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Abstract

Background

Applying a statistical method implies identifying underlyingnodel) assumptions af
checking their validity in the particular context. One of theseesttgiis association modelif
for epistasis detection. Here, depending on the technique used, viotdtionodel
assumptions may result in increased type | error, power lossasgdoparameter estimat
Remedial measures for violated underlying conditions or assumptiomgdenalats
transformation or selecting a more relaxed modeling or testirajegy. Model-Base
Multifactor Dimensionality Reduction (MB-MDR) for epistasis egtion relies of
association testing between a trait and a factor consistimgitifocus genotype informatio
For quantitative traits, the framework is essentially Analydis/ariance (ANOVA) tha
decomposes the variability in the trait amongst the differenofs. In this study, we asse
through simulations, the cumulative effect of deviations from normality and loechasticity
on the overall performance of quantitative Model-Based Multifactomesionality
Reduction (MB-MDR) to detect 2-locus epistasis signals in the absencaoéffects.
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Methodology

Our simulation study focuses on pure epistasis models with vadeggees of genetjc
influence on a quantitative trait. Conditional on a multilocus genotype,cavesider
guantitative trait distributions that are normal, chi-square or Stgdenith constant or nor
constant phenotypic variances. All data are analyzed with MB-MBRg the built-in
Student'st-test for association, as well as a novel MB-MDR implemesriathased o
Welch's t-test. Traits are either left untransformed or are trangfdrmto new traits vi
logarithmic, standardization or rank-based transformations, prior to MB-MDRImgde

N

Results

Our simulation results show that MB-MDR controls type | emwod false positive rates
irrespective of the association test considered. Empiricaligedb®B-MDR power estimates
for MB-MDR with Welch'’s t-tests are generally lower than those for MB-MDR with
Student'st-tests. Trait transformations involving ranks tend to lead to asex power
compared to the other considered data transformations.

Conclusions

When performing MB-MDR screening for gene-gene interactions withtgjatve traits, we
recommend to first rank-transform traits to normality and themppdyaVB-MDR modeling
with Student’d-tests as internal tests for association.

Keywords

Model-based multifactor dimensionality reduction, Epistasis, Model violgtiData
transformation

Background

The search for epistasis or gene-gene interaction effectaitsdf interest is marked by an
exponential growth. From an application point of view, these searmhes focus on
candidate genes or pathways. The reasons for this are ofterclogiss: First, genome-wide
screening for epistasis requires large sample sizes toeesisfficient power detection, which
may only become available when having access to consortia datandSeexhaustive
genome-wide epistasis screenings assumes the availabisityffaient computer power and
an adequate infrastructure to store and analyze the data, aaswellstore and process the
analysis results. From a methodological point of view, searchespistasis effects are
performed with the goal in mind to develop methods that can narrovgapebetween
statistical and biological epistasis. To date, several egsasection approaches exist, each
addressing differential aspects of the underlying theoretpatasis model, and with
different performances in terms of Type | error control or posletection [1]. Although
methods are often thoroughly compared to competing methods in tisis, $esing a variety
of simulation settings that are hoped to reflect realistichanr@iems of disease-causing
genetic variants, they usually do not involve comprehensive statemeither about the
underlying assumptions, nor about how violations of these assumptions feay the
method’s performance. Modeling or testing techniques usually comle specific



assumptions that need to be fulfilled in order to produce valid anabsigdts. This also
applies to methods to detect epistasis. Good standard practicedartteégt would include 1)
to investigate the underlying assumptions of the epistasis detectioadeling technique, 2)
to check whether these are valid, and 3) to take remedialuresasr to accommodate the
effects of identified violations.

One of the pioneer methods used in the context of dimensionality redaatiogene-gene
interaction detection is the Multifactor Dimensionality Reduct{diDR) method, initially
developed by Ritchie et al. [2]. MDR offers an alternative &dlittonal regression-based
approaches. The method is model-free and non-parametric in the teahge does not
assume any particular genetic model. In particular, MDR forrpitraits [2] enforces a
dimensionality reduction by pooling multilocus genotype classes timb groups of risk
based on some threshold value, and by evaluating the epistasis modedsgavalidation
principles. One concern related to the initial implementationke@MDR method was that
some important interactions could be missed due to pooling too manjoousitgenotype
classes together. Another concern was that the MDR methodadidacilitate making
adjustments for lower-order genetic effects or confounding fctastly, it was somewhat
disappointing that after computationally intensive cross-validation pgmnchutation-based
significance assessment procedures only a single “bestasigishodel was proposed. Over
the years, several attempts have been made to further improve the MBRfitRizhie et al.
[2], see for instance [3]. However, an MDR-based method was ndeatetbtld tackle all of
the aforementioned issues within a unified framework and would flexabtommodate
different study designs of related and unrelated individuals. ModseBaVultifactor
Dimensionality Reduction (MB-MDR) originated as such a unifiedensionality reduction
approach. Like MDR, MB-MDR is an intrinsic non-parametric methow| thus avoids
making hard to verify assumptions about genetic modes of inheritaheeoriginal MB-
MDR implementation in R by Calle et al. [4] suffered fromaivn drawbacks, the major one
being the significance assessment of epistasis models, whichased on the derivation of
MAF dependent null-distributions. These drawbacks were handled in subseqtie
versions of the MB-MDR software, adhering to the key principleah®MB-MDR strategy
[5]. In summary, these key features are 1) dimensionakilyateon via multilocus genotype
cell labeling using appropriate association tests, 2) pridrtizaf multiple epistasis models
(on reduced constructs / lower-dimensional features) via appropisateiation tests and
adequate multiple testing corrections to control false positiveppS83ible adjustment for
lower-order effects or confounders in relevant steps of the epistasisatef@citess.

