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Abstract The phenotypic and genotypic diversity of the

plant growth promoting Bacillus genus have been widely

investigated in the rhizosphere of various agricultural crops.

However, to our knowledge this is the first report on the

Bacillus species isolated from the rhizosphere of Calendula

officinalis. 15 % of the isolated bacteria were screened for

their important antifungal activity against Fusarium oxy-

sporum, Botrytis cinerea, Aspergillus niger, Cladosporium

cucumerinium and Alternaria alternata. The bacteria

identification based on 16S r-RNA and gyrase-A genes

analysis, revealed strains closely related to Bacillus amy-

loliquefaciens, B. velezensis, B. subtilis sub sp spizezenii

and Paenibacillus polymyxa species. The electro-spray

mass spectrometry coupled to liquid chromatography (ESI-

LC MS) analysis showed that most of the Bacillus isolates

produced the three lipopeptides families. However, the P.

polymyxa (18SRTS) didn’t produce any type of lipopep-

tides. All the tested Bacillus isolates produced cellulase but

the protease activity was observed only in the B. amylo-

liquefaciens species (9SRTS). The Salkowsky colorimetric

test showed that the screened bacteria synthesized

6–52 lg/ml of indole 3 acetic acid. These bacteria produced

siderophores with more than 10 mm wide orange zones on

chromazurol S. The greenhouse experiment using a natu-

rally infested soil with Sclerotonia sclerotiorum showed

that the B. amyloliquefaciens (9SRTS) had no significant

(P [ 0.05) effect on the pre-germination of the chickpea

seeds. However, it increased the size of the chickpea plants

and reduced the stem rot disease (P \ 0.05).These results

suggested that the Bacillus strains isolated in this work may

be further used as bioinoculants to improve the production

of C. officinalis and other crop systems.
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Introduction

The demand for medicinal plants is increasing worldwide

due to the growing recognition of biological products,

being non-toxic, having no side effects and affordable

prices [23]. Calendula officinalis is an important medicinal

herb used in Europe, China, US and India. C. officinalis

has numerous medicinal properties among which it is

worth mentioning the anti-inflammatory and antioedema-

tous activities, the antibacterial and antifungal activities,
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Antimicrobienne, Département de Biochimie-Microbiologie,
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the anticancer and lymphocyte activation dual activities,

the anti-HIV activity, the immunostimulant activity, the

antioxidant activity, the hepatoprotective activity, the

wound healing activity and the antiviral activity [17].

Several phytopathogenic fungi were detected on C. offici-

nalis seeds such Alternaria alternata, Alternaria porri,

Botrytis cinerea, Drechslera (Cochliobolus) hawaiiensis,

Fusarium avenaceum, Fusarium culmorum and Sclerotonia

sclerotiorum. These pathogens lead to significant yield

losses of C. officinalis crops [21]. The application of

agrochemicals is necessary to increase crop yields but these

products have several negative side effects [27]. The plant

growth-promoting rhizobacteria (PGPR) can be used as an

attractive alternative to the use of such xenobiotic com-

pounds [6]. It has been noted by many workers that the

bacterial genera such as Agrobacterium, Arthrobacter,

Azotobacter, Azospirillum, Bacillus, Burkholderia, Cau-

lobacter, Chromobacterium, Erwinia, Flavobacterium,

Micrococcous, Pseudomonas and Serratia belongs to

PGPR, showed synergistic effects on plant growth [9]. The

PGPRs mediate biological control indirectly by the pro-

duction of antimicrobial molecules [19, 20], siderophores

and eliciting induced systemic resistance against a number

of plant diseases One of the most important direct ways

that those bacteria affect growth and development is by

producing Indole-3-acetic acid (IAA) that this hormone is

led to plant root system development and subsequently

nutritional uptake increase by plant [26].

