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1University of Liège, Dept. of Electrical Engineering and Computer Science, ACE, B-4000 Liège, Belgium
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Abstract. A subproblem h-conform eddy current finite element method is proposed for correcting the
inaccuracies inherent to thin shell models. Such models replace volume thin regions by surfaces but neglect
border e↵ects in the vicinity of their edges and corners. The developed surface-to-volume correction problem
is defined as a step of the multiple subproblems applied to a complete problem, consisting of inductors and
magnetic or conducting regions, some of these being thin regions. The general case of multiply connected
thin regions is considered.

1 Introduction

Thin shell (TS) finite element (FE) models [1], [2], [5],
assume that the fields in the thin regions are approxi-
mated by a priori 1-D analytical distributions along the
shell thickness. In the frame of the FE method, their in-
terior is thus not meshed and is rather extracted from the
studied domain, being reduced to a zero-thickness double
layer with interface conditions (ICs) linked to the inner
analytical distributions. This means that corner and edge
e↵ects are neglected.

To overcome these drawbacks, the subproblem method
(SPM) for the h-conform FE formulation has been already
developed in [3] for simply connected TS regions, propos-
ing a surface-to-volume local correction. The method is
herein extended to multiply connected TS regions, i.e. re-
gions with holes, for both the associated surface model
(alternative to the method in [5], [6]) and its volume cor-
rection. The global currents flowing around the holes and
their associated voltages are naturally coupled to the lo-
cal quatities, via some cuts for magnetic scalar potential
discontinuities at both TS and correction steps.

A reduced model (SP q) with the inductors alone is
first considered before adding the TS FE (SP p), followed
by the volume correction (SP k). From SP q to SP p, the
solution q contributes to the surface sources (SSs) for the
added TS, with TS ICs [2]. From SP p to SP k, SSs and
volume sources (VSs) allow to suppress the TS and cut
discontinuities and simultaneously add the actual volume
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of the thin region, with its own cut discontinuity. Each SP
requires a proper adapted mesh of its regions. The method
is illustrated and validated on a practical problem.

2 Thin shell correction in the subproblem

method

2.1 Canonical magnetodynamic problem

A canonical magnetodynamic problem i, to be solved
at step i of the SPM, is defined in a domain ⌦

i

, with
boundary @⌦

i

= �
i

= �
h,i

[ �
b,i

. The eddy current con-
ducting part of ⌦

i

is denoted ⌦
c,i

and the non-conducting
region ⌦C

c,i

, with ⌦
i

= ⌦
c,i

[⌦C

c,i

. Stranded inductors be-

long to ⌦C

c,i

, whereas massive inductors belong to ⌦
c,i

.
The equations, material relations and boundary condi-
tions (BCs) of the SPs i = q, p and k are

curlh
i

= j
i

, div b
i

= 0 , curl e
i

= �@
t

b
i

(1a-b-c)

b
i

= µ
i

h
i

+ b
s,i

, e
i

= ��1
i

j
i

+ e
s,i

(2a-b)

n⇥ h
i

|
�h,i = j

f,i

, n · b
i

|
�b,i = b

f,i

(3a-b)

n⇥ e
i

|
�e,i⇢�b,i = k

f,i

(3c)

where h
i

is the magnetic field, b
i

is the magnetic flux
density, e

i

is the electric field, j
i

is the electric current
density, µ

i

is the magnetic permeability, �
i

is the electric
conductivity and n is the unit normal exterior to ⌦

i

. In
what follows the notation [·]

�i = |
�

+
i
� |

�

�
i

expresses the

discontinuity of a quantity through an interface �
i

(with
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sides �+
i

and ��
i

) in ⌦
i

, defining ICs. The fields b
s,i

and
e
s,i

in (2a-b) are VSs that can be used for expressing
changes of permeability or conductivity respectively [13].

