsinki.

Patient Selection

Transplantation modalities were made as homogeneous as possible by using the following inclusion criteria: patients older than age 18 years referred for first alloSCT with the source of stem cells being marrow or blood from either a sibling or an HLA-A–, -B–, -Cw–, -DR–, or –DQ–identical unrelated donor at the allele level (so-called 10/10). Patients who received alloSCT from an HLA-mismatched donor, cord blood, or T-cell– depleted graft, and patients with chronic myelomonocytic leukemia were excluded.

Participating centers were asked to verify the data recorded for each patient in the French Bone Marrow Transplantation Registry and to provide additional information. Quality of the data was controlled by using a computerized search for discrepancy errors and vigorous on-site data verification of each file. HLA matching was cross-checked with the data of the French Bone Marrow Donor Registry, as previously described.⁵

Consequently, 265 consecutive patients with MDS who underwent alloSCT between October 2005 and December 2009 in 24 French and Belgian centers were identified, of whom 28 were excluded because their files lacked at least one of the following: initial French-American-British (FAB)/WHO category and International Prognostic Scoring System (IPSS) score, treatment prior to transplantation, or disease status at transplantation.

Because the main objective of this study was to investigate the impact of therapy prior to transplantation on alloSCT outcome, especially pretreatment with AZA compared with ICT, 74 other patients were excluded because they had received only best supportive care, including blood transfusion, hormones, growth factors (erythropoietin, granulocyte colony-stimulating factor), immunosuppressive treatment, and antibiotics. The remaining 163 patients were divided into three groups according to treatment received prior to transplantation as follows: ICT alone (ICT group; n = 98), AZA alone (AZA group; n = 48), and AZA preceded or followed by ICT (AZA-ICT group; n = 17), corresponding to patients for whom either treatment failed and who received the other treatment (Fig 1). Of note, choice of pretransplantation treatment was based on local physicians' decisions.

Patients were also categorized according to the first treatment received before alloSCT (ie, AZA or ICT, irrespective of whether the other treatment was also administered before transplantation). Therefore, 51 received AZA as their first treatment (intent-to-treat AZA group), and 112 received ICT as their first treatment (intent-to-treat ICT group).

Patient and Donor Characteristics and Transplantation Modalities

Morphologic classification, according to FAB and WHO classifications,^{6,7} was documented as a separate variable at initial diagnosis and at time of transplantation. IPSS score at diagnosis was calculated,⁸ and possible progression to more advanced disease between diagnosis and transplantation was recorded. Responses to treatment and disease status at

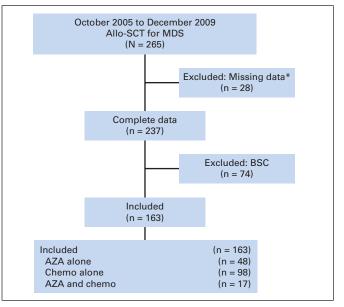


Fig 1. Flow chart for patient selection strategy. (*) Patients whose files were missing data for at least one of the following were excluded: initial French-American-British/WHO diagnosis, International Prognostic Scoring System score at diagnosis, prior-to-transplantation treatment, WHO criteria, and disease status at transplantation. Allo-SCT, allogeneic stem-cell transplantation: AZA, azacitidine; BSC, best supportive care; Chemo, chemotherapy; MDS, myelodysplastic syndrome.

transplantation were reevaluated according to International Working Group (IWG) 2006 criteria.⁹

At diagnosis (Table 1), 24 (15%) of the 163 patients had refractory anemia, refractory anemia with ringed sideroblasts, or refractory cytopenia with multilineage dysplasia; 52 patients (32%) had refractory anemia with excess of blasts (RAEB-1); 74 patients (45%) had RAEB-2; and 13 patients (8%) had RAEB in transformation/acute myeloid leukemia (RAEB-T/ AML; with marrow blasts between 20% and 30%). Cytogenetic analysis according to IPSS classification was favorable, intermediate, or poor risk in 93, 32, and 37 patients, respectively; IPSS was low or intermediate-1 in 68 patients (lower-risk category, 42%) or intermediate-2 or high in 95 patients (higher-risk category, 58%). In AZA-treated groups, the drug was started after a median time from diagnosis of 150 days (range, 38 to 941 days) and stopped at a median of 60 days before transplantation (range, 6 to 438 days). The median number of cycles was four (range, one to 26 cycles). According to IWG 2006 criteria,9 119 patients (73%) at transplantation were in complete remission, partial remission, or marrow complete remission, including 33 patients (69%) in the AZA group, 77 patients (78%) in the ICT group, and nine patients (53%) in the AZA-ICT group. Forty-four patients (27%) were nonresponders, including four who achieved stable disease with hematologic improvement, 19 who achieved stable disease without hematologic improvement, and 21 who had progressive disease. Overall, 67 (41%) of the 163 patients had progressed to more aggressive disease before transplantation.

Transplantation modalities according to treatment prior to transplantation are listed in Table 2. Median time from diagnosis to transplantation was 10.0 months (range, 1.2 to 260.2 months). There were 101 men and 62 women with a median age of 57 years (range, 18 to 69 years) at alloSCT. The donor was an HLA sibling for 75 patients and an HLA-matched unrelated donor for 88 patients. In 33 patients, a myeloablative conditioning (MAC) regimen was used, and in 130 patients, nonmyeloablative conditioning (RIC) was used. Peripheral blood stem cells were used in 87% and bone marrow stem cells were used in 13% of the patients.

