Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish

Lydie C Flasae (lydie.flasae@sund.ku.dk)
Justine L Pirson (Justine.Pirson@student.ulg.ac.be)
David G Stern (d.stern@student.ulg.ac.be)
Virginie Von Berg (vonberg.v@hotmaill.com)
Isabelle Manfroid (isabelle.manfroid@ulg.ac.be)
Bernard Peers (bpeers@ulg.ac.be)
Marianne L Voz (mvoz@ulg.ac.be)

ISSN 1741-7007
Article type Research article
Submission date 25 April 2013
Acceptance date 28 June 2013
Publication date 8 July 2013
Article URL http://www.biomedcentral.com/1741-7007/11/78

Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central.
For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/

© 2013 Flashe et al
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish

Lydie C Flasse
Email: lydie.flasse@um.dk

Justine L Parson
Email: Justine.Parson@student.ulg.ac.be

David G Stem
Email: d.stem@student.ulg.ac.be

Virginie Von Berg
Email: vonbergvng@hotmail.com

Isabelle Manfroid
Email: isabelle.manfroid@ulg.ac.be

Bernard Peers
Email: bpeers@ulg.ac.be

Marianne L Vez
*Corresponding author
Email: mvez@ulg.ac.be

1 Laboratory of zebrafish development and disease models, University of Liège (ULg), 1, Ciga-R, Avenue de l’Hôpital, Liège 4000, Belgium

Abstract

Background

NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mice, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state.

Results

We show herein that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by a couple of bHLH factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm post gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells.
following their simultaneous activation. This defect is due to a blockage of the initiation of endocrine cell differentiation.

Conclusions

This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could therefore consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.

Keywords

Pancreas, endocrine, zebrafish, arcb1b, neurod1, neurog3

Background

The pancreas is a mixed gland of the digestive tract composed of an exocrine compartment (acini and ducts), releasing digestive enzymes into the duodenum and an endocrine compartment, secreting hormones into the bloodstream in order to control glucose homeostasis. Loss or dysfunction of endocrine insulin-secreting β-cells leads to diabetes, a widespread disease affecting more than 370 million people worldwide.

Outstanding progress has been made to set up new therapies for diabetes through cell therapy (reviewed by [1-5]). Recent efforts have been focused at directing stem cells to differentiate in vitro into pancreatic β-cells that could be transplanted to diabetic patients [6]. To achieve that goal, it is essential to understand in detail the molecular mechanisms controlling pancreatic endocrine cell differentiation.

Although much of our knowledge on pancreas organogenesis relies on mouse genetic studies, the use of zebrafish has also significantly contributed to decipher mechanisms involved in the earliest phases of pancreas development [7-12]. In this fish, the endoderm forms two converging sheets of cells by the end of gastrulation (10 hours post fertilization hpf). Subsequently, these cells condense at the midline to form the endodermal rod which will give rise to the digestive tract and the associated organs [9,13]. Early in development, at 10 somite stage (10s, 14 hpf), the homeobox Pdx1 factor starts to be expressed in the endodermal region located between the first and the fourth somite [14]. Like in mammals, a dorsal and a ventral pancreatic bud will emerge from this Pdx1+ region and will later coalesce to form the pancreas [15]. In zebrafish, the first hormone expressing cells that appear from the dorsal bud are the insulin-producing β-cells, detected from 15 hpf onward. Next appear the somatostatin-secreting δ-cells (17 hpf), the ghrelin-α-cells (18 hpf) and finally the glucagon-producing α-cells (21 hpf). This first wave of endocrine cells is followed by a second wave coming from the ventral bud that forms from 32 hpf onwards [15-17]. After that stage, the increase of the endocrine cell mass is believed to result from the differentiation and proliferation of late forming ventral bud derived endocrine cells [16]. Therefore while at 2 dpf, the vast majority of the endocrine cells is generated from the dorsal bud, at 12 days, a majority seems to derive from the ventral bud [16].
Both in zebrafish and mice, the Notch signaling pathway tightly controls pancreatic cell differentiation. Notch prevents commitment to the endocrine cell fate thereby reserving a population of undifferentiated precursor cells for ongoing proliferation and generation of later-appearing cell lineages [18-21]. Notch pathway is a fundamental and evolutionarily conserved process in metazoan development. There are numerous core players that participate in this process. Briefly, via the Hairy Enhancer-of-split proteins, Notch signaling represses the expression of genes of the Achaete-Scute Like (ASCL) family or of the Atonal Related Protein (ARP) family, thus latter being subdivided into Atonal, Neurogenin and Neurod subfamilies. These genes encode basic Helix-Loop-Helix (bHLH) transcription factors and can be classified in two categories, “cell fate determinant” factors and “cell differentiation” factors [22]. The cell fate determinants are transiently expressed at early stages and are both necessary and sufficient to initiate the development of a specific cell lineage. The “cell differentiation” factors are expressed at later stages and implement the differentiation program initiated by the cell fate determinants. For example, in the murine pancreas, NEUROG3 is the cell fate determinant of the pancreatic endocrine lineage [23] as its transient expression initiates the endocrine differentiation program of all endocrine cells [24-26]. Indeed, almost no endocrine pancreatic cells were detected in the Neurog3 knockout mice [25]. NEUROG3 triggers the sustained expression of the “cell differentiation gene” NeuroD1 that maintains the endocrine cell differentiation program [27,28]. Homozygous Neurod1 null mice have notably a striking reduction in the number of insulin-producing β cells and fail to develop mature islets [29].