The fields j
f,i

, b
f,i

and k
f,i

in (3a-b-c) are SSs and gen-
erally equal zero with classical homogeneous BCs. Their
discontinuities via ICs are also equal to zero for common
continuous field traces n⇥h

i

, n ·b
i

and n⇥e
i

. If nonzero,
they define possible SSs that account for particular phe-
nomena occuring in the idealized thin region between �+

i

and ��
i

[13]. This is the case when some field traces in SP
p are forced to be discontinuous, whereas their continuity
must be recovered via a SP k, which is done via a SS in
SP k fixing the opposite of the trace discontinuity solution
of SP p.

Fig. 1. 3D plate with a source of electromotive force

2.2 From SP q to SP p - inductor alone to TS model

The TS model for the h
i

-formulation requires an un-
known discontinuity h

d,i

through the TS �
t,i

of the tan-
gential component h

t,i

= (n⇥ h
i

)⇥ n of h
i

[2], i.e.

[h
t,i

]
�t,i = h

d,i

or [n⇥ h
i

]
�t,i = n⇥ h

d,i

(4)

with h
d,i

fixed to zero along the TS border to prevent any
current to flow through it. In order to explicitly express
the discontinuity, field h

i

is written on both sides of �
t,i

as

h
i

|
�

+
t,i

= h
c,i

+ h
d,i

, h
i

|
�

�
t,i

= h
c,i

(5)

with h
c,i

its continuous component; (5) can be also applied
to the tangential components h

t,i

, h
t,c,i

and h
t,d,i

.
SSs for SP p are to be defined via BCs and ICs of

impedance-type BCs (IBC) given by the TS model [2]
combined with contributions from SP q. There is no thin
region in SP q, but in order to get a relative constraint
between SP q and SP p via the corresponding ICs with
�
t

= �±
t

= �±
q

= �±
p

= �±
ts,q

= �±
ts,p

and n
t

= �n for the
TS, one has to imagine that a thin region appears in SP
q. One gets for SP q and SP p [2], [3]

[n⇥ e
q

]
�q = n⇥ e

q

|
�

+
q
�n⇥ e

q

|
�

�
q
= 0 (6)

[n⇥ e]
�p = [n⇥ e

q

]
�p + [n⇥ e

p

]
�p = µ� @

t

(2h
c

+ h
d

)
(7)

n⇥ e
p

|
�

+
p
=

1

2

⇥
µ� @

t

(2h
c

+ h
d

) +
1

��
h
d

⇤
� n⇥ e

q

|
�

+
p

(8)

� = ��1
i

tanh(
d
i

�
i

2
), �

i

=
1 + j

�
i

, �
i

=

r
2

!�
i

µ
i

(9)

where d
i

is the local TS thickness, �
i

is the skin depth in
the TS, ! = 2⇡f , f is the frequency, j is the imaginary
unit and @

t

⌘ j!. The discontinuity [n⇥ e
q

]
�p in (7) does

not need any correction because solution SP q presents no
such discontinuitiy, i.e. [n⇥ e

q

]
�q = [n⇥ e

q

]
�p = 0.

2.3 From SP p to SP k - TS to volume model

The obtained TS solution in SP p is then corrected by
SP k that overcomes the TS assumptions [2]. The SPM
o↵ers the tools to implement such as refinement, thanks
to simultaneous SSs and VSs. A fine volume mesh of the
shell is now required and is extended to its neighborhood
without including the other regions of previous SPs. This
allows to focus on the fineness of the mesh only in the
shell. SP k has to suppress the TS representation via SSs
opposed to TS ICs, in parallel to VSs in the added volume
shell [3] that accounts for volume change of µ

p

and �
p

in
SP p to µ

k

and �
k

in SP k (with µ
p

= µ0, µk

= µ
r,volume

,
�
p

= 0 and �
k

= �
volume

). This correction is usually lim-
ited to the neighborhood of the shell, which permits to
benefit from a reduction of the extension of the associated
mesh [3]. The VSs for SP k are [3], [12], [13]

b
s,k

= (µ
k

� µ
p

)(h
q

+ h
p

) (10)

e
s,k

= �(e
q

+ e
p

) (11)

