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Abstract 

Background 

Applying a statistical method implies identifying underlying (model) assumptions and 
checking their validity in the particular context. One of these contexts is association modeling 
for epistasis detection. Here, depending on the technique used, violation of model 
assumptions may result in increased type I error, power loss, or biased parameter estimates. 
Remedial measures for violated underlying conditions or assumptions include data 
transformation or selecting a more relaxed modeling or testing strategy. Model-Based 
Multifactor Dimensionality Reduction (MB-MDR) for epistasis detection relies on 
association testing between a trait and a factor consisting of multilocus genotype information. 
For quantitative traits, the framework is essentially Analysis of Variance (ANOVA) that 
decomposes the variability in the trait amongst the different factors. In this study, we assess 
through simulations, the cumulative effect of deviations from normality and homoscedasticity 
on the overall performance of quantitative Model-Based Multifactor Dimensionality 
Reduction (MB-MDR) to detect 2-locus epistasis signals in the absence of main effects. 



Methodology 

Our simulation study focuses on pure epistasis models with varying degrees of genetic 
influence on a quantitative trait. Conditional on a multilocus genotype, we consider 
quantitative trait distributions that are normal, chi-square or Student’s t with constant or non-
constant phenotypic variances. All data are analyzed with MB-MDR using the built-in 
Student’s t-test for association, as well as a novel MB-MDR implementation based on 
Welch’s t-test. Traits are either left untransformed or are transformed into new traits via 
logarithmic, standardization or rank-based transformations, prior to MB-MDR modeling. 

Results 

Our simulation results show that MB-MDR controls type I error and false positive rates 
irrespective of the association test considered. Empirically-based MB-MDR power estimates 
for MB-MDR with Welch’s t-tests are generally lower than those for MB-MDR with 
Student’s t-tests. Trait transformations involving ranks tend to lead to increased power 
compared to the other considered data transformations. 

Conclusions 

When performing MB-MDR screening for gene-gene interactions with quantitative traits, we 
recommend to first rank-transform traits to normality and then to apply MB-MDR modeling 
with Student’s t-tests as internal tests for association. 

Keywords 

Model-based multifactor dimensionality reduction, Epistasis, Model violations, Data 
transformation 

Background 

The search for epistasis or gene-gene interaction effects on traits of interest is marked by an 
exponential growth. From an application point of view, these searches often focus on 
candidate genes or pathways. The reasons for this are often logistic ones: First, genome-wide 
screening for epistasis requires large sample sizes to ensure sufficient power detection, which 
may only become available when having access to consortia data. Second, exhaustive 
genome-wide epistasis screenings assumes the availability of sufficient computer power and 
an adequate infrastructure to store and analyze the data, as well as to store and process the 
analysis results. From a methodological point of view, searches for epistasis effects are 
performed with the goal in mind to develop methods that can narrow the gap between 
statistical and biological epistasis. To date, several epistasis detection approaches exist, each 
addressing differential aspects of the underlying theoretical epistasis model, and with 
different performances in terms of Type I error control or power detection [1]. Although 
methods are often thoroughly compared to competing methods in this sense, using a variety 
of simulation settings that are hoped to reflect realistic mechanisms of disease-causing 
genetic variants, they usually do not involve comprehensive statements neither about the 
underlying assumptions, nor about how violations of these assumptions may affect the 
method’s performance. Modeling or testing techniques usually come with specific 



assumptions that need to be fulfilled in order to produce valid analysis results. This also 
applies to methods to detect epistasis. Good standard practice in this context would include 1) 
to investigate the underlying assumptions of the epistasis detection or modeling technique, 2) 
to check whether these are valid, and 3) to take remedial measures or to accommodate the 
effects of identified violations. 

One of the pioneer methods used in the context of dimensionality reduction and gene-gene 
interaction detection is the Multifactor Dimensionality Reduction (MDR) method, initially 
developed by Ritchie et al. [2]. MDR offers an alternative to traditional regression-based 
approaches. The method is model-free and non-parametric in the sense that it does not 
assume any particular genetic model. In particular, MDR for binary traits [2] enforces a 
dimensionality reduction by pooling multilocus genotype classes into two groups of risk 
based on some threshold value, and by evaluating the epistasis model via cross-validation 
principles. One concern related to the initial implementations of the MDR method was that 
some important interactions could be missed due to pooling too many multilocus genotype 
classes together. Another concern was that the MDR method did not facilitate making 
adjustments for lower-order genetic effects or confounding factors. Lastly, it was somewhat 
disappointing that after computationally intensive cross-validation and permutation-based 
significance assessment procedures only a single “best” epistasis model was proposed. Over 
the years, several attempts have been made to further improve the MDR ideas of Ritchie et al. 
[2], see for instance [3]. However, an MDR-based method was needed that could tackle all of 
the aforementioned issues within a unified framework and would flexibly accommodate 
different study designs of related and unrelated individuals. Model-Based Multifactor 
Dimensionality Reduction (MB-MDR) originated as such a unified dimensionality reduction 
approach. Like MDR, MB-MDR is an intrinsic non-parametric method, and thus avoids 
making hard to verify assumptions about genetic modes of inheritance. The original MB-
MDR implementation in R by Calle et al. [4] suffered from its own drawbacks, the major one 
being the significance assessment of epistasis models, which was based on the derivation of 
MAF dependent null-distributions. These drawbacks were handled in subsequent C++ 
versions of the MB-MDR software, adhering to the key principles of the MB-MDR strategy 
[5]. In summary, these key features are 1) dimensionality reduction via multilocus genotype 
cell labeling using appropriate association tests, 2) prioritization of multiple epistasis models 
(on reduced constructs / lower-dimensional features) via appropriate association tests and 
adequate multiple testing corrections to control false positives, 3) possible adjustment for 
lower-order effects or confounders in relevant steps of the epistasis detection process. 