The neurog3 gene is found in the zebrafish genome but, surprisingly, zebrafish neurog3 mRNAs were not detected in the developing pancreas while they were detected in the hypothalamus and intestine [20,30]. In this study, we analyzed extensively neurog3 expression during pancreas development and could not detect any expression at any stages in the tissue. The lack of Neurog3 function in the zebrafish pancreas was further confirmed by analyzing the phenotype of the recently identified ax211 neurog3 null mutant. As neuronal or endocrine cell fate commitment controlled by Notch is classically carried out via ARPLASCL factors [31-33], we next searched for other ARPLASCL factors acting downstream of Notch signaling that would promote the formation of pancreatic endocrine cells. Among the 14 ARPLASCL factors identified in the zebrafish genome, only ax211b and neurod1 were found strongly expressed at early stages of endocrine cell differentiation. Knock-down analysis reveals that these factors have complementary role in endocrine cell differentiation and that their simultaneous inactivation leads to a loss of all hormone-secreting cells. These two bHLH factors are therefore playing together a role analogous to that described for murine NEUROG3.

Results

neurog3 is not expressed in the pancreatic dorsal bud and null neurog3 mutant embryos do not display any apparent endocrine defects

To determine whether the fundamental role of Neurog3 in endocrine cell differentiation in mice is conserved in zebrafish, we first analyzed neurog3 expression in the pancreas by whole-mount in situ hybridization (WISH). neurog3 expression was never detected in the pancreas at any developmental stages tested (14h, 18h, 24 hpf, 30 hpf, 52 hpf, 72 hpf, 4 dpf and 5 dpf) whereas its expression was found in the hypothalamus and in scattered cells of the intestine (Figure 1A-B), as reported previously [20,30]. To ensure that Neurog3 is actually
not involved in pancreatic endocrine cell differentiation as neurog3 expression level could be below WISH detection limit, we analyzed the pancreas of a novel zebrafish neurog3 mutant recently identified at the Zebrafish Mutant Resource [34]. This neurog3 mutant allele (sa211) harbors an A to T substitution changing codon 74 (Arg) to a premature stop codon and is predicted to give rise to a truncated Neurog3 protein lacking the whole basic helix-loop-helix (bHLH) domain. The sa211 should be therefore a null allele. neurog3 homozygous mutant embryos do not display any histological changes in the number of pancreatic endocrine cells, islet cell, and -cells compared to wild type embryos (Figure 1C). The same result was obtained when we knocked-down neurog3 expression with a morpholino targeting its translation start site (Mo1) or its 5'UTR (Mo2) (Additional file 1: Figure S1). As extensive searches in the zebrafish genome did not identify any other neurog3 paralog (see below), these data indicate that the zebrafish Neurog3 factor does not control pancreatic endocrine cell fate, in contrast to the murine NEUROG3, and suggest that another bHLH factor is playing its role in this fish model.

Expression of ARP/ASCL genes in the developing zebrafish pancreas

In order to identify the functional equivalent of murine NEUROG3 in zebrafish, we searched for another ARP/ASCL gene that could assume its role. For that purpose, we performed a phylogenetic analysis of the various ARP/ASCL found in the zebrafish genome based on the bHLH domain described by Wang et al. [35] (Figure 2A). This allowed us to identify 14 ARP/ASCL genes in the zebrafish genome, including neurog3 and another neurogenin gene, neurog1. Extensive in silico searches did not identify any other neurogenin genes in the zebrafish genome (see Materials and Methods).

Figure 2 acsl1b and neurod1l are expressed during early pancreas development. (A) Phylogenetic tree calculated with full-length aminoacid sequences from vertebrate members of the ARP/ASCL family. The pancreatic expression of zebrafish ARP/ASCL was tested by WISH and the expression levels are depicted by (+++) highly, (+) moderately, (+) weakly, (−−) very weakly and (−−) not expressed in the pancreas. (B-C) WISH showing expression of neurod1l (B) and acsl1b (C) in the pancreatic region at the indicated stages. All views are ventral with anterior part to the left.