3 Finite element weak formulations

3.1 h-� formulation with source and reaction magnetic

fields

The weak h
i

-�
i

formulation is obtained from the weak
form of Faraday’s law (1c) [13]. The magnetic field h

i

is
split into two parts, i.e.

h
i

= h
s,i

+ h
r,i

(12)

where h
s,i

is a source magnetic field due to the fixed
current density j

s,i

such that curlh
s,i

= j
s,i

, and h
r,i

is the reaction magnetic field. In non-conducting regions
⌦C

c,i

, field h
r,i

is defined via a scalar potential �
i

, i.e.

h
r,i

= �grad�
i

. Potential �
i

in a multiply connected ⌦C

c,i

is multivalued (Fig. 1) and is made singlevalued via the
definition of cuts through each hole of ⌦

c,i

[7], [9]. The
constraints associated with the cut and the discontinuity
of the tangential component of the magnetic field across
the thin structures are expressed in Section 3.2. The weak
forms for SP q and SP p are

@
t

(µ
q

h
q

,h0
q

)
⌦q + @

t

(µ
q

h
s,q

,h0
q

)
⌦q + hn⇥ e

q

,h0
q

i
�e,q+

h[n⇥ e
q

]
�q ,h

0
q

i
�q = 0 , 8h0

q

2 F 1
q,h�

(⌦
q

) (13)

@
t

(µ
p

h
p

,h0
p

)
⌦p + hn⇥ e

p

,h0
p

i
�e,p

+h[n⇥ e
p

]
�p ,h

0
p

i
�p = 0 , 8h0

p

2 F 1
p,h�

(⌦
p

) (14)

where F 1
i,h�

(⌦
i

) in (13) and (14) is a curl-conform function
space (built with edge FEs at the discrete level) defined
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on ⌦
i

and containing the basis functions for h
i

(coupled
to �

i

) as well as for the test function h0
i

; (· , ·)
⌦i and <

· , · >
�i respectively, denote a volume intergal in ⌦

i

and a
surface intergal on �

i

of the product of their vector field
arguments. The surface integral term on �

e,i

accounts for
natural BCs of type (3c), usually zero.

The term h[n ⇥ e
p

]
�p ,h

0
p

i
�p in (14) is used to weakly

express the electric field TS IC proper to the TS model [2],
i.eh[n⇥ e

p

]
�p ,h

0
p

i
�p = h[n⇥ e

p

]
�p ,h

0
c

+ h0
d

i
�p

= h[n⇥ e
p

]
�p ,h

0
c

i
�p + h[n⇥ e

p

]
�p ,h

0
d

i
�p . (15)

Splitting test function h0
p

into continous and discontinuous
parts, i.e. h0

c

and h0
d

, with h0
d

null on the negative side of
TS ��

p

, like in (5), equation (15) becomes [2]

h[n⇥ e
p

]
�p ,h

0
p

i
�p = h[n⇥ e

p

]
�p ,h

0
c

i
�p+

hn⇥ e
p

|
�p+

,h0
d

i
�p+

. (16)

The trace discontinuity term h[n ⇥ e
p

]
�p ,h

0
c

i
�p in (16) is

given by (7), i.e.
h[n⇥ e

p

]
�p ,h

0
c

i
�p = h[n⇥ e]

�p ,h
0
c

i
�p

= hµ� @
t

(2h
c

+ h
d

),h0
c

i
�p . (17)

The term hn⇥ e
p

|
�p+

,h0
d

i
�p+

in (16) is given by (8), sup-

pressing n⇥ e
q

|
�p+

of SP q and simultaneously adding the

actual TS BC. Therefore, the term hn⇥ e
p

|
�p+

,h0
d

i
�p+

is
a SS that is naturally expressed via the weak formulation
of SP q (13), i.e.
�hn⇥ e

q

|
�

+
p
,h0

d

i
�

+
p
= (µ

q

@
t

h
s,q

,h0
d

)
⌦q + (µ

q

@
t

h
q

,h0
d

)
⌦q .

