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ABSTRACT

In current practice, wind structural design is often carried out using the concept of equiva-
lent static wind loads. The main characteristic of such loadings is to reproduce, with static
analyses, the same extreme structural responses as those resulting from a formal buffeting
analysis. This paper proposes a method for the computation of equivalent static wind loads
for structures with slight non-proportional damping in a modal framework. Because of the
smallness of the out-of diagonal terms, this method is based on recent developments related
to asymptotic expansion of the modal transfer matrix of such structures. As a main bene-
fit, the static loading is described as a perturbation of the equivalent loading that would be
obtained for the uncoupled system. The main contribution of this paper is to formalize the
expression of the correction terms resulting from the non-proportionality of damping. The
method is presented with a detailed illustrative example.

1. INTRODUCTION

Originally, Davenport [1] introduced the notion of Equivalent Static Wind Load (ESWL) as
a static loading reproducing the same extreme structural responses resulting from a formal
buffeting analysis. The structural responses may refer to deflections, internal forces, stresses
or any other type of response obtained by linear combinations of the structural displacements.
Over the last four decades, methods have been derived to compute ESWL for structures with
quasi-static [2, 3] and resonant [4–7] behaviours. Based on the relative proportion of the
quasi-static and resonant contributions, the ESWL may be derived in nodal, modal or mixed
nodal-modal bases. In this paper, the structural analysis is performed in the full modal basis
and the static loadings are defined as weighted combinations of the inertial loads. With each



mode, an inertial load is associated such that its static application to the structure returns the
mode shape. The control of dynamic response of wind-sensitive structures such as wide-span
roofs or bridges and high-rise buildings may be obtained using damping devices, e.g. Tuned
Mass Damper (TMD) as well as tuned liquid dampers. These damping devices are source
of non-proportional damping and consequently, the modal damping matrix and the modal
transfer matrix are no longer diagonal. In this case, the dynamic analysis in the modal basis
enables to reduce the size of the system, M modes ≪ N degrees of freedom, but not to de-
couple the equations of motion in the modal basis. Lord Rayleigh [8] proposed a decoupling
approximation that neglects these off-diagonal elements of the modal damping matrix due to
their relative smallness compared with the diagonal ones. If this approximation can not be
stated [9], more rigorous techniques must be used. Recently, a method based on an asymp-
totic expansion of the modal transfer matrix has been proposed in a deterministic framework
[10] and then extended to a stochastic context [11]. With this method, full transfer matrix
inversions are avoided for all frequencies. For structure with non-proportional damping, this
paper aims at the formulation of the asymptotic expansion of the weighting coefficients nec-
essary to derive equivalent static wind loads from the inertial forces. The proposed method is
formulated using the by-products resulting from the application of the asymptotic expansion
of the modal transfer matrix.

The method is illustrated with a realistic example. A detailed analysis of the asymptotic
convergence of both modal amplitudes and weighting coefficients of the inertial forces is
realized.

2. BUFFETING WIND ANALYSIS

We consider a stationary Gaussian random loading ptot(t), representing wind actions, although
the concepts could be generalized to other loadings. For convenience the loading is split into
a mean part P and a fluctuating part p(t)

ptot = P + p. (1)

The motion x(t) of a linear structure loaded by this random excitation, in the nodal basis, is
the solution of the equation of motion

Mẍ + Ctẋ +Kx = p; Ct = Cs + Cc + Ca (2)

where M, Ct and K are N × N mass, total damping and stiffness matrices, respectively.
The contributions Cs, Cc and Ca are structural, concentrated (due to damping devices) and
aerodynamic damping matrices, respectively. Some selected structural responses r(t) are
considered here to be expressed as linear combinations of the nodal displacements

r = Ox (3)

where O is a matrix of influence coefficients, typically known from a finite element model.
The structural response of a given linear system can be computed using a small number M
of normal modes of vibrations (M≪N) characterized by mode shapes Φ [12]. These modes
are normalized to have unit generalized masses. Using the modal superposition principle, the
equation of motion (2) projected in the modal basis reads

q̈ + Dq̇ +Ωq = g (4)

where q(t) (x= Φq) is the vector of modal coordinates, g(t) = ΦT p(t) is the vector of gen-
eralized forces, Ω is a diagonal matrix containing generalized stiffnesses (equal, in this case,
to the squared circular frequencies) and D = ΦT CtΦ is the modal damping matrix. The



frequency domain formulation of the equation of motion in the modal basis is obtained by a
side-by-side Fourier Transform of (4)