The ‘modeling’ part in MB-MDR arises from the need to embrace parametrics when 
adjusting for lower-order (main) effects within a regression framework. The necessity of 
lower-order effects corrections in quantitative MB-MDR analyses has been discussed 
elsewhere [6]. In pure epistasis scenarios (i.e., no significant main effects), there is no need to 
adjust for main effects and MB-MDR analysis essentially involves the consecutive 
application of one-way Analysis of Variance (ANOVA) F-tests that compare (groups of) 
multi-locus genotype cells with respect to the quantitative trait under study. Note that the 
result of a t-test is identical to that of an ANOVA computed for two groups; the t-statistic is 
the square root of the F-statistic used in ANOVA. Hence, in principle, the validity of MB-
MDR epistasis results may depend on whether or not ANOVA assumptions are met, which 
warrants further investigation. 

Many authors have studied the effects of model violations in regression settings in general 
and have suggested alternative strategies when violations cannot be remediated [7,8]. 



Due to the aforementioned link between MB-MDR and ANOVA, we are particularly 
interested in violations regarding the latter. The three main ANOVA assumptions are: 1) the 
observations are independent, 2) the sample data have a normal distribution within factor 
levels (e.g., multilocus genotype classes) and 3) the dependent variable’s variances within 
each factor level are homogeneous (homoscedasticity) [7]. Generally speaking, when either 
the assumption of normality or homoscedasticity or both are violated, highly inflated type I 
errors and false positives can arise, suggesting a non-robustness of parametric methods under 
these scenarios [9]. It should be noted though that F- and t-tests are scarcely affected by non-
normality of population distributions (e.g, [10,11]). Nevertheless, when the dependent 
variable does not meet ANOVA’s normality assumption, the non-parametric Kruskal-Wallis 
or Mann-Whitney U test [12] is commonly taken to replace the ANOVA’s F or a Student’s t-
test. However, these non-parametric counterparts are not an immediate solution to the 
problem of unequal variances (heteroscedasticity), as was shown before [13-15]. 
Alternatively, data transformations can be considered to induce normality. For instance, 
Wolfe et al. [16] used the logarithmic transformation to transform a skewed distribution to a 
distribution that is approximately normal. On the other hand, Jin et al. [17] highlighted that, 
when the logarithmic transformation is used, it may over-compensate right-skewed data and 
create left-skewed data, which can hardly be seen as an improvement. The Mann-Whitney U 
test avoids making distributional assumptions other than requiring group distributions of 
identical shape. For two-group comparisons, it is equivalent to an ordinary Student’s t-test 
performed on the ranks of the original outcome measurements and its p-values are 
mathematically identical to Kruskal–Wallis one-way analysis of variance by ranks [18,19]. 
The additional difficulties with data transformations prior to analysis (whether based on ranks 
or not) are that a chosen transformation may not address all issues at once (this is: addressing 
non-normality and unequal variances), and that several linear or non-linear data 
transformations will have different implications on post-analysis interpretability. A road map 
for the appropriate use of non-parametric and parametric two-group comparison tests when 
group sizes are equal is given in Additional file 1: Figure S1. 

The event of unbalanced data (i.e., unequal sample sizes in group comparisons) affects the 
choice for a particular test as well. Gibbons and Chakraborti [20] emphasized that for 
unbalanced ANOVA designs, Mann–Whitney U tests are not a suitable replacement for 
Student’s t-tests when variances are unequal, irrespective of whether the assumption of 
normality is satisfied or violated. When normality and homogeneity of variance are violated 
together, Zimmerman and Zumbo [21] suggest that the Welch’s t-test, alias the unequal 
variance t-test, can effectively replace the Mann–Whitney U test when the data are first 
transformed to ranks prior to testing. However, it has been reported in Danh [22] that the test 
with Welch correction becomes too conservative when sample sizes are strongly unequal 
compared to the Student’s t-test. Instead, Szymczak [23] and Rupar [24] suggest focusing on 
medians (e.g. Mood’s Median test). However, Pett [25] has argued that medians tests are less 
powerful than other non-parametric tests (e.g. Mann-Whitney and Kruskal-Wallis one-way 
ANOVA by ranks) because these only use two possibilities for scores: scores either above or 
below/equal to the median and the absolute value of the difference between the observed 
scores and the median is not accounted for. Figure 1 summarizes the utility of some popular 
parametric and non-parametric two-group comparison tests when group sizes are unequal 
[26]. 