The expression of the 14 ARP/ASCL genes was analyzed by WISH at different time points during pancreatic development (6-8h, 12-14h, 18-20h, 24 hpf, 30 hpf, 48 hpf, 72 hpf). We observed high expression in the pancreatic region at early stages for only two factors, namely acsl1b and neurod1l (Figure 2B-C). In contrast, only weak expression was detected at early stages for acsl1a, neurog3 and neurod1b within the pancreatic area (Additional file 2: Figure S2, A-C), while acsl3b and neurod1a genes were detected only at later stages, i.e. around 2 days post fertilization (dpf) (Additional file 2: Figure S2, D-E).

neurod1l expression had already been reported in the dorsal pancreatic bud in zebrafish [20,36-38] but its precise expression profile was not determined. In this study, we show that
pancreatic *neurod1* expression starts around 6s (12 hpf) in a few cells. At 10s (14 hpf), *neurod1* is expressed in two rows of cells located on both sides of the midline (Figure 2B). Over the next few hours, the number of *neurod1*+ cells progressively increase and they start to cluster to form the islet which is completely formed at 30 hpf. *neurod1* remains expressed in the pancreas of 4 dpf larvae as well as in adult (data not shown).

acslb is detected before *neurod1* as its expression starts as early as 10 hpf (bud stage) in two rows of cells in the prospective pancreatic region (Figure 2C). Over the following two hours, the number of *acslb*-expressing cells increases to reach its maximal level around 12 hpf. Then, *acslb* expression progressively decreases and is turned off at 17 hpf.

acslb and *neurod1* are both expressed in the pancreatic endocrine precursors and their expression is controlled by Notch signaling.

In order to determine in which pancreatic cell types these two bHLH factors are expressed, double fluorescent WISH were performed using probes for other pancreatic factors. As mentioned above, *acslb* expression starts at the end of gastrulation (10 hpf, bud stage) in the prospective pancreatic region where will appear, about 2 hours later, *sxdlb*, the first known marker of endocrine precursors [37,38]. As soon as *sxdlb* is expressed in the pancreatic anlagen, its expression domain overlaps almost perfectly with *acslb* (Figure 3A) and these two factors remain co-expressed over the next five hours (Figure 3F and data not shown) until the expression of *acslb* switches off at 17 hpf. At 12 hpf, *neurod1* starts to be expressed within the *sxdlb/acslb* expression domain (Figure 3B and C). At 14 hpf, *pikl* expression is initiated in two bilateral rows of endodermal cells adjacent to the midline [14]. *acslb* and *neurod1* are expressed within the medial part of the *pikl* expression domain, which includes the pancreatic endocrine precursors (Figure 3D and E) [8,9]. From 15 hpf, the two stripes of pancreatic precursors have begun to coalesce toward the midline starting from the posterior end (Figure 3F and G) [14,37]. At this stage, *neurod1*+ cells are still largely included in the *acslb/sxdlb* domain with the exception of a few cells which are only labeled by *neurod1* (arrow in Figure 3G). One hour later, the segregation of *neurod1*+ cells from the *acslb/sxdlb* endocrine precursors cells is more striking (Figure 3H). This separation coincides with the appearance of the first hormone-expressing cells (i.e. insulin-producing cells) which co-express *neurod1* but not *acslb* (Figure 3I, J). At 17 hpf, the expression of *acslb* turns off. In contrast, *neurod1* expression persists and, as shown previously [38], *neurod1* labels at 24 hpf the whole endocrine cell lineage including the *sxdlb*+ endocrine precursor cells and the hormone-expressing cells. At 30 hpf, when the majority of endocrine cells are differentiated and clustered into the single islet, *neurod1* remains expressed in all endocrine cell types (β, α, δ, ε and γ) (data not shown). All these data show that *acslb* is transiently expressed in the pancreatic endocrine precursors and is the earliest pancreatic marker identified so far (Figure 3K). *neurod1* expression is initiated 2 hours later in the endocrine precursors and remains expressed in the mature endocrine cells, in contrast to *acslb*.
Figure 3. *ascIb* and *neurod1* are both expressed in pancreatic endocrine precursors. (A-J) Double fluorescent WISH comparing the expression of *ascIb* and *neurod1* with the expression of the pancreatic factor *soxxb* (A, B, F, G), *peh1* (D, E) or with the *nudlin* hormone (I, J) at early stages (12 to 16 hpf). The arrows point to a cell *neurod1/+;soxxb-* (G) or *neurod1+;ascIb-* (H). The arrowheads point to a cell *neurod1+;ascIb+* (H). Z-plane confocal images. All views are ventral with anterior part to the left. (K) Diagram illustrating the time windows for the expression of *ascIb*, *neurod1* and the pancreatic hormones.

We next asked whether *ascIb* and *neurod1* could be mediators of Notch signaling by analyzing their expression in *mind bomb* (*mbb*) mutants. *mbb* mutants lack a Delta-ubiquitin ligation, resulting in the failure to trigger Delta-mediated Notch signaling [39] and leading to an increase of endocrine differentiation at early stages [20,37]. We found that *neurod1* and *ascIb* expression is strongly increased in *mbb* pancreas (Figure 4), indicating that *ascIb* and *neurod1* expression is repressed by Notch signaling, further suggesting a role of these two factors in endocrine differentiation.