(18)
The volume integrals in (18) are also limited to a single
layer of FEs touching �+

p

= �+
q

= �+
ts

, because they in-
volve only the trace n ⇥ h0

d

|
�

+
p
. At the discrete level, the

source h
q

, initially in the mesh of SP q, has to be projected
in the mesh of SP p via a projectiong method [3], [13].
Then the actual volume SP k corrects the inaccurate TS
SP p solution via VSs (10) and (11).

In addition, the surface integral hn ⇥ e
p

,h0
p

i
�e,p in

(14) can be extended to a global condition defining a
voltage V

i

[4], with h0
p

= c
i

= �grad q
i

in ⌦C

c,p

with
n⇥ c

i

= �n⇥ grad q
i

on @⌦
c,p

(c
i

is the current ba-
sis function) made simply connected by cut ⌃

i

(Figs. 1
and 2). Potential q

i

is fixed to 1 on one side of the cut
and to 0 on the other side. The continuous transition of q

i

between both these value can be implemented in a tran-
sition layer in ⌦C

c,p

adjacent to side ’+’ (Figs. 1 and 2),
which reduces the suport of q

i

and c
i

. One gets [4]

hn⇥ e
p

, c
i

i
@⌦c,p =

I

@�i

q
i

e
p

.dl =

Z

gi

e
p

.dl = V
i

(19)

where g
i

is a path connecting two real or imaginary elec-
trodes of the thin region.

The weak form of SP k is

@
t

(µ
k

h
k

,h0
k

)
⌦k + (��1

k

curlh
k

, curlh0
k

)
⌦c,k + @

t

(b
s,k

,h0
k

)
⌦k

+(e
s,k

, curlh0
k

)
⌦k + h[n⇥ e

k

]
�k ,h

0
k

i
�k + hn⇥ e

k

,h0
k

i
�e,k

= 0, 8h0
k

2 F 1
k,h�

(⌦
k

) . (20)

3.2 Field discontinuities for multiply connected TS

regions

With the TS model, a volume shell initially in ⌦
c,i

is extracted from ⌦
i

and then considered with the dou-
ble layer TS surface �

ts,i

[2]. In addition to the electric
field IC weakly defined in (14), the TS model requires
a magnetic field discontinuity [h

i

]
�ts,i = h

d,i

strongly
defined in F 1

i,h�

(⌦
i

) via an IC on both sides of the TS
via (5). This can be formulated via a TS discontinuity
of �

i

, i.e. [�
i

]
�ts,i = ��

i

|
�ts,i = �

d,i

|
�ts,i (Fig. 2), with

�
i

|
�

+
ts,i

= �
c,i

|
�ts,i + �

d,i

|
�ts,i and �

i

|
�

�
ts,i

= �
c,i

|
�ts,i . The

discontinuity �
d,i

is constant on each cut and can be writ-
ten as

�
i

= �
c,i

+ �
d,i

(�
d,i

= ��
d

|
�cut,i = [�

d,i

]
cut,i

) (21)

[�
i

]
cut,i

= �
i

|
�

+
cut,i

� �
i

|
�

�
cut,i

= �
d,i

|
�cut,i = I

i

(22)

where I
i

is the global current flowing around the cut [4].
Discontinuities �

d,i

|
�ts,i and �

d,i

|
�cut,i have to be matched

at the TS-cuts intersections.

Fig. 2. Section of a 3D plate with a hole, with the associated
cut and transition layer (supp) for ��

i

.

3.3 Discretization of the reaction magnetic field

At the discrete level, the use of edge FEs [2], [8] to
interpolate curl-conform fields, such as the magnetic filed
h
i

, first gives facilities in defining currents. Indeed, the
circulation of such a field along closed path, also being
the flux of its curl and consequently the current, is directly
obtained from coe�cients of the interpolation, in this case
those associated with the edges of the path [11].