Figure 1 Group comparison test maintaining adequate Type 1 error control, when 
group sizes are unequal. Legend: When several tests are listed, they are listed from most 
(top) to least (bottom) powerful. The tests in a square box and blue font should be avoided in 
MB-MDR due to reasons mentioned next to them. 

In the context of genetics, model violations and effects of imbalanced data have primarily 
been discussed in the context of gene expression studies and t-test/ANOVA models (e.g., 
[23,27,28] . The topic is severely under-appreciated in the context of epistasis screening, as 
indicated before. For the latter, violations may pertain to prioritization or pre-screening 
algorithms, to the actual epistasis modeling and testing, as well as to the implemented 
corrections for multiple testing. Also for MB-MDR it has never been investigated what the 
cumulative effect is of violated association test assumptions, acknowledging that the presence 
and extent of these violations may differ within and between several stages of the MB-MDR 
analysis. However, concerns about distributional data assumptions for MB-MDR association 
testing can easily be removed by adopting a non-parametric view point based on ranks 
(Figure 1 and Additional file 1: Figure S1). In this study, we use simulations to assess the 
cumulative effect of deviations from normality and homoscedasticity on the overall 
performance of quantitative Model-Based Multifactor Dimensionality Reduction (MB-MDR) 
with variable association tests to detect 2-locus epistasis signals. We investigate the utility of 
data transformations to maintain or to increase MB-MDR’s efficiency and to control false 
positive rates. Since important lower-order genetic effects not adjusted for can also give rise 
to inflated type I errors or false positive epistatic findings, as discussed in [6,29], we restrict 
our attention to pure epistasis two-locus models (i.e., no main effects). 

Methods 

Simulation settings 

We simulate 18 two-locus settings of an epistasis model following [30], each setting 
involving 1000 replicates and consisting of 500 unrelated individuals per replicate. In 
particular, simulations are based on model M170 of [30] which requires an individual to be 
heterozygous at one locus and homozygous at the other in order to have an increased 
quantitative phenotype. Minor allele frequencies (MAFs) for the causal epistatic pair (SNP1 
and SNP2) are prespecified at 50%, hereby a pure epistasis model (M170 becomes a pure 
epistasis model when the MAFs of the two SNPs are set at 50%). An additional 98 SNPs are 
generated with MAFs randomly sampled from a uniform distribution; U(0.05,0.5). We 
assume all SNPs to be in Hardy-Weinberg Equilibrium and assume linkage equilibrium 
between them. The proportion of phenotypic variation that is due to epistatic variation (g2) 
between individuals is varied as 0, 5 and 10%. 

To assess the effect of violated normal trait distributions, we consider trait distributions that 
are, apart from normal, also chi-squared or Student’s t; the same distribution is assumed for 
each of the 9 levels of the two-locus genotypes derived from SNP1 and SNP2 combined. To 
investigate the MB-MDR cumulative effects of heteroscedasticity, we consider for every 
aforementioned setting, constant and non-constant phenotypic variances according to the 
following scenarios. 



Scenario 1: normal distribution 

We simulate 9 variances from U [1,10], one for every two-locus genotype combination 
corresponding to SNP1 and SNP2. Homoscedasticity or constant variance is induced by 
simulating traits with multi-locus specific variance equal to the average of the 9 genotypic 
variances mentioned before. 

Scenario 2: chi-square distribution 

Quantitative traits are generated from a central chi-square distribution with 2 degrees of 
freedom (df), inducing a constant trait variance for every two-locus genotype combination. 
To simulate settings with heteroscedasticity, non-central chi-square distributions are used, df 
randomly selected from the uniform distribution U [2,10]. The non-centrality parameter (ncp) 
for every two-locus genotype combination is taken to be the difference between a preset 
maximum (maxncp) of 10 and the genotype combination-specific df. This results in a 
constant trait mean for all multi-locus genotypes (equal to maxncp) and phenotypic variances 
(twice the df + 4 times the ncp) ranging from 20 to 36. 

Scenario 3: t-distribution 

We consider quantitative traits from a t-distribution with 3 degrees of freedom. Non-equal 
phenotypic variances are introduced by generating data for the 9 multilocus genotype 
combinations from the uniform distribution U [3,10] 

Analysis method: MB-MDR 

Model-Based Multifactor Dimensionality Reduction (MB-MDR) is a data mining technique 
that enables the fast identification of gene-gene interactions among thousands of SNPs, 
without the need to make restrictive assumptions about the genetic modes of inheritance. The 
most commonly used implementation of MB-MDR involves testing one multi-locus genotype 
cell versus the remaining multi-locus cells (i.e. 1 cell versus 8 remaining cells, in case of 2 bi-
allelic loci). By construction, this procedure creates two (possibly highly) imbalanced genetic 
groups that subsequently need to be compared in terms of mean or median trait differences. 
To date, MB-MDR has used Student’s t-test to make such group comparisons for quantitative 
traits. This implementation is based on simulation studies that assumed traits to be normally 
distributed with equal genotypic variances for each of the multi-locus genotype combinations 
corresponding to a bi-allelic functional SNP pair [6,29]. The MB-MDR outputted final test 
statistics for epistasis evidence are presented as ANOVA F-statistics. Naturally, different 
numbers of individuals contribute to specific multilocus genotype combinations. More 
importantly, MB-MDR’s internally performed group comparison tests involve possibly 
highly unequal group sizes. Hence, parametric t-tests are always pooled variance t-tests. A 
novel implementation allowing unequal group variances based on the Welch’s t-test (WT) for 
two-group comparisons is included in the MB-MDR software version 2.7.4. For a graphical 
representation of the quantitative MB-MDR method, we refer to Figure 2 of [6]. 