Q = H G (5)

where Q(ω) and G(ω) are respectively the Fourier transforms of q(t) and g(t). The modal
transfer matrix H(ω) is defined by

H = (Ω − ω2I + iω (Dd + Do))−1

= (I +HdJo) −1Hd (6)

where Dd and Do collect the diagonal and off-diagonal elements of D, respectively and
Jo(ω)=iωDo. The modal transfer matrix with the decoupling approximation is defined by

Hd =
(
Ω − ω2I + iωDd

)−1
. (7)

Because the quantity (HdJ0) has a small spectral radius [10], an asymptotic expansion of the
modal transfer matrix is advantageously considered. It reads

Hk = Hd +

k∑
i=1

(−1)i (HdJo)i Hd (8)

where k is the approximation order of the transfer function. The structure is further analysed
using a spectral approach. The Power Spectral Density (PSD) matrix of the modal coordinates
S(q)(ω), is obtained by pre- and post-multiplication of the PSD matrix of the generalized
Gaussian forces S(g)(ω) by the modal transfer matrix,

S(q)=HS(g)H∗ (9)

where the superscript ∗ denotes the conjugate transpose operator. The kth approximation of
the PSD matrix of the modal displacements (9) is expressed by

S(qk) = S(qd) +

k∑
i=1

∆S(qi); S(qd)= HdS(g)H∗d (10)

where S(qd) (k = 0→ k ≡ d) is the PSD matrix in the uncoupled system. The successive
correction terms ∆S(qi) are expressed in a general recurrence relation

∆S(q1) = −
(
HdJoS(qd) + S(qd)J∗oH∗d

)
∆S(qi>1) = −

(
HdJo∆S(qi−1) + ∆S(qi−1)J∗oH∗d

)
−HdJo∆S(qi−2)J∗oH∗d (11)

with ∆S(q0) = S(qd). In the following, the matrix of spectral moments of order l of the modal
coordinates, Cl,(qk), is calculated by integration (along the circular frequencies) of the corre-
sponding PSD matrix

Cl,(qk) =

∫ +∞

−∞
|ω|lS(qk) dω = Cl,(qd) +

k∑
i=1

∆Cl,(qi) (12)

where k denotes one of the aforementioned methods, namely (i) the exact (reference) ap-
proach (q∞ ≡ q), (ii) the decoupling approximation (q0 ≡ qd), (iii) the proposed approxima-
tion with k correction terms. Matrix of spectral moments of order l of the structural responses
reads

Cl,(rk) = ΥCl,(qk)ΥT (13)



where Υ = OΦ is the matrix of modal structural responses. The structural design needs
envelope values (minimum and maximum) of the structural responses. The approximation of
the envelope

(
rmin, rmax

)
, while keeping k terms in the asymptotic expansion (k = 0, 1, 2, ...)

is defined as
rk,min = −grk ◦ σrk ; rk,max = grk ◦ σrk (14)

where σrk and grk are the standard deviations and peak factors of the structural responses, re-
spectively and ◦ denotes the Hadamard product operator. The peak factor of the jth structural
response is derived from Rice’s formula [13]

grk
j =

√
2ln nk,+

j,0 +
γ√

2ln nk,+
j,0

(15)

where γ = 0.5772 is Euler’s constant and nk,+
j,0 is the number of zero up-crossings during the

observation period with the following formulation

nk,+
j,0 =

T
2π

√√√
C2,(rk)

j j

C0,(rk)
j j

(16)

where T is the observation period taken equal to 10 minutes. For the structural design, the
maximum value of the jth structural response is given by the following formula with a com-
plete quadratic combination approach:

rk,max
j = grk

j

 M∑
m

M∑
n

υ jmυ jnσ
qk
mn

1/2

= grk
j

∑M
m

∑M
n υ jmυ jnσ

qk
mn

σrk
j

(17)

where υ jm is the value of the jth structural response in the mth mode andσqk
mn = σ

qd
mn+

∑k
i=1 ∆σ

qi
mn

is the covariance between the mth and nth modes formally obtained with (12).