Statistical Analyses

The analysis was performed on the reference date of April 1, 2011. OS was defined as the interval from alloSCT to death, regardless of the cause of death.

Information downloaded from jco.ascopubs.org and provided by at UNIV/ MEDECINE/ LIEG/22827242 on July 8, 2013 from Copyright © 2012 American Soce 1965.000 Copyright Copyright © 2012 American Soce 1965.000 Copyright C

Treatment Before Allogeneic SCT for Myelodysplastic Syndromes

Table 1. Patient Demog	raphic	and (Clinica	l Cha	racter	istics	at Dia	ignos	is
	Tot (N =		AZ Alo (n =	ne	IC Alc (n =	ne	AZA (n =		
Characteristic	No.	%	No.	%	No.	%	No.	%	Ρ
Sex									.16
Male	101	62	27	56	60	61	14	82	
Female	62	38	21	44	38	39	3	18	
FAB/WHO category									.97
RA/RARS/RCMD	24	15	7	15	14	14	3	18	
RAEB-1	52	32	17	35	31	32	4	24	
RAEB-2	74	45	21	44	45	46	8	47	
RAEB-t/AML	13	8	3	6	8	8	2	12	
IPSS score									.35
Low/intermediate-1	68	42	16	33	45	46	7	41	
Intermediate-2/high	95	58	32	67	53	54	10	59	
Cytogenetics									.07
Favorable	93	57	23	48	58	59	12	71	
Intermediate	32	20	9	19	18	19	5	29	
High risk	37	23	16	33	21	22	0		
Interval from diagnosis to transplantation, months									.08
< 6.2	31	19	4	8	26	27	1	5	
6.2-9.9	47	29	16	34	27	28	4	24	
10.0-21.2	49	30	17	35	24	24	8	47	
> 21.2	36	22	11	23	21	21	4	24	

Abbreviations: AML, acute myeloid leukemia; AZA, azacitidine; FAB, French-American-British [classification]; ICT, induction chemotherapy; IPSS, International Prognostic Scoring System; RA, refractory anemia; RAEB, refractory anemia with excess blasts; RAEB-t, RAEB in transformation; RARS, refractory anemia with ring sideroblasts; RCMD, refractory cytopenia with multilineage dysplasia.

Event-free survival (EFS) was defined as survival with no evidence of relapse. Relapse was defined as the presence of more than 5% marrow blasts and/or reappearance of major myelodysplastic features associated with cytopenia and evidence of autologous reconstitution when chimerism was available. NRM was defined as death resulting from the graft procedure without evidence of relapse. Estimated 3-year event rates were reported because the number of events beyond 3 years was insufficient for accurate estimates. Estimated 100day event rates were assessed for acute graft-versus-host disease (aGVHD) and neutrophil and platelet engraftment.

For continuous variables, medians and ranges were determined. The assumption of normality was assessed by using the Shapiro-Wilk test. Categorical variables were described by frequencies and percentages. The three prior-to-transplantation treatment groups (AZA, ICT, and AZA-ICT) were compared by using the χ^2 or the Fisher's exact tests for categorical data. For continuous variables, the analysis of variance or Kruskal-Wallis test was applied according to the distribution of the studied variable.

All censored criteria were calculated from the time of transplantation. Distributions over time were estimated by the Kaplan-Meier product limit method. The log-rank statistic was used to test the prognostic value of patient characteristics at transplantation for the occurrence of the event. Prior-to-transplantation treatment and variables having a significance level of P < .15 from the univariate analyses were introduced in a multivariable Cox regression, with backward selection at level P < .15. Prior-to-transplantation treatment was always included in the selection, whatever its significance level in univariate analysis. Adjusted hazard ratios (HRs) and 95% CIs were computed, and $P \leq .05$ was considered statistically significant.

The occurrence of relapse, NRM, and chronic GVHD (cGVHD) were studied by using competing risk methodology. For the events of relapse and GVHD, death without experiencing the event was considered as a

	Tot (n = 1		AZ (n =		IC (n =		AZA (n =		
Characteristic	No.	%	No.	%	No.	%	No.	%	Ρ
Recipient age, years									.07
Median	5	7	6	0	5	7	5	8	
Range	18-	69	30-	68	18-	-69	32-	67	
Sex mismatch*	39	24	10	21	24	25	5	29	.75
Progression to more aggressive disease									< .001
No	96	59	41	85	48	49	7	41	
Yes	67	41	7	15	50	51	10	59	
Marrow blasts, %									.01
< 5	120	74	32	67	79	81	9	53	
≥ 5	43	26	16	33	18	19	8	47	
Disease status			~~	~~					.06
Responders†	119	73	33	69	77	78	9	53	
Nonresponders	44	27	15	31	21	22	8	47	
Donor type	75	40	20	40	40	47	0	47	.77
Sibling	75	46	20	42	48	47	8 9	47	
HLA-matched unrelated Stem-cell source	88	54	28	58	52	51	9	53	64
Marrow	21	13	8	17	11	11	2	12	.64
PBSCs	142	87	0 40	83	87	89	15	88	
Karnofsky score at transplantation	172	07	-0	00	07	00	10	00	.73
80-100	131	80	39	83	78	80	14	82	
50-70	16	10	4	9	11	11	1	6	
Missing	16		5		9		2		
Reason for RIC									.55
Age $>$ 50 years	96	74	30	75	59	79	9	60	
Comorbidities	15	11	4	10	8	11	2	13	
Protocol driven	14	11	5	13	5	7	3	20	
Missing	5		1		3		1		
Conditioning									.41
MAC	33	20	8	17	23	23	2	12	
RIC	130	80	40	83	75	77	15	88	
ATG									.11
No	56	34	18	37	36	37	2	12	
Yes	107	66	30	63	62	63	15	88	
TBI		_				_		_ ·	.41
No	125	77	38	79	73	75	14	82	
Yes	38	23	10	21	25	25	3	18	