Figure 2 Density plots for original trait (panel A) and rank transformed traits (panel B) 
for one simulated data replicate with epistatic variance 10%. Legend: Numbers as they 
appear with color lines in the legend: 1=normal constant variance, 2=normal non-constant 
variance, 3=chi-square constant variance, 4=chi-square non-constant variance. Wild-type 
individuals (homozygous for the major allele) are coded as 0, heterozygous individuals as 1, 
and individuals homozygous for the minor allele as 2. Figures in brackets represent sample 
sizes for the multi-locus genotype cells. 

All simulated data are analyzed with MB-MDR, with Student’s t-test (ST) as well as the 
novel Welch’s t-test (WT) implementation to assess power and type I error. Prior to MB-
MDR submission, original traits are either left untransformed or transformed into new traits 
via logarithm transformations (Log), standardization transformation (Stz) or via rank-based 
transformations. The latter transformations involve the assignment of absolute ranks to all 
available trait measurements in a serially increasing order (Rank), after which the ranks are 
transformed to normality (Rtn). Data transformations are conducted in R.2.15.0 [31]. We are 
currently working on a MB-MDR version that will optionally use a rank-transformation of 
original trait values, allowing MB-MDR analyses with parametric t- or non-parametric Mann-
Whitney U- tests of association. Overall significance is assessed at 5% level of significance 
after correction for multiple testing via the permutation-based step-down maxT multiple 
testing correction of [32] (see also [33]). Permutations are based on 999 new data replicates. 
Small group sizes in group comparisons are dealt with by requiring a minimum contribution 
of 10 individuals to each group. 

Results 

Figure 2 shows density plots for the normal and chi-squared distributed original data (panel 
A) and rank-transformed to normality traits (panel B) with equal and unequal variances. The 
9 density groups refer to the 9 possible multi-locus genotypes the causal SNP pair and are 
based on a single replicate, so as to keep the total sample size to 500 individuals. For each 
scenario, the first generated dataset was used. Cell 0-0 on row 1 and column 1 (cell 2-2 on 
row 3 and column 3) refers to homozygous most (least) frequent allele individuals. The 
contribution of the epistatic variance to the trait variance is 10%. Other replicate data or 
assumptions about epistatic evidence give rise to similar plots (not shown). Rank-
transformation to normality (Rtn) (cfr. panel B) effectively deals with multimodal data 
distributions (cfr. panel A). Testing whether the multilocus genotype-specific traits can be 
assumed to come from a normal population (Shapiro-Wilk’s test) highlights a successful 
transformation from potentially non-normal data (panel A) to approximate normal data (panel 
B). 

For the same scenarios as before, yet using all SNP pairs, and the 999 permutations F-
statistics data, we create quantile-quantile plots (qq-plots) for a theoretical F distribution with 
(g-1, n-g) degrees of freedom. Here, n=500 is the number of individuals in a dataset and g=2 
is the number of groups (i.e. 1 cell versus 8 remaining cells). Note that since no missing data 
were considered, all theoretical distributions for association tests within MB-MDR, whatever 
SNP pair is considered, should be F(1,498). Whereas Figure 3 shows the qq-plots for 
association tests (squared Student’s t) comparing a single multi-locus genotype (in particular, 
cell 0-0) with the 8 remaining ones, Figure 4 shows the qq-plots related to the SNP pairs and 
their MB-MDR step 2 test statistics (i.e., the maximum of two association tests; one 
involving H-cells versus {L,O}-cells, and one involving L-cells versus {H,O}-cells). 



Comparison of Figure 3 with Figure 4 could suggest that deviations from a theoretical F-
distribution is not so much of a concern at MB-MDR’s dimensionality reduction step (i.e., 
labeling of multilocus genotypes according to “severity”), but seems to be quite dramatic for 
MB-MDR’s final two-locus test. This observation can be made, irrespective of whether traits 
initially are normally or chi-squared distributed, and irrespective of whether the original traits 
or rank-transforms to normality are considered. However, recreating Figure 3, now for cell 
(2,2) instead of (0,0) (hence, the multilocus genotype cell which has the smallest number of 
individuals contributing to it), also highlights hard to ignore deviations from the theoretical 
F(1,498) distribution at the multilocus genotype cell labeling stage (see Additional file 2: 
Figure S2). 