The ‘modeling’ part in MB-MDR arises from the need to embracerpatrics when
adjusting for lower-order (main) effects within a regressi@mework. The necessity of
lower-order effects corrections in quantitative MB-MDR anedyshas been discussed
elsewhere [6]. In pure epistasis scenarios (i.e., no significaint @ffects), there is no need to
adjust for main effects and MB-MDR analysis essentially invwlhthe consecutive
application of one-way Analysis of Variance (ANOVA) F-tedtattcompare (groups of)
multi-locus genotype cells with respect to the quantitativié irader study. Note that the
result of at-test is identical to that of an ANOVA computed for two groupsj-statistic is
the square root of the F-statistic used in ANOVA. Hence, in iptacthe validity of MB-
MDR epistasis results may depend on whether or not ANOVA asgmare met, which
warrants further investigation.

Many authors have studied the effects of model violations in @gresettings in general
and have suggested alternative strategies when violations cannot be rem&ghted [



Due to the aforementioned link between MB-MDR and ANOVA, we ardicpéarly
interested in violations regarding the latter. The three main WWAl@ssumptions are: 1) the
observations are independent, 2) the sample data have a normal distniathianfactor
levels (e.g., multilocus genotype classes) and 3) the dependeathl@arivariances within
each factor level are homogeneous (homoscedasticity) [7]. Ggrsgraaking, when either
the assumption of normality or homoscedasticity or both are violatedy higldted type |
errors and false positives can arise, suggesting a non-robustmesaroktric methods under
these scenarios [9]. It should be noted though that Ft-testis are scarcely affected by non-
normality of population distributions (e.g, [10,11]). Nevertheless, whend#pendent
variable does not meet ANOVA'’s normality assumption, the non-parankatiskal-Wallis
or Mann-Whitney U test [12] is commonly taken to replace the AN®W or a Student’'s-
test. However, these non-parametric counterparts are not an inenediation to the
problem of unequal variances (heteroscedasticity), as was showore bgE3-15].
Alternatively, data transformations can be considered to induce ntyrmiatir instance,
Wolfe et al. [16] used the logarithmic transformation to tramsfarskewed distribution to a
distribution that is approximately normal. On the other hand, Jin Et7alhighlighted that,
when the logarithmic transformation is used, it may over-comperigateskewed data and
create left-skewed data, which can hardly be seen as aaviempent. The Mann-Whitney U
test avoids making distributional assumptions other than requiringo gtstributions of
identical shape. For two-group comparisons, it is equivalent to an grdsbadent’st-test
performed on the ranks of the original outcome measurements angptvékies are
mathematically identical to Kruskal-Wallis one-way analydivariance by ranks [18,19].
The additional difficulties with data transformations prior to asial{whether based on ranks
or not) are that a chosen transformation may not address all &suese (this is: addressing
non-normality and unequal variances), and that several linear or neam-lidata
transformations will have different implications on post-analygerpretability. A road map
for the appropriate use of non-parametric and parametric two-groupacson tests when
group sizes are equal is given in Additional file 1: Figure S1.

The event of unbalanced data (i.e., unequal sample sizes in gropargmns) affects the
choice for a particular test as well. Gibbons and Chakraborti [2@hasized that for
unbalanced ANOVA designs, Mann—-Whitney U tests are not a suitaplacement for
Student'st-tests when variances are unequal, irrespective of whetheasthenption of
normality is satisfied or violated. When normality and homogeraditsariance are violated
together, Zimmerman and Zumbo [21] suggest that the Wetdest, alias the unequal
variancet-test, can effectively replace the Mann-Whitney U test whend#ta are first
transformed to ranks prior to testing. However, it has been reporizahh [22] that the test
with Welch correction becomes too conservative when sample sigestrangly unequal
compared to the Studentdest. Instead, Szymczak [23] and Rupar [24] suggest focusing on
medians (e.g. Mood’s Median test). However, Pett [25] has arguechéladdins tests are less
powerful than other non-parametric tests (e.g. Mann-Whitney and Krl&kidiE one-way
ANOVA by ranks) because these only use two possibilities fimesc scores either above or
below/equal to the median and the absolute value of the differenceebetiae observed
scores and the median is not accounted for. Figure 1 summarizesitthefusome popular
parametric and non-parametric two-group comparison tests when graspase unequal
[26].