Figure 4. Pancreatic expression of *ascIb* and *neurod1* is repressed by Notch signaling. Fluorescent WISH showing pancreatic expression of *ascIb* (A-B) and *neurod1* (C-D) in wild-type (wt) embryos (A, C) and *mind bomb* (*mbb*) mutants (B, D). Confocal projection images. All views are ventral views of 15 hpf embryos with anterior part to the left.

Impaired endocrine cell differentiation in neurod1 morphants

To assess the role of Neurod1 in pancreatic endocrine development, we abrogated Neurod1 protein expression in zebrafish embryos by injecting two distinct antisense morpholinos. The first (Mo-neurod1) targets the translational start site while the second (Mo2-neurod1) targets the 5'UTR region. Both morpholinos block efficiently the translation of the *neurod1* transcript as they completely prevent the expression of GFP from the Tg(neurod1:EGFP) transgenic line [40], while they do not disturb the overall morphology of the embryo (Additional file 3: Figure S3). In contrast, Neurod1 knockdown leads to pancreatic defects, as the injection of each morpholino led to the same phenotype: an almost complete depletion of ghrelin (GH) and ghrelin (GH) cells (Figure 5G-L) together with a severe reduction in the number of somatostatin cells (b) (Figure 5D-F). In contrast, the number of *nudlin* cells (b) was not significantly decreased (Figure 5A-C). As the Mo2 morpholino was slightly more efficient than Mo1, the following experiments were mainly performed with Mo2.

Figure 5. Impaired endocrine cell differentiation in *neurod1* morphants. Ventral views of WISH showing expression of *nudlin* (A-C), somatostatin (D-F), ghrelin (G-I), and ghrelin (J-K) in control (A, D, G, J), Mo1-neurod1 (B, E, H, K) and Mo2-neurod1 (C, F, I, L) morphants at 30 hpf. The quantification on the right side of the figure represents the number of positive cells per embryo for controls and *neurod1* morphants. Asterisks (**) indicate that the difference between cell number in controls and *neurod1* morphants is statistically significant by Student's t-test (P<0.001).

To understand by which mechanism Neurod1 controls endocrine cell differentiation, we analyzed the expression of various pancreatic transcription factors in the *neurod1* morphants at 24 hpf. Consistent with the loss of gh cells, we observed a complete extinction of arx, a factor known to be expressed specifically in all gh cells and essential for their differentiation [41] (Figure 6C and D). In contrast, expression of the *maxl hh9* gene, specifically involved in fl-cell differentiation [36,42] was unchanged, like *nudlin* (Figure 6A and B). The expression...
domain of prx6b and isl1, which at 24 hpf includes all differentiated hormonal cells [38,43] was clearly reduced (around 2 fold, Figure 6E-H), consistent with - , -cells loss and a reduced number of fi-cells. Cells still expressing these two factors correspond to fl-cells and to the residual fi-cells still present in neurod1 morphants (Figure 6I-L). Since the morpholino are designed to prevent neurod1 mRNA translation but not the expression of the transcripts, we could highlight neurod1* cells by WISH in the neurod1 morphants, neurod1* cells were present in neurod1 morphants at all stages tested (14 hpf, 18 hpf, 24 hpf and 30 hpf) and we did not detect any obvious changes in their number (Figure 6P, T, X and data not shown). This suggests that the loss of - cells in the neurod1 morphants is not due to the apoptosis of the neurod1* cells but due to a blockage in their differentiation process. This was further confirmed by performing TUNEL assays revealing no apoptotic cells in the pancreatic area of neurod1 and control morphants at different stages (26, 30, 40, 48 and 55 hpf) (Additional file 4: Figure S4 A-D and data not shown).

Figure 6 Pancreatic cells are arrested in their differentiation process in neurod1 morphants and the expression of sox6b is not maintained. Ventral views with the anterior to the left of the pancreas of embryos analyzed by viable (C-H, U-X) or fluorescent (A-B, I-T) WISH. (A-H) Pancreatic expression of mnx1, arch, isl1 and prx6b in controls and Mo2-neurod1 morphants at 24 hpf, the number of isl1* cells in control morphant (50.4 ±2.1) was reduced about 2.1 fold in the Mo2-neurod1 morphant (24.1 ±1.2) and the number of prx6b* cells in control morphant (40.7 ±1.2) was reduced about 1.8 fold in the Mo2-neurod1 morphant (22.1 ±1.2) (L-L) Double fluorescent WISH performed with prx6b (I, J) or isl1 (K, L) probe together with a mix of insulin (ins) and somatostatin (sst) probes on 24 hpf controls or Mo2-neurod1 morphants. Z-plane confocal images (M-T) Double fluorescent WISH performed with sox6b and neurod1 on 14 hpf and 18 hpf controls or Mo2-neurod1 morphants. Confocal projection images (U-X) WISH performed with sox6b and neurod1 on 24 hpf controls or Mo2-neurod1 morphants.