Abbreviations: ATG, antithymocyte globulin; AZA, azacitidine; ICT, induction chemotherapy; MAC, myeloablative conditioning; PBSC, peripheral blood stem cell; RIC, reduced-intensity conditioning; TBI, total-body irradiation. "Sex mismatch is defined as a male recipient who received graft from a

female donor. TResponders included patients with complete remission, partial remission.

or marrow complete remission.

competing event. For NRM, the competing event was relapse. The cumulative incidence of each event was estimated by using the Kalbfleish and Prentice method.¹⁰ The individual prognostic value of each variable was assessed by the Gray test (bivariate analyses were performed for comparison of cumulative incidence curves). Prior-to-transplantation treatment and variables having a significance level of P < .15 in the univariate analyses were introduced in a multivariate Fine and Gray model. Adjusted HRs and 95% CIs were computed. Statistical analyses were performed by using SAS software (SAS Institute, Cary, NC). For the Fine and Gray model, the R package "cmprsk" was used (R Foundation for Statistical Computing, Vienna, Austria; http://www.r-project.org/).

rg © 2012 by American Society of Clinical Oncology 4535 Information downloaded from jco.ascopubs.org and provided by at UNIV/ MEDECINE/ LIEG/22827242 on July 8, 2013 from Copyright © 2012 American Societyof Divided Divide D