Figure 1 Group comparison test maintaining adequate Type 1 error control, when

group sizes are unequalLegend: When several tests are listed, they are listed from most
(top) to least (bottom) powerful. The tests in a square box and blue font should be avoided in
MB-MDR due to reasons mentioned next to them.

In the context of genetics, model violations and effects of lemicad data have primarily
been discussed in the context of gene expression studiestestANOVA models (e.qg.,
[23,27,28] . The topic is severely under-appreciated in the context tdspiscreening, as
indicated before. For the latter, violations may pertain to pdatibn or pre-screening
algorithms, to the actual epistasis modeling and testing, asasetb the implemented
corrections for multiple testing. Also for MB-MDR it has neveemenvestigated what the
cumulative effect is of violated association test assumptions, acknowletigahghe presence
and extent of these violations may differ within and between sestagegs of the MB-MDR
analysis. However, concerns about distributional data assumptioBfMDR association
testing can easily be removed by adopting a non-parametric viaw ppased on ranks
(Figure 1 and Additional file 1: Figure S1). In this study, we usailgtions to assess the
cumulative effect of deviations from normality and homoscedastioit the overall
performance of quantitative Model-Based Multifactor Dimension&igduction (MB-MDR)
with variable association tests to detect 2-locus epistagialsi We investigate the utility of
data transformations to maintain or to increase MB-MDR'’sciefiicy and to control false
positive rates. Since important lower-order genetic effiestsadjusted for can also give rise
to inflated type | errors or false positive epistatic findjregs discussed in [6,29], we restrict
our attention to pure epistasis two-locus models (i.e., no main effects).

Methods

Simulation settings

We simulate 18 two-locus settings of an epistasis model folloys@j each setting
involving 1000 replicates and consisting of 500 unrelated individuals percatepl In
particular, simulations are based on model M170 of [30] which regairesdividual to be
heterozygous at one locus and homozygous at the other in order to haveaeasethc
guantitative phenotype. Minor allele frequencies (MAFs) for theatasstatic pair (SNP1
and SNP2) are prespecified at 50%, hereby a pure epistasis (Wdd€) becomes a pure
epistasis model when the MAFs of the two SNPs are set at B@Padditional 98 SNPs are
generated with MAFs randomly sampled from a uniform distributid(9.05,0.5). We
assume all SNPs to be in Hardy-Weinberg Equilibrium and assinkegé equilibrium
between them. The proportion of phenotypic variation that is due to &pistaiation (g)
between individuals is varied as 0, 5 and 10%.

To assess the effect of violated normal trait distributionscamsider trait distributions that
are, apart from normal, also chi-squared or Studénttee same distribution is assumed for
each of the 9 levels of the two-locus genotypes derived from SN&BENP2 combined. To
investigate the MB-MDR cumulative effects of heteroscedagtiove consider for every
aforementioned setting, constant and non-constant phenotypic variancedirgcto the
following scenarios.



Scenario 1: normal distribution

We simulate 9 variances from U [1,10], one for every two-locutgpe combination
corresponding to SNP1 and SNP2. Homoscedasticity or constant vaisamuced by
simulating traits with multi-locus specific variance equathe average of the 9 genotypic
variances mentioned before.

Scenario 2: chi-square distribution

Quantitative traits are generated from a central chi-squatebdion with 2 degrees of
freedom (df), inducing a constant trait variance for every two-lgemotype combination.
To simulate settings with heteroscedasticity, non-centralqeiase distributions are used, df
randomly selected from the uniform distribution U [2,10]. The non-centiaditameter (ncp)
for every two-locus genotype combination is taken to be the differeertween a preset
maximum (maxncp) of 10 and the genotype combination-specific df. rBisisits in a
constant trait mean for all multi-locus genotypes (equal to maamzpphenotypic variances
(twice the df + 4 times the ncp) ranging from 20 to 36.

Scenario 3: t-distribution

We consider quantitative traits fromt-alistribution with 3 degrees of freedom. Non-equal
phenotypic variances are introduced by generating data for the Yooudt genotype
combinations from the uniform distribution U [3,10]

Analysis method: MB-MDR

Model-Based Multifactor Dimensionality Reduction (MB-MDR)asdata mining technique
that enables the fast identification of gene-gene interactiomsng thousands of SNPs,
without the need to make restrictive assumptions about the geretesrof inheritance. The
most commonly used implementation of MB-MDR involves testing one +oglis genotype
cell versus the remaining multi-locus cells (i.e. 1 cell versus 8 remgadeils, in case of 2 bi-
allelic loci). By construction, this procedure creates two (possilglyly) imbalanced genetic
groups that subsequently need to be compared in terms of meadianrtrait differences.
To date, MB-MDR has used Studenttest to make such group comparisons for quantitative
traits. This implementation is based on simulation studies teatresl traits to be normally
distributed with equal genotypic variances for each of the nodtid genotype combinations
corresponding to a bi-allelic functional SNP pair [6,29]. The MB-MB&Rputted final test
statistics for epistasis evidence are presented as ANO@#atistics. Naturally, different
numbers of individuals contribute to specific multilocus genotype conibisat More
importantly, MB-MDR’s internally performed group comparison testgolve possibly
highly unequal group sizes. Hence, paramettists are always pooled varianeests. A
novel implementation allowing unequal group variances based on the ¥ueiest (WT) for
two-group comparisons is included in the MB-MDR softwesesion 2.7.4. For a graphical
representation of the quantitative MB-MDR method, we refer to Figure 2 of [6].