To further define neurod1 function in early stage of endocrine cell differentiation, we analyzed the expression of sox6b at early stages of development. While the initiation of sox6b expression is not perturbed in neurod1 morphants (Figure 6M and O) its expression is strongly reduced at 18 hpf (Figure 6Q and S) and is not detectable anymore at 24 hpf (Figure 6U and W). All together, these data show that, in absence of Neurod1, sox6b expression is correctly initiated. Then, around 17–18 hpf, stage when most fi-cells and a minority of fl-cells are already differentiated (see diagram in Figure 3K), sox6b expression is not maintained anymore and the differentiation of late-appearing endocrine cells is blocked, leading to a loss of - and -cells as well as to a reduction of fl-cells.

Impaired endocrine cell differentiation in ascl1b morphants

Intriguingly, although neurod1 is expressed from 12 hpf (6r) in the pancreatic endocrine precursors, neurod1 morphants do not display any apparent pancreatic defects before 17 hpf. We therefore hypothesized that, at early stages, Ascl1b could complement the loss of Neurod1 function. To test this hypothesis, we first defined Ascl1b function in endocrine differentiation by injecting an antisense morpholino targeting the translational start site of ascl1b mRNA as described in [44,45].

In contrast to neurod1 morphants, we observed in ascl1b morphants a significant reduction in the number of all types of pancreatic hormone-expressing cells (Figure 7). Consistent with this phenotype, we noticed a reduction of the isl1 expression domain, which includes all the
mature endocrine cells at 24 hpf (Figure 7, I). As accilia, the paralog of accllb, was detected in a few cells of the endocrine pancreas at 18 hpf (Additional file 2: Figure S2B), we tested if Accilia could have redundant functions with Accllb. This is not the case as the knockdown of Accllb in the accilia/pum null mutant [46] did not lead to a further reduction of endocrine cells (data not shown).

Figure 7 Impaired endocrine cell differentiation in accllb morphants. Ventral views of WISH showing expression of insulin (A-B), somatostatin (C-D), ghrerin (E-F), ghrelin (G-H) in control (A, C, E, G) and accllb morphants (B, D, F, H) at 30 hpf. The quantification on the right side of the figure represents the number of positive cells per embryo for controls and accllb morphants (I). Confocal projections of ventral views of fluorescent WISH showing expression of allt in control (I) and accllb morphants (J) at 24 hpf. The quantification of allt expression domain is depicted on the right side of the figure. The graph shows the relative volume of allt+ cells in control and accllb morphants, the mean of the volume occupied by the allt+ cells in control morphants being arbitrarily set to 100%. Asterisks (***) indicate that the difference between cell volume in controls and accllb morphants is statistically significant by Student’s t-test (P<0.001).

To further define Accllb function, we analyzed the initiation of endocrine cell differentiation in accllb morphants. At 12 hpf (6σ), we could not detect any saxd4+ cells in the accllb morphants whereas saxd4 was easily detectable in control morphants (Figure 8A and D). At 13 hpf (8σ), one or two saxd4+ cells were present in the accllb morphants (Figure 8I), and over the next four hours, new saxd4+ cells appeared but their number never reached the control levels (30% compared to the control at 17 hpf, Figure 8P). In contrast, neurod1 expression was correctly initiated in accllb morphants (Figure 8E and K). Interestingly, the few saxd4+ cells detected in accllb morphants were all comprised within the neurod1+ domain (Figure 8L and R) while in control morphants, a majority of saxd4+ cells do not express neurod1 (Figure 8C, I and O). These data suggest, in accllb morphants, saxd4 gene expression is switched on by Neurod1. This hypothesis is in accordance with the onset of saxd4 that is detected just after neurod1 activation in accllb morphants.

Figure 8 The onset of saxd4 expression is delayed in accllb morphants and is restricted to neurod1 expressing cells. Ventral views with the anterior part to the left of double fluorescent WISH showing expression of saxd4 and neurod1 at 12 hpf (A-F), 13 hpf (G-L) and 17 hpf (M-R) in control and accllb morphants. The domain occupied by saxd4+ and neurod1+ cells was reduced respectively 3.3 and 2.6 fold in the Mo-accllb at 17 hpf. The arrow points to a cell expressing saxd4 and neurod1 while the arrowheads points to a cell expressing only saxd4. Z-plane confocal images.