The Bacillus species offer several advantages over the

other genera because of their capacity to produce spores in

unfavorable environmental conditions. This characteristic

facilitates the conversion of spore suspensions to powder

formulations without killing bacteria [16]. Thus, a number

of Bacillus and Paenibacillus spp. have been commercially

developed as biological fungicides, insecticide and nema-

ticides or generic plant growth promoters, and their use in

agriculture has recently been reviewed. The well studied

and applied organisms are members of Bacillus subtilis

spp. group [3, 7]. Such organisms have almost identical

16S rDNA sequences (99.2–99.6 % sequence similarity).

Several molecular techniques were applied to assess the

bacterial diversity and to analyze the genetic relationships

between Bacillus species, i.e., DNA–DNA re-association

studies, Rep-PCR, protein coding genes and internal tran-

scribed spacers (ITS) sequences analysis, restriction frag-

ment length polymorphism (RFLP) and Bacillus species-

specific signature [22].

To our knowledge, this is the first study to characterize

Bacillus isolates from the rhizosphere of C. officinalis. The

main objectives were to: (I) isolate the predominant anti-

fungal Bacillus species; (II) study their phylogenetic

diversity based on 16S r-RNA and gyr-A genes analysis;

and (III) evaluate their in vitro and in vivo biocontrol and

plant growth-promoting traits, in order to further use them

as bio-inoculant strains.

Materials and Methods

Bacillus Isolation and Antagonism Test

Bacillus strains were isolated from the rhizosphere of C.

officinalis, using a procedure involving a heat treatment

at 80 �C during 12 min. The antifungal activity of the

Bacillus isolates was investigated on PDA Petri dishes by

the dual culture technique. The tested phytopathogenic

fungi were Fusarium oxysporium, B. cinerea, Aspergillus

niger, C. cucumerinium and A. alternata. Mycelia growth

inhibition was calculated as the reduction percentage of

mycelia expansion compared with control plates without

bacteria [25]. Mean values and standard errors were

calculated from three replicates used for each fungal

strain.

Spore Yields Determination

The Bacillus isolates were grown in the opt liquid medium

described by Jacques et al. [12], for 72 h at 30 �C and

agitated flasks (180 rpm). Spores concentration in Bacillus

cultures was investigated using a thermal chock technique

[8]. All experiments were performed as three replicates.

Identification of the Bacillus Strains and Phylogenetic

Analysis

The total DNA was extracted from Bacillus liquid cultures

by the wizard genomic DNA purification kit (Promega),

using the manufacturer’s instructions. The primers used for

the PCR amplification were the universal primers 16SP0

and 16SP6 for the 16S r-RNA gene [2] and gyr-A.f and gyr-

A.r for the gyr-A gene [11]. The purification of the PCR

products was achieved using the GFX PCR DNA and Gel

Band Purification Kit. The amplified genes were sequenc-

ing using the same primers sited above and the obtained

sequences were corrected by the Bio-edit program. The

obtained sequences were deposited in Genbank database

and the accession numbers were obtained (Fig. 1). To

identify the Bacillus isolates, the DNA sequences were

compared to those previously published in Genbank using

the BLASTN program. The taxonomic position of the

Bacillus isolates studied in this work was investigated by

analyzing the 16S r-RNA and gyr-A genes sequences. The

phylogenetic trees were constructed by the MEGA 5 pro-

gram, using maximum-likelihood (ML) method based on

the Jukes-Cantor model.
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Production of Cell-Wall Degrading Enzymes

and Lipopeptides

The enzymatic activities were assessed in a qualitative way

through a halo formation on solid media containing col-

loidal chitin, milk powder and carboxymethyl cellulose

substrates to reveal chitinase, protease and cellulase

activities respectively [4]. The lipopeptides were analyzed

by mass spectrometry coupled to HPLC. The Bacillus

strains were grown in agitated flasks (180 rpm) containing

the opt medium at 30 �C for 72 h. Cultures were centri-

fuged at 15,0009g for 20 min. The supernatant samples

were loaded on C18 solid-phase extraction cartridges

(900 mg, Alltech) and lipopeptides were desorbed with

100 % ACN. The resulting samples were analyzed by

reverse phase HPLC coupled with single quad mass spec-

trometer (HPLC Waters Alliance 2695/diode array detec-

tor, coupled with Waters SQD mass analyzer) on a X-terra

MS (Waters) 150 9 2.1 mm, 3.5 lm column as previously

described by Nihorimbere et al. [18]. In this work, a single

elution gradient allowing the simultaneous measurement of

all three lipopeptides families was used. The water acidi-

fied with 0.1 % formic acid (A) and acetonitril (ACN)