Figure 2 Density plots for original trait (panel A) and rank transformed traits (panel B)

for one simulated data replicate with epistatic variance 10%Legend: Numbers as they
appear with color lines in the legend: 1=normal constant variance, 2=normal non-constant
variance, 3=chi-square constant variance, 4=chi-square non-constant variancep®Vild-ty
individuals (homozygous for the major allele) are coded as 0, heterozygous individuals as 1,
and individuals homozygous for the minor allele as 2. Figures in brackets repregaet sam
sizes for the multi-locus genotype cells.

All simulated data are analyzed with MB-MDR, with Studenttest (ST) as well as the
novel Welch’'st-test (WT) implementation to assess power and type | errar ®riMB-
MDR submission, original traits are either left untransformettaorsformed into new traits
via logarithm transformations (Log), standardization transfoonatbtz) or via rank-based
transformations. The latter transformations involve the assignafeabsolute ranks to all
available trait measurements in a serially increasing qRlenk), after which the ranks are
transformed to normality (Rtn). Data transformations are condutctBd?i15.0 [31]. We are
currently working on a MB-MDR version that will optionally useaak-transformation of
original trait values, allowing MB-MDR analyses with paramettrior non-parametric Mann-
Whitney U- tests of association. Overall significance i®sssd at 5% level of significance
after correction for multiple testing via the permutation-base@-down maxT multiple
testing correction of [32] (see also [33]). Permutations arechas 999 new data replicates.
Small group sizes in group comparisons are dealt with by raguariminimum contribution
of 10 individuals to each group.

Results

Figure 2 shows density plots for the normal and chi-squared distlilmuiginal data (panel
A) and rank-transformed to normality traits (panel B) with équa unequal variances. The
9 density groups refer to the 9 possible multi-locus genotypes the &iNBagpair and are
based on a single replicate, so as to keep the total samgple $90 individuals. For each
scenario, the first generated dataset was used. Cell 0-0 on ao@ dolumn 1 (cell 2-2 on
row 3 and column 3) refers to homozygous most (least) frequent mibiieduals. The
contribution of the epistatic variance to the trait variance is 10#ber replicate data or
assumptions about epistatic evidence give rise to similar plots gnown). Rank-
transformation to normality (Rtn) (cfr. panel B) effectivelgatb with multimodal data
distributions (cfr. panel A). Testing whether the multilocus genosgeeific traits can be
assumed to come from a normal population (Shapiro-Wilk's test) pighlia successful
transformation from potentially non-normal data (panel A) to approeimatmal data (panel
B).

For the same scenarios as before, yet using all SNP padstha 999 permutations F-
statistics data, we create quantile-quantile plots (qg-plots) foeoretical F distribution with
(g-1, n-g) degrees of freedom. Here, n=500 is the number of individualdataset and g=2
is the number of groups (i.e. 1 cell versus 8 remaining cells). Nateihce no missing data
were considered, all theoretical distributions for associatios v@stin MB-MDR, whatever
SNP pair is considered, should be F(1,498). Whereas Figure 3 shows thaetsqéppl
association tests (squared Studet)tsomparing a single multi-locus genotype (in particular,
cell 0-0) with the 8 remaining ones, Figure 4 shows the qqg-plietedeto the SNP pairs and
their MB-MDR step 2 test statistics (i.e., the maximum wb tassociation tests; one
involving H-cells versus K,O}-cells, and one involvingL-cells versus H,O}-cells).



Comparison of Figure 3 with Figure 4 could suggest that deviations & theoretical F-
distribution is not so much of a concern at MB-MDR’s dimensionaétjuction step (i.e.,
labeling of multilocus genotypes according to “severity”), but seente quite dramatic for
MB-MDR’s final two-locus test. This observation can be madespective of whether traits
initially are normally or chi-squared distributed, and irrespeadf whether the original traits
or rank-transforms to normality are considered. However, reage&igure 3, now for cell
(2,2) instead of (0,0) (hence, the multilocus genotype cell whichhieasnallest number of
individuals contributing to it), also highlights hard to ignore deviatioo the theoretical
F(1,498) distribution at the multilocus genotype cell labeling stage Aglditional file 2:
Figure S2).

Figure 3 Qg-plots of observed squared Student’s test values for association between
the multi-locus genotype combination cell 0-0 versus the pooled remag multi-locus
genotypes, for normal and chi-squared trait distributions or non-transfomed and rank-
transformed to normal data. Each time, one replicate with epistatic variance 10% is
considered and F-statistics are pooled for all SNP pairs over the 999 permugations
generated F-distribution according to F(1,498) is taken as the reference.