Endocrine precursor differentiation is abolished in the double accllb and neurod1 morphants

To test the hypothesis that saxd4 expression can be switched on either through Accllb or Neurod1 action, we performed a co-injection of the morpholinos targeting both genes. As shown on Additional file 5: Figure S5, this co-injection do not affect the general morphology of the embryos. In these double accllb/neurod1 morphants, saxd4 expression was never detected, nor at 17 hpf (Figure 9C-D), nor later on (data not shown). Moreover, this double knock-down abolished all endocrine cell differentiation as we did not detect any hormone-producing cells at early or late stages (17 or 38 hpf) (Figure 10A-J). In addition, allt expression was not detected in the endocrine islet at 38 hpf while allt was correctly expressed
in the adjacent mesodermal tissue [10] (Figure 9A-B). Similarly, the expression of pterob and nuxrl was completely lost in the endocrine pancreas while pterob remains expressed in the neural tube and nucl gene in the motoneuron and the hypochord (Figure 9C-H). In contrast to these transcription factors, the nuxrlb transcripts were still detected in the double morphants and the number of nuxrlb positive cells was drastically increased at 13 hpf (Figure 9E-F) suggesting that these cells are blocked in their differentiation process. neuredl transcript was also detected in the double morphants, confirming the above observations that neuredl initiation can occur independently of Aseclb. As expected based on the increase of the number of cells expressing the nuxrlb transcripts, we did not observe any apoptosis at 14h (16 hpf) and 19h (18.5 hpf) in these double morphants (see Additional file 4: Figure S4E-H).

Figure 9 Simultaneous knock-down of Aseclb and Neuredl blocks the differentiation process of the precursors. Ventral views with the anterior part to the left of the pancreas of control (A,C,E,G,H) or Mo-Aseclb/Mo2-Neuredl morphants (B,D,F,I,J) analyzed by fluorescent (A-F, I-J) or visible (G-H) WISH. (A-B) Confocal projections of nul expression in the pancreatic islet (dotted line) and in the adjacent mesoderm (*) at 38 hpf (C-D) and of sox4b expression at 17 hpf. (E-F) nuxrlb transcript expression at 13 hpf (8c). (G-H) Confocal projections of pterob (green) and nuxrl (red) expression at 18 hpf showing that the pancreatic expression of pterob and nuxrl is completely lost in the double morphants. In contrast, the expression of pterob in the neural tube and the expression of nuxrl gene in the motoneuron and the hypochord is not perturbed. (I-J) neuredl transcript expression at 15 hpf (12c).

Figure 10 Endocrine cell differentiation is abolished in the double nuxrlb and neuredl morphants. Ventral views of WISH showing expression of inulin (A-B, I-J), somatostatin (C-D), glicentin (E-F), ghrelin (G-H) in control (A,C,E,G,H) and Mo-nuxrlb/Mo2-neuredl (B,D,F,I,J) morphants at 38 hpf (A-H) or 17 hpf (I-J). The quantifications on the right side of the figure represent the number of positive cells per embryo for controls and double nuxrlb/neuredl morphants. Asterisks (***R) indicate that the difference between cell number in controls and double neuredl morphants is statistically significant by Student’s t-test (P<0.001).

Altogether, our data indicate that the simultaneous loss of nuxrlb and neuredl expression abolishes the formation of all pancreatic hormone-expressing cells by interfering with the initiation of their differentiation process as shown by the loss of the pancreatic expression of sox4b, nul, pterob, nuxrl and inulin genes.

Because cells are also generated at later stages from the intrapancreatic ducts [16, 17, 47], we investigated whether Neurop3 could be involved in the generation of these late endocrine cells. To detect them more easily, we treated wt and neurop3 null mutant embryos from 3 to 5 dpf with the Notch-signaling inhibitor LY411575, treatment known to drastically increase the number of endocrine cells coming from the intrapancreatic ducts [17, 17, 48]. As shown on Figure 11B, the homozygous neurop3 mutants are able to generate efficiently endocrine cells from the intrapancreatic ducts (n=6), suggesting that Neurop3 is not involved in the formation of the second wave endocrine cells, like the first one. This is in agreement with the absence of neurop3 expression in the intrapancreatic ducts of LY411575-treated embryos (data not shown). In contrast, we detected a strong expression of nuxrlb in the intrapancreatic ducts of the LY411575-treated embryos as well as of neuredl as previously described [48, 49].
suggesting that the couple NeuroD1 and Ase11b could also play an important role in the formation of secretory endocrine cells. This verification of this hypothesis will require the generation of *a all and neurod1 null mutant as the knock-down of NeuroD1 is not anymore fully efficient after 48 hpf.

Figure 11 Neurog3 is not involved in the formation of the second wave endocrine cells. (A-B) Ventral views of immunohistochemistry against GFP of 5 dpf wt (A) or neurog3 null mutant (B) (paraffin GFP) embryos treated from 3 to 5 dpf with the Notch signaling inhibitor LY411575. The generation of par6h endocrine cells from the intrapancreatic duct (indicated by a dash line) is not perturbed in the neurog3 null mutant (n=6). (C) Confocal projections of ace11b (green) and neurod1 (red) expression of 4 dpf embryos treated from 3 to 4 dpf with the Notch signaling inhibitor LY411575 showing a strong expression in the intrapancreatic duct. Anterior part to the left.

Discussion

In this study, we show that in zebrafish, Neurog3 does not control pancreatic endocrine cell fate like in mouse. This function is fulfilled by a couple of ASCL/ARF factors, Ace11b and NeuroD1.