3. EQUIVALENT STATIC WIND LOAD

The static analysis under the equivalent static wind load pe,k
j associated with the jth response

reproduces the maximum dynamic response rk,max
j , obtained with a classical buffeting analy-

sis, such that
re,k

j = Ape,k
j with re,k

j j = rk,max
j (18)

where re,k
j is a vector of structural responses under the jth ESWL and A = OK−1 is a matrix

of influence coefficients. Inertial forces are defined as inertial load excitations that produce
the dynamic displacement in (2) under a static analysis, so that

x = Φq; Kx = Ψq (19)

where Ψ = KΦ is the matrix of inertial forces with ψm the inertial force associated with
the mth modal shape. Chen & Kareem [6] propose to construct ESWLs as combinations of
these inertial forces using weighting coefficients. This paper extends the formulation of these
weighting coefficients with correction terms if the system is coupled. The matrix of modal
structural responses may be also computed with the inertial forces as

Υ = AΨ; υ jm = a jψm, (20)



and the introduction of (20) into (17) gives

rk,max
j = a jg

rk
j

M∑
m

∑M
n υ jnσ

qk
mn

σrk
j

ψm

= a jg
rk
j

M∑
m

σrd
j

σrk
j

Wd
jmψm +

k∑
i=1

∆W i
jmψm

 (21)

where the weighting factors Wd
jm and ∆W i

jm are defined by

Wd
jm =

∑M
n υ jnσ

qd
mn

σrd
j

; ∆W i
jm =

∑M
n υ jn∆σ

qi
mn

σrk
j

. (22)

Comparison of (21) and (18) indicates that the kth approximation of the static loading pe,k
j

is given by the summation of two contributions: (a) a scaling of the equivalent loading that
would be obtained if the system was uncoupled pe,d and (b) a correction ∆pe,k

j , resulting from
the non-proportionality of damping, such that

pe,k
j = αk

jp
e,d
j + ∆pe,k

j = gk
j

M∑
m

Wk
jmψm (23)

in which

pe,d
j = gd

j

M∑
m

Wd
jmψm ; ∆pe,k

j = gk
j

M∑
m

k∑
i=1

∆W i
jmψm (24)

and where αk
j =

(
grk

j σ
rd
j

)
/
(
grd

j σ
rk
j

)
is a scaling coefficient. In other words, the kth approxima-

tion of the weighting coefficients Wk
jm is given by

Wk
jm = α

k
jW

d
jm +

k∑
i=1

∆W i
jm. (25)

which well extends the formulation Wk
jm = Wd

jm if the modal coupling was neglected. Notice
also that αk

j degenerates in αk
j = 1 for k = 0.

4. ILLUSTRATION

A 370 m TV transmission tower is analysed under wind actions. This structure is used in [14]
to illustrate the passive control of along-wind response of structures by damping devices. The
structural model is a 9-lumped-mass cantilever beam model with 10 nodes and the finite ele-
ment model is an assembly of classical 2-D beam elements with two DOFs per node (rotation
and horizontal displacement). The structural data are reported in Table 1. The mean wind
profile is described by a power law

V i = V10

(Hi

10

)γ
(26)

where V i, V10, Hi and γ are the mean wind speed of the ith storey, the mean wind speed at
a reference height of 10 meters, the height of the ith storey and exponent coefficient, respec-
tively.



Inter-storey (Element)
Height Mass Stiffness Damping Wind area

Node Number h [m] m [103kg] EI [108kN-m2] β [kN/m/s] A [m2]
1 40.0 6,134 1,162.80 179.92 977.8
2 56.0 3,853 377.80 112.89 920.6
3 56.0 2,578 203.74 75.54 638.6
4 54.5 3,032 59.30 88.82 947.6
5 38.5 692 33.08 20.28 249.5
6 25.0 85 8.52 2.49 150.0
7 35.5 72 2.13 2.11 98.2
8 35.5 51 0.17 1.48 47.2
9 28.5 23 0.08 0.68 20.0

Table 1. Structural data of the 370 m TV transmission tower. From [14].