Figure 4 Qg-plots of MB-MDR step 2 test values (squared Student’s t), for normal ah
chi-squared trait distributions, and non-transformed or rank-transformed to normal
data. For each setting, one replicate with epistatic variance 10% is considerédssatistics
are pooled for all SNP pairs over the 999 permutations. A theoretical F-distribctmnadiag
to F (1,498) is taken as the reference.

Familywise error rates and false positive rates

Table 1 and Table 2 report the familywise error rates (FWEdtjesponding to the
simulation scenario’g0 (no epistasis, no main effects) and false positive ratesporeing

to ¢’=0.05 and 0.1 (scenarios of epistasis in the absence of main )efféet®bserve that,
irrespective of the original trait distribution and whether or not & deansformation
preceded MB-MDR analysis, the estimated rates satisfdl®ya [34] liberal criterion of
robustness for the significance lewel0.05 . This criterion requires that the error rates are
controlled for any leved of significance, if the empirical rat® is contained in the interval
0.5 <& <15«x.

Table 1 Type | error rates for data generated under the null hypothesis of no genet
association (g =0)

Trait status Familywise error rate (Type I)

Distributions Variances ST WT Rank ST Rank WT Log ST Log WT Rtn_ST Rtn WT
Normal Equal 0.0400.053 0.049 0.049 0.044 0.051 0.050 0.058
Normal Unequal 0.058.066 0.044 0.051 0.064 0.056 0.053 0.058
Chi-square Equal 0.04B.036 0.052 0.051 0.055 0.038 0.058 0.056
Chi-square Unequal 0.058.057 0.048 0.052 0.051 0.054 0.043 0.047
t-distribution  Equal 0.048.053 0.050 0.059 0.049 0.056 0.052 0.057
t-distribution ~ Unequal 0.050.044 0.042 0.051 0.053 0.048 0.045 0.039

Legend ST=Student's-test, WT=Welch’st-test, Rank_ST (Rank WT)=Studenttgest
(Welch’s t-test) on trait ranks, Log_ST (Log_WT)=Student’s t-test (\Wsld-test) on log
transformed trait, Rtn_ST (Rtn_WT)= Student’s t-test (Welchtest) on trait rank
transformed to normal.



Table 2 False positive percentages of MB-MDR involving pairs other than the
interacting pair (SNP1, SNP2)

Trait status False positives

g° Distributions Variances ST WT Rank_ST Rank WT Log ST Log WT Rtn_ST Rtn_WT
Normal Equal 0.04®.047 0.053 0.048 0.051 0.047 0.050 0.051
Normal Unequal 0.05D.060 0.044 0.061 0.052 0.065 0.048 0.068
Chi-square Equal 0.030.056 0.051 0.053 0.042 0.054 0.045 0.056

0.05 Chi-square Unequal  0.04D055 0.047 0.042 0.042 0.053 0.047 0.052
t-distribution  Equal 0.05D.048 0.048 0.051 0.047 0.047 0.047 0.033
t-distribution Unequal  0.058.047 0.058 0.057 0.054 0.048 0.051 0.052
Normal Equal 0.04®.067 0.058 0.058 0.053 0.061 0.054 0.063
Normal Unequal 0.050.065 0.044 0.058 0.048 0.063 0.045 0.057
Chi-square Equal 0.048.059 0.061 0.060 0.053 0.055 0.057 0.056

0.1 Chi-square Unequal  0.06B041 0.051 0.041 0.061 0.040 0.053 0.036
t-distribution  Equal 0.04®.053 0.047 0.049 0.050 0.054 0.044 0.051

t-distribution Unequal ~ 0.038.050 0.055 0.059 0.036 0.051 0.037 0.051
Legend False positive percentage is defined as the proportion of ttamwuamples for
which at least one pair other than the causal pair (SNP1, SNP2) are significant
ST=Student’st-test, WT=Welch'st-test, Rank_ST (Rank_WT)=Studentest (Welch’st-
test) on trait ranks, Log_ST (Log_WT)=Student’s t-test (Welthé&st) on log transformed
trait, Rtn_ST (Rtn_WT)= Student’s t-test (Welch’s t-test) on trait rearksformed to normal.

Empirical power estimates

MB-MDR empirical power estimates for correctly identifyithe causal epistatic SNP are
given in Table 3. For all scenarios higher MB-MDR power isieed with increasing?g
i.e., with increasing proportion of epistatic variance to tiotad variance. MB-MDR analysis
with Welch’st-test has generally lower power than MB-MDR with the Studdstgst. This
power loss is most severe for normal data. A (moderate) poweisgabserved for settings
where traits aré-distributed, variance homogeneity is present, epistaticnagisgs 10% and
data are either left untransformed or are log-transformed poioMB-MDR analysis.
Parametric Studentistests with the original trait measurements lead to reduceicibWwB-
MDR power when trait distributions deviate from normality. For nonvadly distributed
traits, there is a tendency for MB-MDR with Studentapplied to rank-transformed data to
outperform other MB-MDR analysis approaches (this is: associdgsts other than
Student'st and other types of transformation, or no transformation at all)wokthy
competitor is MB-MDR with Student'safter rank-transforming original traits to normality.
The differences in power performance between MB-MDR using umtramsd traits or
transformed traits are the largest for rank-based tranafams compared to logarithmic
transformations. No significant differences are observed betwapiieal power estimates
derived from MB-MDR analysis on untransformed traits compared te thonalyses based
on trait standardization transformations (results not shown).