Ace11b starts to be expressed at bud stage (10 hpf) in the prospective pancreatic region about 2 hours before Sox6h, that was so far the earliest known marker of endocrine precursors [37,38,50]. We show that Ace11b initiates the pancreatic endocrine cascade and induces the formation of the first Sox6h+ endocrine pancreatic precursors (Figure 12A). 2 hours after ace11b onset, neurod1 expression appears within the ace11b Sox6h domain. NeuroD1 pursues the endocrine differentiation program initiated by Ace11b notably by maintaining the expression of Sox6h in the precursors and allowing their subsequent differentiation. Indeed, in Neurod1 morphants, Sox6h expression is properly initiated by Ace11b but, around 17–18 hpf, when ace11b expression turns off, it is not maintained anymore. The endocrine differentiation does not proceed further thereby preventing the differentiation of later endocrine cells i.e. the majority of fi (somatostatin), (glucagon) and (glucagon) cells, normally appearing respectively at 17 hpf, 18 hpf and 21 hpf (see the model in Figure 12B).

Figure 12 Model describing the function of ace11b and neurod1 in pancreatic endocrine differentiation. (A) In wt embryos, Ace11b initiates the expression of Sox6h in the endocrine precursors at 11 hpf. Then, around 12 hpf, neurod1 expression starts and maintains Sox6h expression in the precursors. The differentiation of the distinct endocrine cell types can take place. (B) In neurod1 morphants, Ace11b initiate the expression of Sox6h in the endocrine precursors at 11 hpf and maintains Sox6h expression until 17 hpf. From that stage, ace11b expression turns off and Sox6h expression is not maintained anymore. The differentiation of the late-appearing endocrine cells is blocked. (C) In ace11b morphants, Sox6h expression is not initiated at 11 hpf. When NeuroD1 starts to be expressed from 12 hpf, it initiates Sox6h expression in a reduced number of endocrine precursors.

The role of NeuroD1 as a “cell differentiation factor”, required for the maintenance of the endocrine differentiation program in zebrafish is similar to the murine situation where NEUROD1 pursues the endocrine differentiation program initiated by NEUROG3 and participates in the maintenance of the mature islet cells (reviewed by [51,52]). However in zebrafish, if Ace11b is absent, NeuroD1 remains expressed and acts as a cell fate determinant
inducing the formation of the *sox1b*+ precursors. Indeed, in *ascl1b* morphants, *sox1b*+ precursor cells are detected only after *neurod1* onset and *sox1b* expression is exclusively induced in *neurod1* expressing cells while, in the control morphants, the majority of *sox1b*+ cells do not express *neurod1*. Consequently, the pool of endocrine precursors is reduced in *Ascl1b* morphants, leading to a reduced number of all mature endocrine cells at 30 hpf (Figure 1C). Thus, *neurod1* has the capacity in zebrafish, to act as a “cell fate determinant” or a “cell differentiation” factor. In mice, NEUROD1 has been reported to act only as a cell differentiation factor. However, when NEUROD1 is ectopically expressed in the mature pancreatic islet under the control of the Pdx1 promoter, it has the same intrinsic capacity as Neurog3 to induce endocrine differentiation [28]. Such functional equivalence highlighted by a gain-of-function approach can probably be explained by the fact that these two factors regulate largely overlapping sets of genes [27].

This dual capacity to promote the selection of precursors and to regulate some differentiation steps is not restricted to Neurod1 but is shared by many ASCL/ARP factors. For example, in the olfactory epithelium, *Mash1* and *Neurog1* are expressed sequentially in the sensory neuron precursors. * Mash1 acts as a cell fate determinant by inducing the olfactory precursors, while Neurog1 acts as a cell differentiation gene by allowing the differentiation of these precursors into sensory neurons. However, NEUROG1 can partly compensate for the loss of the determination function of *Mash1* in the olfactory placode, suggesting that NEUROG1 has also the intrinsic capacity to act as a cell determinant or differentiation factor in the same time [53]. This suggests that the function of some ARP/ASCL factors is not intrinsically determined by their protein sequence and their structure but could be simply dictated by the context (cell type and timing of expression). This flexibility could be explained by the strong conservation within the bHLH domain. Nine of the ten residues predicted to contact DNA are identical amongst ARP and ASCL proteins [54] and based on *in vitro* studies, there is no indication of DNA binding differences between ARP and ASCL proteins [55-56]. Therefore, these factors can regulate overlapping sets of genes as described for NEUROG3 and NEUROD1 [27] or for the proneural bHLH factors Xath5 and XNeuroD [57].