Characteristic Pa Sex Male Female Age, years < 57.6 ≥ 57.6 FAB/WHO RA/RARS/RCMD RAEB-1 RAEB-1 RAEB-1 RAEB-1 IPSS Low/intermediate-1 Intermediate-2/high Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % ************************************	lo. of tients 101 62 80 83 24 52 74 13 68 95 93 32 37 123 39	C % 43 55 47 49 54 34 53 57 52 46	ear IS P* .18 .53 .60 .38 .001 .88	3.Y EF % 39 49 46 40 54 27 46 53 40 43 50 22 44		38 35 36 38 22 48 38 23 35 40	<u>Pse</u> <u>Pt</u> .68 .98 .32 .10	% 24 17 19 23 25 26 16 24 27 17 225	RM <u>Pt</u> .33 .35 .72 .24
Characteristic Pa Sex Male Female Age, years < 57.6	ttients 101 62 80 83 24 52 74 13 68 95 93 32 37 123 39	43 55 47 49 54 34 53 57 52 46 52 46 44 21 46	.18 .53 .60 .38	39 49 46 40 54 27 46 53 40 43 49 50 22	.32 .49 .71 .34	38 35 36 38 22 48 38 23 35 40 <27 37	.68 .98 .32 .10	24 17 19 23 25 26 16 24 27 17 224	.33 .35 .72
Male Female Age, years < 57.6	62 80 83 24 52 74 13 68 95 93 32 37 123 39	55 47 49 54 34 53 57 52 46 60 44 21 46	.53 .60 .38	49 46 40 54 27 46 53 40 43 49 50 22	.49 .71 .34	35 36 38 22 48 38 23 35 40 <27 37	.98 .32 .10	17 19 23 26 16 24 27 17 24	.35 .72
Female Age, years < 57.6 ≥ 57.6 FAB/WHO RA/RARS/RCMD RAEB-1 RAEB-2 RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate 2/high Cytogenetics Favorable Intermediate 2/high Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	62 80 83 24 52 74 13 68 95 93 32 37 123 39	55 47 49 54 34 53 57 52 46 60 44 21 46	.60 .38	49 46 40 54 27 46 53 40 43 49 50 22	.71 .34 .001	35 36 38 22 48 38 23 35 40 <27 37	.32	17 19 23 26 16 24 27 17 24	.72
Age, years < 57.6 ≥ 57.6 FAB/WHO RA/RARS/RCMD RAEB-1 RAEB-2 RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate 2/high Cytogenetics Favorable Intermediate 4 High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	80 83 24 52 74 13 68 95 93 32 37 123 39	47 49 54 34 53 57 52 46 60 44 21 46	.60 .38	46 40 54 27 46 53 40 43 40 43 50 22	.71 .34 .001	36 38 22 48 38 23 35 40 <27 37	.32	19 23 25 26 16 24 27 17	.72
< 57.6 ≥ 57.6 FAB/WHO RA/RARS/RCMD RAEB-1 RAEB-2 RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate -2/high Cytogenetics Favorable Intermediate -1 Intermediate -2/high Cytogenetics Favorable Intermediate -3 For aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	 83 24 52 74 13 68 95 93 32 37 123 39 	49 54 34 53 57 52 46 44 21	.60 .38	40 54 27 46 53 40 43 40 43 50 22	.71 .34 .001	38 22 48 38 23 35 40 <27 37	.32	23 25 26 16 24 27 17 24	.72
≥ 57.6 FAB/WHO RA/RARS/RCMD RAEB-1 RAEB-2 RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate 2/high Cytogenetics Favorable Intermediate 4 High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	 83 24 52 74 13 68 95 93 32 37 123 39 	49 54 34 53 57 52 46 44 21	.38	40 54 27 46 53 40 43 40 43 50 22	.34	38 22 48 38 23 35 40 <27 37	.10	23 25 26 16 24 27 17 24	.24
RA/RARS/RCMD RAEB-1 RAEB-2 RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	52 74 13 68 95 93 32 37 123 39	34 53 57 52 46 60 44 21 46	.38	27 46 53 40 43 49 50 22	.34	48 38 23 35 40 <27 37	.10	25 26 16 24 27 17 24	.24
RAEB-1 RAEB-2 RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	52 74 13 68 95 93 32 37 123 39	34 53 57 52 46 60 44 21 46	.001	27 46 53 40 43 49 50 22	.001	48 38 23 35 40 <27 37		26 16 24 27 17 24	
RAEB-2 RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	74 13 68 95 93 32 37 123 39	53 57 52 46 60 44 21 46	.001	46 53 40 43 49 50 22	.001	38 23 35 40 <27 37		16 24 27 17 24	
RAEB-t/AML IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	13 68 95 32 37 123 39	57 52 46 60 44 21 46	.001	53 40 43 49 50 22	.001	23 35 40 27 37		24 27 17 24	
IPSS Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5	68 95 32 37 123 39	52 46 60 44 21 46	.001	40 43 49 50 22	.001	35 40 27 37		27 17 24	
Low/intermediate-1 Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	95 93 32 37 123 39	46 60 44 21 46	.001	43 49 50 22	.001	40 < 27 37		17 24	
Intermediate-2/high Cytogenetics Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	95 93 32 37 123 39	46 60 44 21 46		43 49 50 22		40 < 27 37	.001	17 24	.71
Favorable Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	32 37 123 39	60 44 21 46		49 50 22		27 37	.001	24	.71
Intermediate High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	32 37 123 39	44 21 46	.88	50 22	.82	37			
High risk Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	37 123 39	21 46	.88	22	.82			4-	
Sex mismatch No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	123 39	46	.88		.82	59		17	
No Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	39		.88		.82		05	19	71
Yes Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	39					35	.65	22	.71
Progression to more aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to		01		38		45		18	
aggressive disease No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to				00		10			
No Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to			~ .				~~		~ .
Yes Marrow blasts, % < 5 ≥ 5 Treatment prior to	96	48	.84	42	.46	38	.86	21	.84
Marrow blasts, % < 5 ≥ 5 Treatment prior to	90 67	40 48		42 42		36		21	
< 5 ≥ 5 Treatment prior to	0,	10	.25	12	.12	00	.25	21	.84
Treatment prior to	135	48		44		36		21	
	27	43		33		45		22	
AZA alone v ICT			.65		.67		.78		.76
alone			.00		.07		.70		.70
AZA alone	48	58		52		40		17	
ICT alone	98	51		45		35		19	
AZA alone <i>v</i> AZA plus ICT			.032		.038		.31		.041
AZA alone	48	58		52		40		17	
AZA plus ICT	17	35		29		37		35	
Interval from diagnosis									
to transplantation, months			.90		.84		.42		.18
< 10	81	49	.50	44	.04	39	.42	16	.10
≥ 10	82	54		46		29		24	
Disease status			.07		.07		.67		.18
	119	49		45		37		19	
Nonresponders	44	42		36		38	.	27	
Donor age, years	01	40	.06	67	.08	40	.91	07	.08
< 44.9 ≥ 44.9	81 80	40 56		67 47		40 33		27 16	
Donor type	00	50	.10	T /	.11	50	.74	10	.04
Sibling	75	51		51		37		14	
HLA-matched	88	44		36		37		27	
unrelated			. .						
Stem-cell source	0.1	20	.24	20	.48	40	.47	10	.91
Marrow PBSCs	21 142	38 49		38 43		43 36		19 21	
			nevt r	43 columr	1)	36		21	

Table 3. Univariate Analysis by Key Subsets: 3-Year OS and EFS, Relapse
Mortality Rates, and NRM (continued)

	No. of		Year OS		Year EFS	Re	lapse	N	RM
Characteristic	Patients	%	<i>P</i> *	%	P^*	%	Pt	%	<i>P</i> †
Recipient CMV serostatus			.60		.79		.99		.64
Negative	73	45		40		39		22	
Positive	90	50		45		35		20	
Donor CMV serostatus			.16		.07		.05		.86
Negative	85	41		33		46		22	
Positive	78	55		55		26		19	
Conditioning			.40		.63		.74		.76
MAC	33	50		45		37		18	
RIC	130	47		42		37		22	
ATG			.79		.69		.59		.84
No	56	48		43		34		22	
Yes	107	48		42		38		20	
TBI			.13		.18		.49		.35
No	125	51		46		36		19	
Yes	38	36		31		42		27	

Abbreviations: alloSCT, allogeneic stem-cell transplantation; AML, acute myeloid leukemia; ATG, antithymocyte globulin; AZA, azacitidine; CMV, cytomegalovirus; EFS, event-free survival; FAB, French-American-British [classific cation]; ICT, induction chemotherapy; IPSS, International Prognostic Scoring System; MAC, myeloablative conditioning; NRM, nonrelapse mortality; OS, overall survival; PBSC, peripheral blood stem cell; RA, refractory anemia; RAEB, refractory anemia with excess blasts; RAEB-t, RAEB in transition; RARS, refractory anemia with ring sideroblasts; RCMD, refractory cytopenia with multilineage dysplasia; RIC, reduced-intensity conditioning; TBI, totalbody irradiation.