Table 3Power estimates of MB-MDR to detect the correct interacting pair (8P1,

SNP2)
Trait status Power

g° Distributions Variances ST WT Rank_ST Rank WT Log ST Log WT Rtn_ST Rtn_WT
Normal Equal 0.40@.046 0.367 0.001 0.377 0.039 0.378 0.041
Normal Unequal 0.330.083 0.391 0.001 0.331 0.069 0.344 0.051
Chi-square Equal 0.220.000 0.953 0.130 0.929 0.466 0.978 0.802

0.05 Chi-square Unequal  0.310.005 0.511 0.002 0.402 0.012 0.578 0.135
t-distribution  Equal 0.3440.239 0.920 0.042 0.338 0.240 0.806 0.320
t-distribution Unequal  0.388.116 0.615 0.002 0.380 0.122 0.543 0.132
Normal Equal 0.95@.634 0.952 0.087 0.959 0.626 0.958 0.650
Normal Unequal 0.968.743 0.975 0.152 0.955 0.727 0.959 0.690
Chi-square Equal 0.890.126 1.000 0.922 1.000 1.000 1.000 1.000

0.1 Chi-square Unequal  0.93B350 0.989 0.255 0.975 0.548 0.991 0.884
t-distribution  Equal 0.87%.881 1.000 0.885 0.853 0.876 0.999 0.987

t-distribution Unequal  0.920.801 0.995 0.409 0.921 0.806 0.989 0.834
Legend Power is defined as the proportion of simulated samplesidf wWie causal pair
(SNP1, SNP2) is significant.

ST=Student's-test, WT=Welch'st-test, Rank_ST (Rank_WT)=Studentest (Welch’st-
test) on trait ranks, Log_ST (Log_WT)=Student’s t-test (Welthé&st) on log transformed
trait, Rtn_ST (Rtn_WT)= Student’s t-test (Welch’s t-test) on trait rearksformed to normal.

A graphical representation of the 1000 MB-MDR epistasis testtesfor the causal SNP pair
(p-values, multiple testing corrected, as output by the MB-MDRvswé), one for each data
set generated under a particular simulation setting (in paiafil= 10%), is given in Figure
5. Here, MB-MDR with Student’s is considered. Results are depicted for scenarios where
the original trait data are derived from a normal (symmeticfrom a chi-squared (non-
symmetric) distribution, and then subjected to different data tranation strategies. The
scatter plot matrices of Figure 5 suggest a tendency for amdB-MDR p-values to be
generated after rank-based data transformations compared taygbesf transformations,
including the identity transformation (see for instance Panelsnd B for normally
distributed traits). This tendency becomes more extreme fauckare distributed traits with
non-equal variance (Panel D). Here, it becomes apparent thatraastermation generally
leads to largep-values as compared to rank-transformations to normality. For settimgre
traits are chi-squared distributed and variance homogeneity sentrehe scatter plots of
Figure 5 (Panel C) are in agreement with the correspondingtsda Table 3 (power
estimates of 100% in the event of a non-identity transformation cechparo0% for MB-
MDR applied to untransformed traits). If there were no differentetween the
untransformed and transformed trait results, we would expecteafidimts to lie along the
diagonal.

Figure 5 Scatter plot matrices of MB-MDR multiple testing correctedp-values for the
causal SNP pair for a variety of a priori data transformations.Only MB-MDR results
with Student’s t testing for associations are shown. The epistatic contributiortitaithe
variance is set to 10%. Legend: Different scenario’s of trait distributioocasdered:
normal traits and homogeneity (padgt normal traits and heteroscedasticity (pdelchi-
squared distributed traits and homogeneity (p@ethi-squared distributed traits and
variance heterogeneity (parig).




Discussion

Proposed data mining methods for epistasis detection are seldom thgrdisghissed in
terms of their underlying (model) assumptions and their effactsverall power or type |
error control. For instance, another well-known data dimensionalityctied method for
guantitative traits (generalized MDR - GMDR) [35] is based arresstatistics to define
differential multilocus genotype groups related to the trait afrast. Although the GMDR
method is not necessarily likelihood-based (least-squares regress other statistical
methods for non-normal continuous traits can be employed as well,dryxheontinuous
phenotypes were only investigated in terms of a normal model, t@dsoftware
implementation for continuous traits relies on the classical linear regrgssradigm to build
the score statistics. The authors did not explicitly investidpgower of their method when
non-normal continuous data are involved in the context of epistasensgePreviously, we
commented on the advantages and disadvantages of GMDR-like methquszedito MB-
MDR (e.g., [5,33]). Based on these comments, we here focused on MB-Wie
investigating the effects of model-violations on the performance-lfcus multifactor
dimensionality reduction methods for quantitative traits.