The magnetic field h
i

(12) in formulations (13), (14)
and (20) is thus discretized by edge FEs, generating the
function space 2 S1

i

(⌦
i

) defined on a mesh of ⌦
i

, i.e.,

h
i

=
X

e2E(⌦i)

h
e,i

s
e,i

, 8h
i

2 S1
i

(⌦
i

) (23)

where E(⌦
i

) is the set of edges of ⌦
i

, s
e,i

is the edge basis
function associated with edge e and h

e,i

is the circulation
of h

i

along the edge e. Now, characterization (23) can be
transformed in order to give explicitly the basis functions
of the considered discrete space for F 1

hi,�i
(⌦

i

) with the
essential constraint, i.e., h

r,i

= �grad�
i

using the results
of [4], [10]. One has

h
i

=
X

e2E(⌦c,i)�E(@⌦c,i)

h
e,i

s
e,i

+
X

n2N(⌦C
c,i)

�
c,n,i

v
c,n,i

+
X

n2N(�ts,i)

�
d,i

t
d,n,i

+ I
ci

X

n2N(�cut,i)

c
d,n,i

(24)
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where E(⌦
c,i

)�E(@⌦
c,i

) are the sets of inner edges of the
mesh of ⌦

c,i

, without including the edges on its boundary,
N(⌦C

c,i

) is the sets of nodes of the mesh of ⌦C

c,i

[ @⌦C

c,i

,
N(�

ts,i

) is the sets of nodes of the mesh of �
ts,i

and
N(�

cut,i

) is the sets of nodes of the mesh of �
cut,i

making
⌦C

c

simply connected [7]. Coe�cients I
ci represent circu-

lations of h
i

along well-defined paths given by (22). The
functions t

d,n,i

and c
d,n,i

can be respectively expressed in
the thin regions and the cuts as [2]

t
d,n,i

=

8
>>>>>>>><

>>>>>>>>:

X

{n,m} 2 E(⌦C

c,i

)
n 2 N(�

ts,i

)
m 62 N(�

ts,i

)
m 2 N+

ts,i

s
e,{n,m} in supp(��

i

|
�ts,i)

0 otherwise

c
d,n,i

=

8
>>>>>>>><

>>>>>>>>:

X

{n,m} 2 E(⌦C

c,i

)
n 2 N(�

cut,i

)
m 62 N(�

cut,i

)
m 2 N+

cut,i

s
e,{n,m} in supp(��

i

|
�cut,i)

0 otherwise

where m 2 N+
ts,i

and m 2 N+
cut,i

are the sets of nodes of
the transition layers supp(��

i

|
�ts,i) and supp(��

i

|
�cut,i),

respectively (Fig. 2).

3.4 TS correction - VSs in the actual volume shell and

SSs for suppressing the TS representation

Changes of material properties from µ
p

and �
p

in SP
p to µ

k

and �
k

in SP k, that occur in the volume shell,
are taken into account in (20) via the volume integrals
(e

s,k

, curlh0
k

)
⌦k and @

t

(b
s,k

,h0
k

)
⌦k . The VS e

s,k

in (11)
is to be obtained from the still undetermined electric fields
e
q

and e
p

. Therefore, the field e
p

is unknown in any ⌦C

c,p

.
These determinations require to solve an electric problem
defined by the Faraday and electric conservation equa-
tions [13].

Simultaneously to the VSs in (20), SSs related to ICs
[2], [3] compensate the TS and cut discontinuities, i.e,
�
d,p

|
�ts,p and �

d,p

|
�cut,p , and [n⇥ e

p

]
�ts,p to suppress the

TS representation via SSs opposed to ICs, i.e. h
d,k

=
�h

d,p

and �
d,k

= ��
d,p

, and [n⇥e
k

]
�ts,k = �[n⇥e

p

]
�ts,p .

The involed trace [n⇥ e
p

]
�ts,k is naturally expressed via

the other integrals in (14), i.e., h[n ⇥ e
k

]
�ts,k ,h

0
k

i
�ts,k =

�h[n⇥e
p

]
�ts,k ,h

0
k

i
�ts,k . At the discrete level, this integral

is limited to the layer of FEs on both sides �
ts,k

of TS,
because it involves only the associated trace n⇥ h0

k

|
�ts,k .