A one-dimensional Gaussian velocity turbulence field is considered. The longitudinal
turbulent component v of the velocity field is modelled with the spectrum of longitudinal
turbulence proposed in [15]

S v

V
2
10

=
2t2

3|n|(1 + t2)4/3 (27)

where t = 1200n/V10 and n = ω/ (2π). A linearized expression of the applied forces is
adopted as

pi,tot =
1
2
ρaCAi

(
V i + v

)2

≃ 1
2
ρaCAi

(
V

2
i + 2V iv

)
=

1
2
ρaCAiV i

(
V i + 2v

)
=

W10

V10

CAi

(Hi

10

)γ
2
V i

2
+ v

 (28)

where ρa, Ai, W10 are the air density, surface exposed to wind and mean wind pressure at 10
meters, respectively and C is given by

C =
√

6K0Ca (29)

in which K0 and Ca are the surface drag coefficient and drag coefficient, respectively. The
PSD matrix of the fluctuating wind pressure reads

S (p)
i j = 24K0W2

10C
2
a

(
HiH j

100

)γ
AiA jΓi j

1
4π

S v

V
2
10

(30)

where the spanwise coherence function Γi j of v between two points of the tower separated by
a height l is modelled by a decreasing exponential

Γi j = exp
(
−C1|ω|l

2πV10

)
. (31)

The aerodynamic data are reported in table 2.

V10 W10 γ Zg Vg Ca ρa C1 K0

[m/s] [N/m2] [-] [m] [m/s] [-] [kg/m3] [-] [-]
26.41 418.5 0.15 300 44 0.7 1.2 7.0 0.007

Table 2. Aerodynamic data. From [14].



4.1 Structure without TMD

We first analyse the structure without the tuned mass damper. Figure 1 depicts the horizontal
components of the first four modes and the corresponding inertial forces. The natural fre-
quencies are equal to 0.229, 0.348, 0.926 and 1,39 Hz and the modal dampings are equal to
1.02%, 0.67%, 0.25% and 0.17%, respectively.

Figure 1: The solid lines with dots depict the first four mode shapes (normalized to a max-
imum displacement equal to 1 meter) and the grey patches represent the inertial horizontal
forces per wind area (i.e. wind pressures).

Equation 2 is first solved with only the structural damping matrix Cs. Figure 2-(a,b) il-
lustrates the covariance matrix of spectral moments of order 0 and 2 for the modal coordi-
nates. Mainly, the structure vibrates in its first mode, while the structural velocity requires
also the second mode, see Figure 2-(b). The background-to-resonant ratio [16] is a dimen-
sionless modal indicator of the importance of the background component compared to the
resonant one. The background-to-resonant ratio in the first mode is equal to 0.22 that indi-
cates that the resonant component is dominating. The index of diagonality [17] defined as
ρ(D) = σ(D−1

d Do), where σ(·) is the spectral radius, is an indicator of the diagonal dominance
of D. A low value indicates that the off-diagonal terms are small compared to the diagonal
ones. In this case, its value is equal to 0.007 and the classical decoupling approximation is
applied.

Figure 2: Covariance matrix of order 0 (a) and 2 (b) of the modal coordinates and (c) the
weighting coefficients of the inertial forces. For each square, the upper left corner correspond
to positive value and the lower right corner to negative value.

Figure 3 illustrates the peak factors grd and standard deviations σrd of horizontal deflec-
tions (left, r ≡ x) and bending moments (right, r ≡ M).



Figure 3: For each graph, on the left the peak factors and on the right the standard deviations
of (a) the nodal horizontal displacements and (b) the bending moments, respectively.