*Log-rank.

†Gray (cumulative incidence).

RESULTS

At the date of analysis (April 1, 2011), median follow-up was 38.7 months (range, 15.2 to 65.6 months). All but seven patients had obtained neutrophil engraftment after a median time of 16 days (range, 0 to 70 days). Fifty-three patients (33%) had developed grade 2 to 4 aGVHD, including 21 patients (13%) with grade 3 to 4. Of the 143 evaluable patients who survived more than 100 days, 75 (52%) had developed cGVHD, including 44 (31%) with extensive cGVHD. For the whole patient group, median 3-year OS, EFS, relapse, and NRM were 48%, 42%, 37%, and 21%, respectively.

Univariate Analysis

As expected, among all at diagnosis and/or at transplantation characteristics that were studied, high-risk cytogenetic profile adversely influenced OS, EFS, and relapse P < .001 for all). Patients who received grafts from cytomegalovirus-seropositive donors tended to relapse more often than other patients (P = .05), although those who received alloSCT from an HLA-matched unrelated donor had a lower NRM rate (P = .04).

Grade 2 to 4 aGVHD was correlated more positively with bone marrow stem cells (52%) than with peripheral blood stem cells (29%; P = .03). The type of conditioning, either MAC or RIC, affected also the rate of aGVHD (58% v 28%; P = .01).

Information downloaded from jco.ascopubs.org and provided by at UNIV/ MEDECINE/ LIEG/22827242 on July 8, 2013 from Copyright © 2012 American Society and Discovery Strategies and Discovery Copyright Copyrigh

As depicted in Table 3, none of the following variables seemed to influence the outcome of alloSCT: recipient age and sex, sex mismatch, donor age, stem-cell source, recipient and conditioning regimen type (ie, intensity, antithymoglobulin, or total-body irradiation), initial FAB/WHO subgroups, IPSS at diagnosis, progression to more advanced disease at time of transplantation, time between diagnosis and transplantation, and marrow blasts at transplantation. Of note, disease status at transplantation tended to influence OS and EFS, with *P* values of .07 for each.

Outcome According to Prior-to-Transplantation Treatment

In patients treated with AZA alone and ICT alone before transplantation, 3-year OS was 58% versus 51% (P = .65), 3-year EFS was 52% versus 45% (P = .67), cumulative incidence of relapse was 40% versus 37% (P = .76), and NRM was 19% versus 20% (P = .78), respectively (Fig 2). Conversely, when compared with patients in the AZA group, those who received AZA plus ICT had lower rates of 3-year OS (35%; P = .035), EFS (29%; P = .038), and NRM (35%; P = .041).

The type of treatment before alloSCT had no significant impact on the incidence and severity of aGVHD (data not shown). However, higher cumulative incidence of extensive cGVHD was observed in the AZA-ICT group (57%) compared with the ICT-alone group (26%) and AZA-alone group (31%; P = .049).

Outcome According to First Prior-to-Transplantation Treatment

In the intent-to-treat AZA and intent-to-treat ICT groups, 3-year OS was 58% versus 49% (P = .39), 3-year EFS was 52% versus 43% (P = .40), relapse rate was 41% versus 37% (P = .71), and NRM was 16% versus 23% (P = .39), respectively.

Multivariate Analysis

Multivariate analysis confirmed the absence of significant differences between AZA and ICT groups in terms of OS (HR, 1.41; 95% CI,

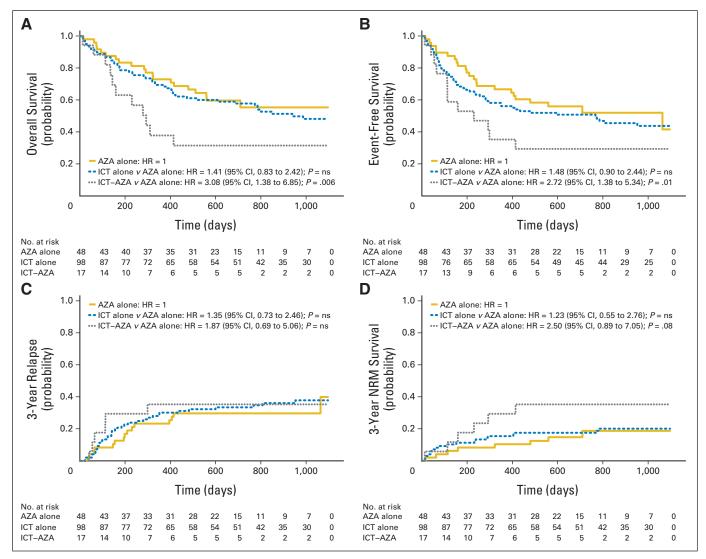


Fig 2. Kaplan-Meier estimates of (A) 3-year overall survival, (B) 3-year event-free survival, (C) cumulative incidence of 3-year relapse, and (D) nonrelapse mortality (NRM) in 163 patients, according to the prior-to-transplantation treatment received. AZA, azacitidine; HR, hazard ratio; ICT, induction chemotherapy; ns, not significant.