Figure 3 Qq-plots of observed squared Student’s t- test values for association between 
the multi-locus genotype combination cell 0-0 versus the pooled remaining multi-locus 
genotypes, for normal and chi-squared trait distributions or non-transformed and rank-
transformed to normal data. Each time, one replicate with epistatic variance 10% is 
considered and F-statistics are pooled for all SNP pairs over the 999 permutations. A 
generated F-distribution according to F(1,498) is taken as the reference. 

Figure 4 Qq-plots of MB-MDR step 2 test values (squared Student’s t), for normal and 
chi-squared trait distributions, and non-transformed or rank-transformed to normal 
data. For each setting, one replicate with epistatic variance 10% is considered and F-statistics 
are pooled for all SNP pairs over the 999 permutations. A theoretical F-distribution according 
to F (1,498) is taken as the reference. 

Familywise error rates and false positive rates 

Table 1 and Table 2 report the familywise error rates (FWER) corresponding to the 
simulation scenario g2=0 (no epistasis, no main effects) and false positive rates corresponding 
to g2=0.05 and 0.1 (scenarios of epistasis in the absence of main effects). We observe that, 
irrespective of the original trait distribution and whether or not a data transformation 
preceded MB-MDR analysis, the estimated rates satisfy Bradley’s [34] liberal criterion of 
robustness for the significance level α=0.05 . This criterion requires that the error rates are 
controlled for any level α of significance, if the empirical rate �̂  is contained in the interval 
0.5� � �̂ � 1.5� . 

Table 1 Type I error rates for data generated under the null hypothesis of no genetic 
association (g2 =0) 
Trait status Familywise error rate (Type I) 

Distributions  Variances ST WT  Rank_ST Rank_WT Log_ST Log_WT Rtn_ST Rtn_WT  
Normal Equal 0.040 0.053 0.049 0.049 0.044 0.051 0.050 0.058 
Normal Unequal 0.058 0.066 0.044 0.051 0.064 0.056 0.053 0.058 
Chi-square Equal 0.045 0.036 0.052 0.051 0.055 0.038 0.058 0.056 
Chi-square Unequal 0.053 0.057 0.048 0.052 0.051 0.054 0.043 0.047 
t-distribution Equal 0.048 0.053 0.050 0.059 0.049 0.056 0.052 0.057 
t-distribution Unequal 0.057 0.044 0.042 0.051 0.053 0.048 0.045 0.039 

Legend ST=Student’s t-test, WT=Welch’s t-test, Rank_ST (Rank_WT)=Student’s t-test 
(Welch’s t-test) on trait ranks, Log_ST (Log_WT)=Student’s t-test (Welch’s t-test) on log 
transformed trait, Rtn_ST (Rtn_WT)= Student’s t-test (Welch’s t-test) on trait rank 
transformed to normal. 



Table 2 False positive percentages of MB-MDR involving pairs other than the 
interacting pair (SNP1, SNP2) 
 Trait status False positives 

g2 Distributions  Variances ST WT  Rank_ST Rank_WT Log_ST Log_WT Rtn_ST Rtn_WT  
 Normal Equal 0.040 0.047 0.053 0.048 0.051 0.047 0.050 0.051 
 Normal Unequal 0.051 0.060 0.044 0.061 0.052 0.065 0.048 0.068 
 Chi-square Equal 0.037 0.056 0.051 0.053 0.042 0.054 0.045 0.056 
0.05 Chi-square Unequal 0.040 0.055 0.047 0.042 0.042 0.053 0.047 0.052 
 t-distribution Equal 0.051 0.048 0.048 0.051 0.047 0.047 0.047 0.033 
 t-distribution Unequal 0.053 0.047 0.058 0.057 0.054 0.048 0.051 0.052 
 Normal Equal 0.040 0.067 0.058 0.058 0.053 0.061 0.054 0.063 
 Normal Unequal 0.050 0.065 0.044 0.058 0.048 0.063 0.045 0.057 
 Chi-square Equal 0.048 0.059 0.061 0.060 0.053 0.055 0.057 0.056 
0.1 Chi-square Unequal 0.063 0.041 0.051 0.041 0.061 0.040 0.053 0.036 
 t-distribution Equal 0.048 0.053 0.047 0.049 0.050 0.054 0.044 0.051 
 t-distribution Unequal 0.033 0.050 0.055 0.059 0.036 0.051 0.037 0.051 

Legend False positive percentage is defined as the proportion of simulation samples for 
which at least one pair other than the causal pair (SNP1, SNP2) are significant. 
ST=Student’s t-test, WT=Welch’s t-test, Rank_ST (Rank_WT)=Student’s t-test (Welch’s t-
test) on trait ranks, Log_ST (Log_WT)=Student’s t-test (Welch’s t-test) on log transformed 
trait, Rtn_ST (Rtn_WT)= Student’s t-test (Welch’s t-test) on trait rank transformed to normal. 