For the deflections, peak factors vary from 3.3 to 3.45 and the standard deviation is max-
imum at the top with a maximum displacement equal to 1.36 meters. For the bending mo-
ments, peak factors show larger variations, 3.3 to 3.7. The maximum value at the base is
equal to 535 MNm. Five specific and representative structural responses are investigated.
They are: the bending moment at the base M0, the shear force at the base Q0, the horizontal
displacement at the top yN , the rotation at the top ϕN and the horizontal displacement at the
fourth level yn. Figure 2-(c) shows the weighting coefficients of the inertial forces to produce
the equivalent static wind loads represented in Figure 4. As expected, the weighting coef-
ficients take only large values for the first and second modes. The ESWLs for M0, Q0 and
yn are similar with the same order of magnitude while the ESWLs for yN and ϕN exhibit the
largest values for the top two stories.

Figure 4. Equivalent static wind loads for the five specific structural responses.

4.2 Structure with TMD

In this section, the response of the structure is mitigated with a tuned mass damper connected
to the fourth mass of the structure. Its characteristics are a mass of 494 tons, a stiffness of
1,061 kN/m and a damping ratio of 17% based on the minimization of the base moment
[14]. The tuned mass damper is tuned to the fundamental frequency of the structure and
consequently the first mode is duplicated. Figure 5 depicts the horizontal components of the
first five modes with natural frequencies equal to 0.204, 0.258, 0.352, 0.925, and 1.39 Hz. As
a main feature, the tuned mass damper increases significantly the damping ratios of the first
two modes to 6.7% and 10.6%, respectively.



Figure 5: The solid lines with dots depict the first five modal horizontal components (normal-
ized to a maximum displacement equal to 1 meter) and the grey patches represent the inertial
horizontal forces per wind area (i.e. wind pressures).

Because of the tuned mass damper, the index of diagonality increases to 1.87 and the clas-
sical decoupling approximation can not be formulated anymore. The reference covariance
matrix (l = 0 and k = ∞) of the modal coordinates corresponding to the inversion of the
full transfer matrix and the relative error for the successive approximations are represented
in Figure 6. The exact background-to-resonant ratio in the first and second mode are equal
to 0.75 and 1 respectively. This indicates that thanks to the TMD, the resonant components
has been drastically reduced by comparison with the structure without TMD. Figure 6-(a)
shows that the third mode has a larger amplitude than the two first which are highly damped.
Also, concerning modes 1 and 2 the proximity of their natural frequencies (resp. 0.204Hz
and 0.258Hz) and the similarities of mode shapes induce dynamic coupling and a high modal
correlation coefficient equal to 0.73. For the three approximations, see Figure 6-(b,c,d), the
errors are the most significant for the group of correlated modes (1 and 2). Figure 6-b indi-
cates that neglecting off-diagonal terms of the damping matrix (k = d), induces a maximum
error of 30% on the variance of mode 2. The proposed method with corrections to the first
and second orders allows to reduce this error down to 21% and 6%, respectively. Therefore
with an extension to the second order, the errors are significantly reduced, while remaining
maximum for the group of coupled modes.
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Figure 6: Exact covariance matrix of the modal coordinates (a) C0,(q) and relative error for
different approximations (b) C0,(qd), (c) C0,(q1) and (d) C0,(q2). Relative errors are expressed
with respect to C0,(q).

Reference matrix of spectral moments of order 2 (k = ∞) for the modal coordinates and
the relative error for the different approximations are represented in Figure 7. As previously,
the errors are the most significant for the group of correlated modes (1 and 2). The decou-
pling approximation induces a maximum error of 65% while the proposed method with an
extension to the first and second orders allows to reduce this error down to 36% and 17%,
respectively. This illustrates the common trend that the decoupling approximation gener-
ates significant discrepancies on the estimation of structural velocity and acceleration. The
proposed method is a simple way to circumvent this inaccuracy.
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Figure 7: Exact matrix of spectral moments of order 2 for the modal coordinates (a) C2,(q) and
relative error for different approximations (b) C2,(qd), (c) C2,(q1) and (d) C2,(q2). Relative errors
are expressed with respect to C2,(q).