Information downloaded from jco.ascopubs.org and provided by at UNIV/ MEDECINE/ LIEG/22827242 on July 8, 2013 from Copyright © 2012 American Society Structure Information Copyright Copyr

0.83 to 2.42; P = .202), EFS (HR, 1.48; 95% CI, 0.90 to 2.44; P = .127), cumulative incidence of relapse (HR, 1.35; 95% CI, 0.73 to 2.46; P = .340), and NRM (HR, 1.23; 95% CI, 0.55 to 2.76; P = .610). However, receiving sequential treatment of AZA followed or preceded by ICT was found to adversely influence both OS (HR, 3.08; 95% CI, 1.38 to 6.86; P = .006) and EFS (HR, 2.72; 95% CI, 1.38 to 5.34; P = .014). In addition, there was a trend toward a negative impact of AZA-ICT on NRM (HR, 2.50; 95% CI, 0.89 to 7.05; P = .082). NRM was also influenced by HLA-matched unrelated donor (HR, 2.17; 95% CI, 1.05 to 4.49; P = .036).

When intent-to-treat groups were considered, multivariate analyses confirmed the absence of differences between intent-to-treat AZA and intent-to-treat ICT groups in terms of OS (HR, 1.67; 95% CI, 0.93 to 2.65; P = .091), EFS (HR, 1.44; 95% CI, 0.89 to 2.44; P = .137), cumulative incidence of relapse (HR, 1.38; 95% CI, 0.76 to 2.51; P = .291), and NRM (HR, 1.41; 95% CI, 0.63 to 3.14; P = .400).

As expected, high-risk cytogenetic profile had a detrimental impact on OS (HR, 1.93; 95% CI, 1.45 to 2.57; P < .001), EFS (HR, 1.82; 95% CI, 1.39 to 2.38; P < .001), and relapse (HR, 1.87; 95% CI, 1.36 to 2.57; P < .001). EFS was also influenced by donor age 44.9 years or older (HR, 1.59; 95% CI, 1.02 to 2.44; P = .042). Results for OS, EFS, relapse, and NRM are summarized in Table 4.

DISCUSSION

In this series, which to the best of our knowledge is the largest study on the use of AZA before transplantation in patients with MDS, we found post-transplantation outcome (in terms of OS, EFS, cumulative incidence of relapse, and NRM) in patients who received AZA alone before transplantation comparable to that of patients treated with ICT alone before alloSCT. The same results were observed when the first treatment received before alloSCT was considered.

The study was started in October 2005, corresponding to the date when AZA became available in France, and stopped on December 2009, which permitted more than 1 year of follow-up. We did not include patients who received transplantation before October 2005 because transplantation modalities and patient outcomes changed over time.¹¹⁻¹³ To make the study population as homogeneous as possible, we included only patients who received alloSCT from an HLA sibling or HLA allelically matched unrelated donor (10/10).

Single-agent therapy with AZA may be of value in stabilizing the disease or even reverting it to an earlier stage and allowing time for patients to reach transplantation since, in our study, only 15% of patients referred to alloSCT after AZA alone had progressed to more advanced disease before transplantation compared with 51% of those who had received ICT alone. Lübbert et al¹⁴ suggested that, outside the alloSCT setting, decitabine could be a valid alternative to standard chemotherapy in elderly patients with MDS/AML before alloSCT. Furthermore, in a larger retrospective study comparing decitabine agents with ICT in patients with AML or MDS, Kantarjian et al¹⁵ showed better OS in the patients treated with decitabine compared with historic controls receiving ICT because of lower early mortality rather than response rate. Nevertheless, the retrospective nature of those studies does not allow any firm conclusion regarding a beneficial effect of DNMTi.

						,						
	3-Year OS			3-Year EFS				3-Year Relaps	e	3-Year NRM		
Characteristics	HR	95% CI	P^*	HR	95% CI	P^*	HR	95% CI	P^*	HR	95% CI	<i>P</i> *
Recipient age, years												
< 57.6	1			—			—			—		
≥ 57.6	0.63	0.37 to 1.07	.089									
Cytogenetics												
Low/intermediate	1			1			1			_		
High risk	1.93	1.45 to 2.57	< .001	1.82	1.39 to 2.38	< .001	1.87	1.36 to 2.57	< .001			
Prior treatment												
AZA alone	1			1			1			1		
ICT alone v AZA alone	1.41	0.83 to 2.42	.202	1.48	0.90 to 2.44	.127	1.35	0.73 to 2.46	.340	1.23	0.55 to 2.76	.61
ICT-AZA v AZA alone	3.08	1.38 to 6.86	.006	2.72	1.38 to 5.34	.014	1.87	0.69 to 5.06	.220	2.50	0.89 to 7.05	.082
Disease status at transplantation												
Responders	1			1			—			—		
Nonresponders	1.37	0.83 to 2.45	.215	1.36	0.86 to 2.17	.193						
Donor age, years												
< 44.9	—			1			—			—		
≥ 44.9				1.59	1.02 to 2.44	.042						
Donor type	—			1						1		
Sibling HLA-matched												
unrelated				1.31	0.77 to 2.22	.320	—			2.17	1.05 to 4.49	.03
Donor CMV serostatus												
Negative	—			1			1			—		
Positive				0.79	0.51 to 1.22	.287	0.63	0.36 to 1.10	.110			

NOTE. Prior-to-transplantation treatment and variables having a significance level of *P* < .15 in the univariate analyses were introduced in a multivariate model. Abbreviations: AZA, azacitidine; CMV, cytomegalovirus; EFS, event-free survival; HR, hazard ratio; ICT, induction chemotherapy; NRM, nonrelapse mortality; OS, overall survival.

JOURNAL OF CLINICAL ONCOLOGY

Information downloaded from jco.ascopubs.org and provided by at UNIV/ MEDECINE/ LIEG/22827242 on July 8, 2013 from Copyright © 2012 American Society65.000 All rights reserved.