Empirical power estimates 

MB-MDR empirical power estimates for correctly identifying the causal epistatic SNP are 
given in Table 3. For all scenarios higher MB-MDR power is achieved with increasing g2, 
i.e., with increasing proportion of epistatic variance to total trait variance. MB-MDR analysis 
with Welch’s t-test has generally lower power than MB-MDR with the Student’s t-test. This 
power loss is most severe for normal data. A (moderate) power gain is observed for settings 
where traits are t-distributed, variance homogeneity is present, epistatic variance is 10% and 
data are either left untransformed or are log-transformed prior to MB-MDR analysis. 
Parametric Student’s t-tests with the original trait measurements lead to reduced overall MB-
MDR power when trait distributions deviate from normality. For non-normally distributed 
traits, there is a tendency for MB-MDR with Student’s t applied to rank-transformed data to 
outperform other MB-MDR analysis approaches (this is: association tests other than 
Student’s t and other types of transformation, or no transformation at all). A worthy 
competitor is MB-MDR with Student’s t after rank-transforming original traits to normality. 
The differences in power performance between MB-MDR using untransformed traits or 
transformed traits are the largest for rank-based transformations compared to logarithmic 
transformations. No significant differences are observed between empirical power estimates 
derived from MB-MDR analysis on untransformed traits compared to those analyses based 
on trait standardization transformations (results not shown). 



Table 3 Power estimates of MB-MDR to detect the correct interacting pair (SNP1, 
SNP2) 
 Trait status Power 

g2 Distributions  Variances ST WT  Rank_ST Rank_WT Log_ST Log_WT Rtn_ST Rtn_WT  
 Normal Equal 0.400 0.046 0.367 0.001 0.377 0.039 0.378 0.041 
 Normal Unequal 0.330 0.083 0.391 0.001 0.331 0.069 0.344 0.051 
 Chi-square Equal 0.221 0.000 0.953 0.130 0.929 0.466 0.978 0.802 
0.05 Chi-square Unequal 0.317 0.005 0.511 0.002 0.402 0.012 0.578 0.135 
 t-distribution Equal 0.344 0.239 0.920 0.042 0.338 0.240 0.806 0.320 
 t-distribution Unequal 0.383 0.116 0.615 0.002 0.380 0.122 0.543 0.132 
 Normal Equal 0.950 0.634 0.952 0.087 0.959 0.626 0.958 0.650 
 Normal Unequal 0.963 0.743 0.975 0.152 0.955 0.727 0.959 0.690 
 Chi-square Equal 0.897 0.126 1.000 0.922 1.000 1.000 1.000 1.000 
0.1 Chi-square Unequal 0.938 0.350 0.989 0.255 0.975 0.548 0.991 0.884 
 t-distribution Equal 0.873 0.881 1.000 0.885 0.853 0.876 0.999 0.987 
 t-distribution Unequal 0.921 0.801 0.995 0.409 0.921 0.806 0.989 0.834 

Legend Power is defined as the proportion of simulated samples of which the causal pair 
(SNP1, SNP2) is significant. 
ST=Student’s t-test, WT=Welch’s t-test, Rank_ST (Rank_WT)=Student’s t-test (Welch’s t-
test) on trait ranks, Log_ST (Log_WT)=Student’s t-test (Welch’s t-test) on log transformed 
trait, Rtn_ST (Rtn_WT)= Student’s t-test (Welch’s t-test) on trait rank transformed to normal. 

A graphical representation of the 1000 MB-MDR epistasis test results for the causal SNP pair 
(p-values, multiple testing corrected, as output by the MB-MDR software), one for each data 
set generated under a particular simulation setting (in particular, g2 = 10%), is given in Figure 
5. Here, MB-MDR with Student’s t is considered. Results are depicted for scenarios where 
the original trait data are derived from a normal (symmetric) or from a chi-squared (non-
symmetric) distribution, and then subjected to different data transformation strategies. The 
scatter plot matrices of Figure 5 suggest a tendency for smaller MB-MDR p-values to be 
generated after rank-based data transformations compared to other type of transformations, 
including the identity transformation (see for instance Panels A and B for normally 
distributed traits). This tendency becomes more extreme for chi-square distributed traits with 
non-equal variance (Panel D). Here, it becomes apparent that rank-transformation generally 
leads to larger p-values as compared to rank-transformations to normality. For settings where 
traits are chi-squared distributed and variance homogeneity is present, the scatter plots of 
Figure 5 (Panel C) are in agreement with the corresponding results in Table 3 (power 
estimates of 100% in the event of a non-identity transformation compared to 90% for MB-
MDR applied to untransformed traits). If there were no differences between the 
untransformed and transformed trait results, we would expect all the points to lie along the 
diagonal. 

Figure 5 Scatter plot matrices of MB-MDR multiple testing corrected p-values for the 
causal SNP pair for a variety of a priori data transformations. Only MB-MDR results 
with Student’s t testing for associations are shown. The epistatic contribution to the trait 
variance is set to 10%. Legend: Different scenario’s of trait distribution are considered: 
normal traits and homogeneity (panel A); normal traits and heteroscedasticity (panel B); chi-
squared distributed traits and homogeneity (panel C); chi-squared distributed traits and 
variance heterogeneity (panel D). 