acidified with 0.1 % formic acid (B) were used as a mobile

phase. The flow rate was maintained at 0.5 ml min-1 and

the column temperature at 40 �C, with a gradient of 35 min

(43–80 %, vol/vol ACN in 18 min; 100 %, vol/vol ACN

for 9 min, and 43 %, vol/vol ACN in 8 min). Compounds

were identified on the basis of their retention times com-

pared to purified standards. The identity of each homologue

was confirmed on the basis of the masses detected in the

SQD by setting electrospray ionization conditions in the

MS as source temp., 130 �C; desolvation temp., 250 �C;

nitrogen flow, 500 l/h; cone voltage, 70 V. The positive ion

mode was used for analysis of all three families because a

higher signal/background ration was obtained compared to

negative ion recording.

Production of Indole 3 Acetic Acid (IAA)

The indole acetic acid production was assayed calorimet-

rically by using the Salkowski reagent (0.01 M FeCl3 in

36 % H2SO4) as described by Benduzi et al. [5]. The test

was achieved in duplicate.

Production of Siderophores

The Bacillus isolates were streaked on azurol S medium

(CAS-medium) as described by Husen [10] and sidero-

phores production was indicated by the formation of yel-

low-orange halos around the colonies after incubation. This

test was achieved in three replicates.

Effects of the Soil Treatment with the Biocontrol Agent

(9SRTS) on Chickpea Plant Size; Damping-Off

and Stem Rot Diseases Under Greenhouse Conditions

The B. amyloliquefaciens (9SRTS) was produced under

optimized industrial conditions in a 500 L bioreactor in the

society Artechno S.A (Belgium). The fermentation was

stopped at the time of almost full sporulation, centrifuged

and lyophilized to yield a highly concentrated stable

powder. This product was resuspended in sterile distilled

water to obtain the final desired spore concentration (107

spores/ml). The chickpea seeds (CV. Flipe 13 90) were

sown in a naturally infested soil with S. sclerotiorum. The

treatment was carried out by spraying the bacterial sus-

pension on the soil. Two replicates were used; each repli-

cate consisted of three pots (4 seeds/pot). Data were

recorded for damping-off; size and stem rot rating disease

Fig. 1 Phylogenetic trees of the

Bacillus strains isolated from C.

officinalis rhizosphere, based on

a 16S r-RNA and b gyr-A genes

sequences analysis. The bacteria

isolated in this work were

underlined and followed by the

accession number provided by

Genbank
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(percentage of discoloration leaves per plant) after 30 days

of sowing. The SAS software (SAS Institute 2000) was

used for all statistical analysis. The soil treatment effect on

the studied parameters was assessed by a general linear

model (GLM). Least square means (LSM) and standard

errors were calculated, allowing ranking of treated and

control lots according to Duncan’s procedure (Fig. 2).

Results and Discussion

Twenty-six Bacillus strains were isolated from the rhizo-

sphere of C. officinalis. Four isolates (15 %) were screened

for their ability to inhibit growth of some phytopathogenic

fungi such as F. oxysporium, B. cinerea, A. niger, C. cu-

cumerinium and and A. alternata (Table 2). These bacteria

were identified based on 16S r-RNA and gyr-A gene

sequences analysis as B. amyloliquefaciens, B. subtilis sub

sp spizezenii, B. velezensis and P. polymyxa. Approximate

results were found by Martina Köberl et al. [14] where the

Bacillus strains isolated from the rhizosphere and endorh-

iza of the medicinal plants (Matricaria chamomilla, C.

officinalis and Solanum distichum) had an antagonistic

effect against Rhizoctonia solani, Verticillium dahliae and

F. culmorum. The isolated bacteria in this same study were

identified based on 16S r-RNA sequences analysis as B.

subtilis, B. vallismortis, B. amyloliquefaciens and B. atro-

phaeus [13]. In this study, the average similarity values of

the 16S r-RNA sequences from Bacillus spp. was 99.1 %

and the isolates were indistinguishable from one another.