Few studies have investigated DNMTi before alloSCT.14,16-18 Field et al,¹⁷ in a retrospective series of 30 patients with MDS and patients without MDS treated with AZA alone or in association with chemotherapy or other drugs before alloSCT and compared with 24 patients who did not receive AZA, showed a comparable 1-year OS and EFS in the two groups. They also found a trend toward lower incidence of relapse in the AZA group. The population heterogeneity as well as the heterogeneity of treatment received before alloSCT in the group that was not treated with AZA (13 patients received transplantation without prior treatment) may be an explanation for the lower relapse rate in patients who received AZA. In this study, we did not observe any difference in relapse rate between patients treated with AZA and those treated with ICT.

Although never studied in a prospective manner, relapse is thought to be more likely to occur after RIC.¹⁹ In this study, and in agreement with what has been reported by Buchholz et al,²⁰ there was a lower rate of relapse after RIC than after MAC. The explanation for this result may be that all the patients in our study received a cytoreductive treatment prior to transplantation.

Seventeen patients received AZA preceded (n = 15) or followed (n = 2) by ICT. These patients had worse outcomes in terms of OS and EFS than other patients who received AZA alone or ICT alone before transplantation. This inferior outcome could result from the fact that patients who required both treatments had more resistant disease with more frequent relapse post-transplantation and/or to the fact that they had increased NRM because they received more treatment before transplantation. It is of note that 50% of patients treated with both AZA and ICT were responders at transplantation and none of them had a high-risk cytogenetic profile at diagnosis. In addition, they had similar rates of posttransplantation relapse compared with the other groups of patients. In contrast, there was a trend toward higher NRM rate (P = .082) and more extensive cGVHD compared with patients belonging to the other groups. These results are in line with our previous finding that intensification of the conditioning regimen before alloCST in patients with therapy-related MDS or AML experienced a detrimental effect on post-transplantation outcome without reduction in the relapse rate.¹

In conclusion, for the purpose of reducing the tumor burden before alloSCT, azacitidine seems to be a valid therapeutic approach and showed comparative OS, EFS, relapse incidence, and NRM when compared with ICT. AlloSCT in patients who required both AZA and ICT had less satisfactory outcomes.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Although all authors completed the disclosure declaration, the following author(s) and/or an author's immediate family member(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a "U" are those for which no compensation was received; those relationships marked with a "C" were compensated. For a detailed description of the disclosure categories, or for more information about ASCO's conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors. Employment or Leadership Position: None Consultant or Advisory Role: Yves Beguin, Celgene (C) Stock Ownership: None Honoraria: Mohamad Mohty, Celgene; Pierre Fenaux, Celgene Research Funding: Mohamad Mohty, Celgene; Lionel Ades, Celgene; Pierre Fenaux, Celgene; Ibrahim Yakoub-Agha, Celgene Expert Testimony: None Other Remuneration: None

AUTHOR CONTRIBUTIONS

Conception and design: Gandhi Damaj, Alain Duhamel, Pierre Fenaux, Ibrahim Yakoub-Agha

Provision of study materials or patients: Mohamad Mohty, Stephane Vigouroux, Pierre Bories, Alice Garnier, Jean El Cheikh, Claude-Eric Bulabois, Anne Huynh, Jacques-Olivier Bay, Faeyzeh Legrand, Eric Deconinck, Nathalie Fegueux, Laurence Clement, Charles Dauriac, Natacha Maillard, Jérôme Cornillon, Lionel Ades, Gaelle Guillerm, Aline Schmidt-Tanguy, Zora Marjanovic, Sophie Park, Marie-Thérèse Rubio, Jean-Pierre Marolleau, Pierre Fenaux, Ibrahim Yakoub-Agha Collection and assembly of data: Gandhi Damaj, Marie Robin, Yves Beguin, Mauricette Michallet, Mohamad Mohty, Stephane Vigouroux, Pierre Bories, Alice Garnier, Jean El Cheikh, Claude-Eric Bulabois, Anne Huynh, Jacques-Olivier Bay, Faeyzeh Legrand, Eric Deconinck, Nathalie Fegueux, Laurence Clement, Charles Dauriac, Natacha Maillard, Jérôme Cornillon, Lionel Ades, Gaelle Guillerm, Aline Schmidt-Tanguy, Zora Marjanovic, Sophie Park, Marie-Thérèse Rubio, Jean-Pierre Marolleau, Federico Garnier, Ibrahim Yakoub-Agha

Data analysis and interpretation: Gandhi Damaj, Alain Duhamel, Pierre Fenaux, Ibrahim Yakoub-Agha

Manuscript writing: All authors

Final approval of manuscript: All authors

REFERENCES

1. Yakoub-Agha I, de La Salmonière P, Ribaud P, et al: Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: A long-term study of 70 patients-Report of the French Society of Bone Marrow Transplantation. J Clin Oncol 18:963-971, 2000

2. de Witte T, Hagemeijer A, Suciu S, et al: Value of allogeneic versus autologous stem cell transplantation and chemotherapy in patients with myelodysplastic syndromes and secondary acute myeloid leukemia: Final results of a prospective randomized European Intergroup Trial. Haematologica 95:1754-1761, 2001

3. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al: Efficacy of azacitidine compared with that of

conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol 10:223-232, 2009

4. Fenaux P, Mufti GJ, Hellström-Lindberg E, et al: Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 28:562-569, 2010