For every 2 loci (for 2 bi-allelic SNPs, there are theordtic@ multilocus genotype
combinations), MB-MDR with associatigriests subsequently creates two groups, where one
group refers to one multilocus genotype and the other to the remainitipcas genotype
combinations. Internally, 2-group comparison tests are performasd wnassign a “label” to
each multilocus genotype. This procedure naturally creates higblglanced groups, with
potentially extreme cases of heteroscedasticity. Although Mgetest is designed to give a
valid t-test in the presence of different population variances, Wetdie'st combined with
MB-MDR shows no improved power over the Studemtitest for scenarios with unequal
variances, even for normally distributed traits (cfr Table 3). Taisbe explained by the fact
that the degrees of freedom for the Welch'’s test becomeesn@ilstrongly unequal groups,
resulting in a highly conservative test in the event of extrent@lanced data (see e.g., [36]
and Figure 1). This motivates our choice to continue working with MBRMDalyses based
on Student’s testing to identify groups of multilocus genotypes with differenteit values,
despite the underlying trait distribution.

It is well-known that parametric methods have improved statispcaler over non-
parametric methods when all parametric model assumptions atk [8@l88]. When an
analysis of residuals detects violations of assumptions of neoynaaid heterogeneity of
variance of errors across groups for ANOVA, remedial measiagslog-transform the
dependent variable and consideration of an ANOVA model assuming unegaalces, may
work well. However, in screening settings involving many factar a time, it is usually
impractical to find a single transformation that is universafyimal for all factors. When
study data do not meet the distributional assumptions of paramettivods, even after
transformation, or when data involve non-interval scale measurensemsn-parametric
context is more appropriate. Such a context usually impliesngestased on ranks or
applying data rank transformations prior to the application of a parametric tes

Strong power increases were observed when data were rank-tneedfprior to MB-MDR
testing with Student’s association testing. This can be understood by noting that the ranks,
which are computed for the pooled set of all available quantitatienreasurements, in
general reduces the influence of skewness and deviations fromlityprimahe population
distribution [39,40]. The same is achieved by a percentile tranafanmn(Rtn), which — at



the same time - preserves the relative magnitude of scomesdregroups as well as within
groups. Only for normally distributed data with equal variances, tla sdenario for &test
on original traits, a small power loss is observed. Goh and YapIgtOtancluded that rank-
based transformation tends to improve power regardless of thdéuwlisin. In general, as
with traditional two groug-testing, deviations from normality seem to be more influential to
the power of an MB-MDR analysis with Student’than deviations from homoscedasticity
(Table 3). This is also in line with the observation that powBmates generally become
more optimal for scenarios in which data are transformed to atibynprior to MB-MDR
analysis compared to scenarios in which they are not. The idergmats obtained for
untransformed traits and standardized traits (not shown) are notisswypas well.
Standardization involves linearly transforming original traitueal using the overall trait
mean and overall standard deviation. Such a transformation does notlegféeb-group-
tests within MB-MDR.

Although data transformations are valuable tools, with severalitgrefre has to be taken
when interpreting results based on transformed data. The infereapestafsis depends upon
the scale of measurement in a way that interaction eféactsoe reduced or eliminated by
non-linear monotonic transformations of a dependent variable [41], sdwlsome rank-
based transformations. However, for our simulation scenarios, wenbaigeen any evidence
of such a reduction, nor increase in interaction signals when usingramskormed data
prior to MB-MDR analysis (Tables 1,2 and 3, Rank). Application of gigtasis screening
tool to real-life data will face the challenge to matcheobsd statistical significance with
biological relevance [1].

Clearly, sample size matters. The smaller the sample thieemore likely it is to obtain
extremely sparse multilocus genotype combinations. By desigrBeMMR, highly inflated
type | errors for group comparison tests are expected within NDBRMeach of which
contributing to the final MB-MDR results (Figures 3, 4 and Additiofilal 2: Figure S2).
Despite these internal inflations, there is no evidence fonaulative or combined effect on
MB-MDR’s final results (Tables 1 and 2), irrespective of tesuaned model violation (in
terms of deviations from normality or homoscedasticity). Tlae be explained by the
permutation-based step-down maxT approach, which is currently adopté@WDR to
correct for multiple testing of SNP pairs.

In many of our practical applications though, we observed a tepadénocreased numbers
of significant epistasis results with MB-MDR applied to quanhtiéatraits, even after SNP
pruning (f below 75%) to avoid potential false positives (or redundant interaptiresto
highly correlated SNPs. No such observation was previously madecfustaimous traits.
For dichotomous traits, MB-MDR uses a score test, in partictilarPearson’s chi-squared
test. This test is known to be affected by unbalanced data, Isespata, as is the case for
rare variants [42]. However, these data artifacts, which quesimruse of large sample
distributions for test statistics, are minimized by requiranghreshold sample size for a
multilocus genotype combination. An explanation for the discrepanciesveblsbetween
theoretical results and practical applications may be found indlgehe null distribution for
multiple testing is derived. It is often forgotten that also peatrari-based multiple testing
corrective procedures make some assumptions. For instance, forefhidostin maxT
approach as implemented in MB-MDR, the Family-Wise Error RBEWER) is strongly
controlled provided the assumption of subset pivotality holds [32]. The sphsdality
assumption is needed to ensure that control under a data generatihgttistsatisfying the



complete null gives the desired control under the true data genedetinigution, which may
harbor any number of true nulls [43].