However, the gyr-A gene sequences analysis clarified fur-

ther the identification of the Bacillus spp. Isolates. The gyr-

A based tree clearly delineated three distinct clusters, cluster

1 contained B. atrophaeus and B. mojavensis, cluster 2

contained B. amyloliquefaciens and cluster 3 contained B.

velezensis and B. subtilis sub sp spizezenii (Fig. 1b).

Comparatively, the 16S r-RNA gene-based tree yielded

three clusters, cluster 1 contained strains of B. subtilis, B.

vallismortis, B. atrophaeus and B. subtilis sub sp spizezenii,

cluster 2 contained B. amyloliquefaciens and B. velezensis

and cluster 3 contained P. polymyxa. These results were

similar to that previously found by Jongsik and Kyung [13].

The P. polymyxa (18SRTS) strain had a very low sporula-

tion yields. However, the other Bacillus isolates (9SRTS,

23SRTS and 26SRTS) had high sporulation levels which

varied between 0.8 9 109 and 2.5 9 109 spores/ml

(Table 1). Previously, the spore yields in submerged opti-

mized cultivation were lower and estimated at

8.35 9 108 spores/ml [15]. In this work, the Bacillus iso-

lates showed important growth inhibition percentages

against F. oxysporium and B. Cinerea i.e., 39–83 %

(Table 2). The detected antifungal activity can be explained

by the capacity of the Bacillus isolates to produce the cyclic

lipopeptides (cLPs) and the cell-wall degrading enzymes as

previously sowed [19, 25]. Indeed, all screened bacteria

here produced cellulase but the protease activity was found

only in the B. amyloliquefaciens species (9SRTS) and non

strain produced chitinase (Table 2). The LC–MS analysis

showed that most of Bacillus isolates produced surfactin

and iturin. Two types of iturin were produced, the iturin

(A) and the Bcillomycin D. However, the P. polymyxa

(18SRTS) didn’t produce any type of lipopeptides. The B.

velezensis (26SRTS) was the only strain producing fen-

gycins. In previous works, it has been mentioned that a very

limited number of strains are reported to co-produce

fengycin homologues [19]. The production of the phyto-

hormone (IAA) and siderophores by Bacillus species has

been investigated in many studies. The IAA stimulates the

plant growth and siderophores chelate iron (Fe) and deprive

the phytopathogenic fungi of it [5–24]. Here, the Bacillus

spp. isolates (9SRTS, 23SRTS and 26SRTS) produced low

concentrations of IAA (7–14 lg/ml) and high levels of

siderophores (more than 10 mm yellow-orange zone

diameter). However, the P. polymyxa (18SRTS) didn’t

produce siderophores and produced higher concentrations

of IAA which reached 53 lg/ml (Table 3). The in vivo test

carried here showed that the B. amyloliquefaciens (9SRTS)

had no significant effect on the pre-germination of chickpea

seeds (P [ 0.05). However, it increased the size of the

chickpea plants and reduced the stem rating disease

(P \ 0.05). The B. subtilis and B. megaterium species

decreased the pre-germination damping-off and the stem rot

rating disease of Giza variety of chickpea in the study

Fig. 2 The effect of the B. amyloliquefaciens (9SRTS) on the pre-

germination damping-off, the size of chickpea plants and the stem rot

disease rating after 1 month of seeds sowing. Different letters above

histograms corresponding to the same parameter mention that the

control pots are significantly different from the treated ones (P \ 0.05)
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carried out by Abel-Monaim [1]. To conclude, the Bacillus

strains isolated from the rhizosphere of C. officinalis have

interesting in vitro and in vivo biocontrol and plant growth

promotion characteristics and high spore yields which

enable them to be a feasible product that can be further used

to improve the production of C. officinalis and other crop

systems.
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