Figure 8 illustrates the reference (k = ∞) peak factors and standard deviations of horizon-
tal deflections and bending moments. For the deflections, peak factors vary from 3.2 to 3.45
and the maximum value at the top has been reduced to 0.72 meters. The maximum bending
moment has been also reduced to 356 MNm. On the right of each graph is also represented
the relative errors corresponding to the decoupling approximation (k = d) and the proposed
method with corrections to the first (k = 1) and second orders (k = 2). The decoupling ap-
proximation lead to important underestimations up to 12.5% for the displacements and 8 %
for the bending moments. With only the first correction, these extreme underestimations are
divided by two. The second order of approximation provides underestimations less than 3
% and therefore this order of approximation is used for the computation of equivalent static
wind loads. For the decoupling approximation, relative errors on the peak factors are less
than 1 % for an error of 10% on ν+0 . These errors are therefore not represented. Indeed,
despite large errors on spectral moments of order 0 and 2, errors committed on ν+0 are lower
and finally, variations on peak factors are marginal. Peaks factors obtained with the classi-
cal decoupling approximation may be used as a simplification and corrections on matrix of
the spectral moments of order 2 are not necessary provided we are interested in structural
displacements only.

Figure 8: For each graph, on the left the peak factors and on the right the standard deviations
for (a) the nodal horizontal displacements and (b) the bending moments, respectively. The
upper axis, corresponding to reference values (k = ∞), is associated with lines with black
dots. The lower axis, corresponding to relative errors, is associated with solid (k = 0), dashed
(k = 1) and dash-dotted (k = 2) lines.

Reference weighting coefficients (W∞ = W) of the inertial forces and the relative errors for
the different approximations are represented in Figure 9. As expected, the orders of errors are
similar to those reported for the modal amplitudes, see Figure 6. The order of errors for the
weighting coefficients in each mode are similar no matter the structural response investigated.
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Figure 9: reference weighting coefficients (a) W and relative error for different approxima-
tions (b) W(d), (c) W(1) and (d) W(2). Relative errors are expressed with respect to W.

Figure 10 depicts the reference equivalent static wind loads for the structural responses.
Also, the ESWLs obtained with the decoupling approximation and the proposed method with
a second order approximation are superimposed. Large over- and under- estimations of the
reference loadings occur with the decoupling approximation. The ESWLs resulting from
the proposed method with a second order approximation correctly fit the reference static
loadings. By comparison with the ESWLs for the structure without TMD, the magnitude of
the loadings have been reduced and the distributions have changed.

Figure 10: Reference equivalent static wind loads for the five specific structural responses
and those obtained with the decoupling approximation and the proposed method with second
order corrections.

5. CONCLUSIONS

Wide-span roofs or bridges and high-rise buildings may be excited by the wind loading be-
yond acceptable level of displacements, internal forces or stresses. For such cases, among
other solutions, damping devices are usually used to control and reduce the wind response
of these structures. These damping devices may be tuned mass or liquid damper which in-
troduce non-proportional damping. A new method consisting in the asymptotic expansion of
the modal transfer matrix enables to avoid full transfer matrix inversion. This work further
developed the method for the establishment of equivalent static wind loads for structures with
non-proportional damping analysed in the modal basis. As a major finding, the expressions
of the asymptotic expansion of the weighting coefficients of inertial forces necessary to es-
tablish the ESWL are derived using the by-products of the original method. For the studied
case of a 370 m TV transmission tower with a tuned mass damper producing an index of
diagonality equal to 1.87, a second order approximation of the modal transfer matrix is suffi-
cient to reduce the errors on the deflections and bending moments to less than 3% compared
to 10% for the classical decoupling approximation. It has also been shown that peak factors
do not vary significantly between the coupled and uncoupled system. For these quantities,
the decoupling approximation can be used as a simplification. Finally, large errors on the
ESWLs obtained with the decoupling approximation were highlighted while those obtained



with the proposed method with two corrections terms correctly fit the exact ESWLs. This
emphasizes, once more, the reliability of the proposed method.
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[10] V. Denoël and H. Degée. Asymptotic expansion of slightly coupled modal dynamic
transfer functions. Journal of Sound and Vibration, 328(1-2):1–8, 2009.
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