Discussion 

Proposed data mining methods for epistasis detection are seldom thoroughly discussed in 
terms of their underlying (model) assumptions and their effects on overall power or type I 
error control. For instance, another well-known data dimensionality reduction method for 
quantitative traits (generalized MDR - GMDR) [35] is based on score statistics to define 
differential multilocus genotype groups related to the trait of interest. Although the GMDR 
method is not necessarily likelihood-based (least-squares regression or other statistical 
methods for non-normal continuous traits can be employed as well, in theory), continuous 
phenotypes were only investigated in terms of a normal model, and the software 
implementation for continuous traits relies on the classical linear regression paradigm to build 
the score statistics. The authors did not explicitly investigate the power of their method when 
non-normal continuous data are involved in the context of epistasis screening. Previously, we 
commented on the advantages and disadvantages of GMDR-like methods compared to MB-
MDR (e.g., [5,33]). Based on these comments, we here focused on MB-MDR while 
investigating the effects of model-violations on the performance of 2-locus multifactor 
dimensionality reduction methods for quantitative traits. 

For every 2 loci (for 2 bi-allelic SNPs, there are theoretically 9 multilocus genotype 
combinations), MB-MDR with association t-tests subsequently creates two groups, where one 
group refers to one multilocus genotype and the other to the remaining multilocus genotype 
combinations. Internally, 2-group comparison tests are performed so as to assign a “label” to 
each multilocus genotype. This procedure naturally creates highly imbalanced groups, with 
potentially extreme cases of heteroscedasticity. Although Welch’s test is designed to give a 
valid t-test in the presence of different population variances, Welch’s t-test combined with 
MB-MDR shows no improved power over the Student’s t-test for scenarios with unequal 
variances, even for normally distributed traits (cfr Table 3). This can be explained by the fact 
that the degrees of freedom for the Welch’s test become smaller for strongly unequal groups, 
resulting in a highly conservative test in the event of extreme unbalanced data (see e.g., [36] 
and Figure 1). This motivates our choice to continue working with MB-MDR analyses based 
on Student’s t testing to identify groups of multilocus genotypes with differential trait values, 
despite the underlying trait distribution. 

It is well-known that parametric methods have improved statistical power over non-
parametric methods when all parametric model assumptions are valid [37,38]. When an 
analysis of residuals detects violations of assumptions of normality and heterogeneity of 
variance of errors across groups for ANOVA, remedial measures that log-transform the 
dependent variable and consideration of an ANOVA model assuming unequal variances, may 
work well. However, in screening settings involving many factors at a time, it is usually 
impractical to find a single transformation that is universally optimal for all factors. When 
study data do not meet the distributional assumptions of parametric methods, even after 
transformation, or when data involve non-interval scale measurements, a non-parametric 
context is more appropriate. Such a context usually implies testing based on ranks or 
applying data rank transformations prior to the application of a parametric test. 

Strong power increases were observed when data were rank-transformed prior to MB-MDR 
testing with Student’s t association testing. This can be understood by noting that the ranks, 
which are computed for the pooled set of all available quantitative trait measurements, in 
general reduces the influence of skewness and deviations from normality in the population 
distribution [39,40]. The same is achieved by a percentile transformation (Rtn), which – at 



the same time - preserves the relative magnitude of scores between groups as well as within 
groups. Only for normally distributed data with equal variances, the ideal scenario for a t-test 
on original traits, a small power loss is observed. Goh and Yap [40] also concluded that rank-
based transformation tends to improve power regardless of the distribution. In general, as 
with traditional two group t-testing, deviations from normality seem to be more influential to 
the power of an MB-MDR analysis with Student’s t than deviations from homoscedasticity 
(Table 3). This is also in line with the observation that power estimates generally become 
more optimal for scenarios in which data are transformed to normality prior to MB-MDR 
analysis compared to scenarios in which they are not. The identical results obtained for 
untransformed traits and standardized traits (not shown) are not surprising as well. 
Standardization involves linearly transforming original trait values using the overall trait 
mean and overall standard deviation. Such a transformation does not affect the two-group t-
tests within MB-MDR. 

Although data transformations are valuable tools, with several benefits, care has to be taken 
when interpreting results based on transformed data. The inference of epistasis depends upon 
the scale of measurement in a way that interaction effects can be reduced or eliminated by 
non-linear monotonic transformations of a dependent variable [41], so also by some rank-
based transformations. However, for our simulation scenarios, we have not seen any evidence 
of such a reduction, nor increase in interaction signals when using rank-transformed data 
prior to MB-MDR analysis (Tables 1,2 and 3, Rank). Application of any epistasis screening 
tool to real-life data will face the challenge to match observed statistical significance with 
biological relevance [1]. 

Clearly, sample size matters. The smaller the sample size, the more likely it is to obtain 
extremely sparse multilocus genotype combinations. By design of MB-MDR, highly inflated 
type I errors for group comparison tests are expected within MB-MDR, each of which 
contributing to the final MB-MDR results (Figures 3, 4 and Additional file 2: Figure S2). 
Despite these internal inflations, there is no evidence for a cumulative or combined effect on 
MB-MDR’s final results (Tables 1 and 2), irrespective of the assumed model violation (in 
terms of deviations from normality or homoscedasticity). This can be explained by the 
permutation-based step-down maxT approach, which is currently adopted by MB-MDR to 
correct for multiple testing of SNP pairs. 