In real-life applications, we do not knaavpriori which nulls are true and which are false. In
addition, preliminary results on the effect of linkage disequilibriumMB+MDR error
control, as well as on the effect of highly variable minor elfetquencies (and thus highly
variable available samples sizes for multilocus genotypes) shatvsubset pivotality is
likely to be violated in real-life settings, giving rise tolaéd error rates in the presence of
multiple epistasis signals.(work in progress). Note that the sthndaotstrap method
provides the asymptotically correct null distribution for multipkgtitey and does not require
the subset pivotality condition given in Westfall and Young [32]. The stnyation of
resampling-based multiple testing with asymptotic strong contrgipef it error as corrective
method for multiple testing in MB-MDR warrants further investigation.

Scale transformations are quite common as remedial stategieeet statistical testing
assumptions. However, since the optimal scale transformation rs lwdeed on theoretical
motivations or statistical convenience, it often leads to new cotsstthat are hard to
interpret or are biologically meaningless. Another concerrteléo implementing scale
transformations is that non-additive signals may be removed asca chnsequence of such
transformations prior to analysis [44].

Our results confirmed that rank-based transformations are dgnerast powerful when
guantitative traits are non-normally distributed. Rank transfoomatiserve as a bridge
between non-parametrics and parametrics [19]. They naturathynate any problem of
skewness (e.g. chi-squared distribution). By ranking the impact aersuts minimized:
regardless of how extreme the most extreme observation isathe rank is given to it. A
particular type of rank transformation uses percentile ramkk is referred to as rank
transformation to normality. In this context, a percentile rardefed as the proportion of
guantitative trait outcomes in a distribution that a specifit waue is greater than or equal
to. When the number of ties is negligible, it will lead to a nearerfect normal distribution,
irrespective of the original trait’s distribution, which usually is a highbirdéle property.

Conclusion

In this study, we assessed the performance of MB-MDR in tefrpewer and familywise
error rate, with different choices of parametric and non-paramegtsociation tests, in the
absence or presence of trait transformations. We observed that meahpatistributed traits
can affect the final test statistics of MB-MDR with d&sil t-tests for association, and that
this influence is primarily driven by the sparser multilocus ggretombinations. Improved
power can be obtained by pre-analysis data transformations. BIB-permutation-based
maxT correction for multiple testing keeps type | error anefpdssitive rates under control,
since in all considered simulation scenarios, the assumption of siNsttity of the maxT
permutation strategy was plausible.

When performing MB-MDR screening for gene-gene interactions withtijatve traits, we
recommend to rank-transform traits to normality prior to MB-MDflgsis with Student’s
test as preferred association test. This practice will ngt gudrantee adequate type | error
control, but will also offer an optimal power performance under @e wiariety of data
applications.
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Additional files

Additional _file_1 as TIFF

Additional file 1 Figure S1 Group comparison test maintaining adequate Type 1 error
control, when group sizes are equal. Legend: When several tests are listede tisted

from most (top) to least (bottom) powerful. The tests in a square box and blue font should be
avoided in MB-MDR due to reasons mentioned next to them.

Additional _file_2 as TIFF

Additional file 2 Figure S2 Qg-plots of observed squared Studéntést values for
association between the multi-locus genotype combination cell 2-2 versus tieingm
pooled multi-locus genotypes, for normal and chi-squared trait distributions or non-
transformed and rank-transformed to normal data. For each setting, ondeeplica
epistatic variance 10% is considered and F-statistics are pooled for gliggi®ver the 999
permutations. A generated F-distribution according to F(1,498) is taken as theaefere
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Equal Equal
Variance Variance
Yes No Yes No
Use: Use one of:
» Student's or permutational t-test = Permutational t-test (highest power) and controlled type | error
= [Welch's t-test:conservativeness with increasing extreme unbalanced data]) * Mann-Whitney U
* [Mann-Whitney U: too conseravative] = [Student's and Welch's t-tests: too conservative for highly unbalanced data]
Use: Use one of:
= Student's or permutational t-test * Manny-Whitney U
= [Welch's t-test:conservativeness with increasing extreme unbalanced data] « Rank transform data to normality and apply non-parametric test (e.g. Mann -Whitney U)

* Permutational t-test [becomes better than the Student's t-test for unbalanced data]
* [Student's and Welch's t-tests are affected irrespective of sample sizes]
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Additional files provided with this submission:

Additional file 1: 9193456947630351 add1 .tiff, 66K
http://www.biodatamining.org/imedia/2809858539777008/supp1 .tiff
Additional file 2: 9193456947630351 _add?2.tiff, 48K
http://www.biodatamining.org/imedia/3876061899777008/supp?2.tiff
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