The source h
p

, with its discontinuity h
d,p

, has also to be
transferred from the mesh of TS SP p to the mesh of SP
k.

3.5 Projections of solutions between meshes

Some parts of previous solutions serve as sources in a
subdomain ⌦

s,p

⇢ ⌦
p

of the current SP p, for example
from SP q to SP p. At the discrete level, this means that
the source quantities h

q

have to be expressed in the mesh
of SP p, while initially given in the mesh of SP q. This can
be done via a projection method [14] of its curl limited to
⌦

s,p

, i.e.

(curlh
q,p�proj

, curlh0)
⌦s,p = (curlh

q

, curlh0)
⌦s,p ,

8h0 2 F 1
p

(⌦
s,p

) (25)

where F 1
p

(⌦
s,p

) is a gauged curl-conform function space
for the p-projected source h

q,p�proj

(the projection of h
q

on mesh p) and the test function h0. Directly projecting
h
q

instead of its curl would give numerical inaccuracies
when evaluating its curl.

4 Application

The 3D test problem is based on TEAM problem 7:
an inductor placed above a thin plate with a hole (Fig. 3)
(µ

r,plate

= 1, �
plate

= 35.26 MS/m). A SP scheme con-
sidering three steps is developed. A first FE SP q with
the stranded inductor alone is solved on a simplified mesh
without any thin regions (Fig. 4, top). Then a SP p is
solved with the added thin region via a TS FE model
(Fig. 4, middle). At last, a SP k replaces the TS FEs with
the actual volume FEs covering the actual plates with an
adequate refine mesh (Fig. 4, bottom). The TS error on j

p

locally reaches 43% (Fig. 4, middle), with plate thickness
d = 19 mm and frequency f = 200 Hz (skin depth � =
6 mm). The inacuracy on the Joule power loss densities
of TS SP p is pointed out by the importance of the cor-
rection SP k (Figs. 5 and 6). It reaches several tens of
percents along the plate borders and near the plate ends
for some critical parameters: e.g., 28% (Fig. 5, top) and
32% (Fig. 6, top), with f = 50 Hz and � = 11.98 mm
in both case, or 53% (Fig. 5, bottom) and 61% (Fig. 6,
bottom), with f = 200 Hz and � = 6 mm in both cases.
The errors particularly decrease with a smalller thickness
(d = 2 mm), being lower than 15% (Fig. 6), with f = 200
Hz and � = 6 mm. Significant errors on the Joule losses
and the global currents flowing around the hole for TS SP
p are shown in Tables 1 and 2. For d = 19 mm and f =
200 Hz, the TS error is 13.5% for the global current and
42% for the Joule loss (reduced to 26% for f = 50 Hz).
For d = 2 mm and f = 200 Hz, it is respectively reduced
to 1% and 6% (4% for f = 50 Hz).

5 Conclusions

The SPM allows to accurately correct any TS solu-
tion. In particular, accurate corrections of eddy current
and power loss densities are obtained at the edges and cor-
ners of multiply connected thin regions. All the steps of
the method for TS FE have been presented and validated
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Fig. 3. Geometry of TEAM problem 7: inductor and conduct-
ing plate with a hole (all dimensions are in mm).

Table 1. Joule losses in the plate

Thickness Frequency Thin Shell Volume Error
d (mm) f (Hz) P

thin

(W) P
vol

(W) (%)

2 50 14.45 13.82 4.36
19 50 5.86 7.95 26.18

2 200 50.44 47.33 6.44
19 200 8.88 15.19 41.51

Table 2. Global currents flowing around the plate hole

Thickness Frequency Thin Shell Volume Error
d (mm) f (Hz) I

thin

(A) I
vol

(A) (%)

2 50 94,5 93.5 1.1
19 50 173.3 199.8 13.2

2 200 190.4 186.5 1.8
19 200 179.3 206.3 14

by coupling SPs via the SPM with the h-formulation. Spe-
cially, it has been sucessfully applied to the TEAM prob-
lem 7.
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