In many of our practical applications though, we observed a tendency of increased numbers 
of significant epistasis results with MB-MDR applied to quantitative traits, even after SNP 
pruning (r2 below 75%) to avoid potential false positives (or redundant interactions) due to 
highly correlated SNPs. No such observation was previously made for dichotomous traits. 
For dichotomous traits, MB-MDR uses a score test, in particular, the Pearson’s chi-squared 
test. This test is known to be affected by unbalanced data, or sparse data, as is the case for 
rare variants [42]. However, these data artifacts, which question the use of large sample 
distributions for test statistics, are minimized by requiring a threshold sample size for a 
multilocus genotype combination. An explanation for the discrepancies observed between 
theoretical results and practical applications may be found in the way the null distribution for 
multiple testing is derived. It is often forgotten that also permutation-based multiple testing 
corrective procedures make some assumptions. For instance, for the step-down maxT 
approach as implemented in MB-MDR, the Family-Wise Error Rate (FWER) is strongly 
controlled provided the assumption of subset pivotality holds [32]. The subset pivotality 
assumption is needed to ensure that control under a data generating distribution satisfying the 



complete null gives the desired control under the true data generating distribution, which may 
harbor any number of true nulls [43]. 

In real-life applications, we do not know a priori which nulls are true and which are false. In 
addition, preliminary results on the effect of linkage disequilibrium on MB-MDR error 
control, as well as on the effect of highly variable minor allele frequencies (and thus highly 
variable available samples sizes for multilocus genotypes) show that subset pivotality is 
likely to be violated in real-life settings, giving rise to inflated error rates in the presence of 
multiple epistasis signals.(work in progress). Note that the standard bootstrap method 
provides the asymptotically correct null distribution for multiple testing and does not require 
the subset pivotality condition given in Westfall and Young [32]. The investigation of 
resampling-based multiple testing with asymptotic strong control of type I error as corrective 
method for multiple testing in MB-MDR warrants further investigation. 

Scale transformations are quite common as remedial strategies to meet statistical testing 
assumptions. However, since the optimal scale transformation is often based on theoretical 
motivations or statistical convenience, it often leads to new constructs that are hard to 
interpret or are biologically meaningless. Another concern related to implementing scale 
transformations is that non-additive signals may be removed as a direct consequence of such 
transformations prior to analysis [44]. 

Our results confirmed that rank-based transformations are generally most powerful when 
quantitative traits are non-normally distributed. Rank transformations serve as a bridge 
between non-parametrics and parametrics [19]. They naturally eliminate any problem of 
skewness (e.g. chi-squared distribution). By ranking the impact of outliers is minimized: 
regardless of how extreme the most extreme observation is, the same rank is given to it. A 
particular type of rank transformation uses percentile ranks and is referred to as rank 
transformation to normality. In this context, a percentile rank is defined as the proportion of 
quantitative trait outcomes in a distribution that a specific trait value is greater than or equal 
to. When the number of ties is negligible, it will lead to a near to perfect normal distribution, 
irrespective of the original trait’s distribution, which usually is a highly desirable property. 

Conclusion 

In this study, we assessed the performance of MB-MDR in terms of power and familywise 
error rate, with different choices of parametric and non-parametric association tests, in the 
absence or presence of trait transformations. We observed that non-normally distributed traits 
can affect the final test statistics of MB-MDR with classical t-tests for association, and that 
this influence is primarily driven by the sparser multilocus genotype combinations. Improved 
power can be obtained by pre-analysis data transformations. MB-MDR permutation-based 
maxT correction for multiple testing keeps type I error and false positive rates under control, 
since in all considered simulation scenarios, the assumption of subset pivotality of the maxT 
permutation strategy was plausible. 

When performing MB-MDR screening for gene-gene interactions with quantitative traits, we 
recommend to rank-transform traits to normality prior to MB-MDR analysis with Student’s t 
test as preferred association test. This practice will not only guarantee adequate type I error 
control, but will also offer an optimal power performance under a wide variety of data 
applications. 
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Additional files 

Additional_file_1 as TIFF 
Additional file 1  Figure S1 Group comparison test maintaining adequate Type 1 error 
control, when group sizes are equal. Legend: When several tests are listed, they are listed 
from most (top) to least (bottom) powerful. The tests in a square box and blue font should be 
avoided in MB-MDR due to reasons mentioned next to them. 

Additional_file_2 as TIFF 
Additional file 2  Figure S2 Qq-plots of observed squared Student’s t- test values for 
association between the multi-locus genotype combination cell 2-2 versus the remaining 
pooled multi-locus genotypes, for normal and chi-squared trait distributions or non-
transformed and rank-transformed to normal data. For each setting, one replicate with 
epistatic variance 10% is considered and F-statistics are pooled for all SNP pairs over the 999 
permutations. A generated F-distribution according to F(1,498) is taken as the reference. 
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