5. Yakoub-Agha I, Mesnil F, Kuentz M, et al: Allogeneic marrow stem-cell transplantation from human leukocyte antigen-identical siblings versus human leukocyte antigen-allelic-matched unrelated donors (10/ 10) in patients with standard-risk hematologic malignancy: A prospective study from the French Society of Bone Marrow Transplantation and Cell Therapy. J Clin Oncol 24:5695-5702, 2006

6. Bennett JM, Catovsky D, Daniel MT, et al: Proposals for the classification of the acute leukaemias: French-American-British (FAB) co-operative group, Br J Haematol 33:451-458, 1976

7. Swerdlow S, Campo E, Harris NL, et al: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue. Lyon, France, International Agency for Research on Cancer, 2008

8. Greenberg P, Cox C, LeBeau MM, et al: International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079-2088, 1997

9. Cheson BD, Greenberg PL, Bennett JM, et al: Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 108:419-425, 2006

10. Kalbfleisch JD, Prentiss R: The Statistical Analysis of Failure Time Data (ed 2). Hoboken, NJ, John Wiley & Sons, 2002

11. Boehm A, Walcherberger B, Sperr WR, et al: Improved outcome in patients with chronic myelogenous leukemia after allogeneic hematopoietic

© 2012 by American Society of Clinical Oncology 4539 Information downloaded from jco.ascopubs.org and provided by at UNIV/ MEDECINE/ LIEG/22827242 on July 8, 2013 from Copyright © 2012 American Society 55.000 All rights reserved.

Damaj et al

stem cell transplantation over the past 25 years: A single-center experience. Biol Blood Marrow Transplant 17:133-140, 2011

12. Remberger M, Ackefors M, Berglund S, et al: Improved survival after allogeneic hematopoietic stem cell transplantation in recent years: A single-center study. Biol Blood Marrow Transplant 17:1688-1697, 2011

13. Vicente D, Lamparelli T, Gualandi F, et al: Improved outcome in young adults with de novo acute myeloid leukemia in first remission, undergoing an allogeneic bone marrow transplant. Bone Marrow Transplant 40:349-354, 2007

14. Lübbert M, Bertz H, Rüter B, et al: Nonintensive treatment with low-dose 5-aza-2'deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients. Bone Marrow Transplant 44:585-588, 2009

15. Kantarjian HM, O'Brien S, Huang X, et al: Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: Comparison with historical experience. Cancer 109:1133-1137, 2007

16. Cogle CR, Imanirad I, Wiggins LE, et al: Hypomethylating agent induction therapy followed by hematopoietic cell transplantation is feasible in patients with myelodysplastic syndromes. Clin Adv Hematol Oncol 8:40-46, 2010

17. Field T, Perkins J, Huang Y, et al: 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 45:255-260, 2010

18. Kim DY, Lee JH, Park YH, et al: Feasibility of hypomethylating agents followed by allogeneic hematopoietic cell transplantation in patients with myelodysplastic syndrome. Bone Marrow Transplant 47:374-379, 2011

 Horwitz ME: Reduced intensity versus myeloablative allogeneic stem cell transplantation for the treatment of acute myeloid leukemia, myelodysplastic syndrome and acute lymphoid leukemia. Curr Opin Oncol 23:197-202, 2011

20. Buchholz S, Dammann E, Stadler M, et al: Cytoreductive treatment with clofarabine/ara-C combined with reduced-intensity conditioning and allogeneic stem cell transplantation in patients with high-risk, relapsed, or refractory acute myeloid leukemia and advanced myelodysplastic syndrome. Eur J Haematol 88:52-60, 2012

Affiliations

Gandhi Damaj and Jean-Pierre Marolleau, Centre Hospitalier Universitaire (CHU) Sud, Amiens; Alain Duhamel, Centre d'Etude et de Recherche en Informatique Medicale, Centre Hospitalier Régional Universitaire (CHRU); Ibrahim Yakoub-Agha, CHRU, Lille; Marie Robin, Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Saint Louis, Université Paris 7; Alice Garnier, AP-HP, Hôpital de la Pitié-Salpêtrière; Zora Marjanovic and Marie-Thérèse Rubio, AP-HP, Hôpital Saint-Antoine, Université Paris 6; Sophie Park, AP-HP, Hôpital Cochin, Université Paris 5, Paris; Mauricette Michallet, CHU Lyon Sud, Lyon; Mohamad Mohty, CHU, Nantes; Stephane Vigouroux, CHU, Bordeaux; Pierre Bories, CHU, Strasbourg; Jean El Cheikh, Institut Paoli-Calmettes, Marseille; Claude-Eric Bulabois, CHU, Grenoble; Anne Huynh, CHU Purpan, Toulouse; Jacques-Olivier Bay, CHU, Clermont Ferrand; Faeyzeh Legrand, CHU, Nice; Eric Deconinck, CHU, Besançon; Nathalie Fegueux, CHU, Montpellier; Laurence Clement, CHU, Nancy; Charles Dauriac, CHU, Rennes; Natacha Maillard, CHU, Poitiers; Jérôme Cornillon, Institut de Cancérologie de la Loire, Saint-Etienne; Lionel Ades and Pierre Fenaux, AP-HP, Hôpital Avicenne, Université Paris 13, Bobigny; Gaelle Guillerm, CHU, Brest; Aline Schmidt-Tanguy, CHU, Angers; Federico Garnier, Agence de la Biomédecine, Saint Denis; and Yves Beguin, University of Liège, Liège, Belgium.