However, in other cases, the protein sequence can be crucial for the intrinsic properties of ARPA/ASCL proteins acting as “cell fate determinants” versus “cell differentiation factors.” For example, in the context of muscle differentiation, the “cell differentiation gene” Myogenic factor 5 (Mf5) is less efficient than the “cell fate determinant gene” Myogenic factor 5 (Mf5) at remodeling chromatin and activating transcription at previously silent loci [58]. Such specificities can result from their interactions with specific cofactors. For example, functional divergence between Ato and Neurog proteins in *Drosophila* is encoded by three non-conserved residues in the basic domain of these bHLH which are responsible for the differential interaction with Senseless or MyoD [59]. Such cofactors can affect the interaction of the bHLH with their DNA binding sites and/or modulate their transcriptional activity. Identifying such cofactors will be an important issue to better understand the transcriptional properties of ARPA/ASCL factors.

The lack of pancreatic defects in the zebrafish *neurog3* mutant contrasts with the crucial function of NEUROG3 in mice. This raised the question whether the *neurog3* gene studied here is the actual ortholog of the murine *Neurog3* gene. This seems to be the case as extensive searches in the zebrafish genome revealed the presence of only 2 *neurogenin* genes in zebrafish, *neurog3* and *neurog1*, *neurog3* being the most closely related to murine and human NEUROG3 and the locus displaying a conserved synteny with the region of human
chromosome 10 containing Neurog3 [30]. As the zebrafish genome is almost completely sequenced [60], it is highly unlikely that another neurogenin gene exists in zebrafish but this possibility cannot be totally excluded. Rather, we show here that the crucial role of murine Neurog3 in pancreatic endocrine cell differentiation is fulfilled in zebrafish by a couple of bHLH transcription factors, Axel1b and Neurod1. Indeed, the simultaneous activation of those two bHLH factors leads to a complete loss of all hormone-secreting cells, like in Neurog3 null mice. The endocrine cells remain at the precursor stage as they still express the axel1b transcripts but none of the later pancreatic transcription factors like sord3, pens6, myel, tiss1, and arx. During the second endocrine wave coming from the ventral bud, Axel1b and Neurod1 probably play also an important role as we have observed a strong expression of these two factors in the intrapineal ducts after Notch inhibition.

This indicates that Neurog3 is not the only cell fate determinant that can promote pancreatic endocrine cell differentiation. Even in mice, some rare endocrine cells can be produced in a Neurog3-independent manner as Wang et al. reported a small, yet significant number of glucagon expressing cells in the Neurog3−/− pancreas before e15.5 [61]. One could therefore consider differentiating stem cells into insulin-producing cells without the involvement of Neurog3 but via another ARP/ASC1 factor. Such assumption is strengthened by the fact that in the murine stomach, it is ASC1 which is required for the differentiation of all endocrine cell types [62] whereas Neurog3 is only involved in the differentiation of a subset of these cells [63,64]. In contrast, ASC1 is only expressed in few cells of the murine pancreas and its knock-out does not disrupt the pancreatic endocrine differentiation [28]. These results highlight the diversity found in the selection of the ARP/ASC1 factors involved in the determination and differentiation of the endocrine cells and show that the choice of these factors depends not only on the organ considered but also on the species.

Methods

Zebrafish maintenance, mutant lines and LY411575 treatment

Zebrafish (Danio rerio) were raised and cared for according to standard protocols [65]. Wild-type embryos from the AB strain were used and staged according to Kimmel (Kimmel et al., 1995). Homozygous mutants were obtained by mating heterozygous fish for the mnd bomb (mbomb) allele [66] and for the neurog33211 allele (ZMP, Zebrafish Mutation Project [34]). The genotyping of neurog33211 embryos was done on DNA extracted from tails of WISH stained embryos by performing a PCR using primers 0230 (CCCAACATATCCCAATTCACCT) and 0233 (TGATTTTGACTCAGTCGAAC) followed by a nested PCR, 0231 (GCTTGGCAAGAGTGAAAGCATC) and 0232 (TGTAATTATGGCGCAATCTC) and by subsequent sequencing of the PCR products. The LY411575 treatment was performed by incubating the embryos during the indicated period with a 10−8 M LY411575 solution (MedChemexpress) and replacing the media every day.

Search in the zebrafish genome of another neurog3 paralog gene

In order to discover all neurog genes present in the zebrafish genome, we screened the Zv9 Genome assembly using the ensembl genome browser [67] that covers 1.357 Gb in scaffolds placed on chromosome 1 to 25 and 55 Mb in unassigned scaffolds. This zebrafish sequence is considered to be nearly complete. Indeed, out of a non-redundant set of 21,471 zebrafish
cDNAs from ENA/Genbank, only 120 (6.8%) are not currently found in Z:9 (i.e. these 120 do not have a match at 90% identity covering at least 10% of their length) [60]. Furthermore, we also screened the nucleotide collection (nt/nt) from ncbi [68] that consists of GenBank + EMBL + DDBJ + PDB + RefSeq sequences. These databases have been screened by the program "blastn" with the consensus amino acid sequence of the basic domain of vertebrate Neurog3 (RRXKANDERNNR) or of vertebrate neurog (RRXKADN/DRERNR), the amino acid sequence of the bHLH domain of murine NEUROG3 and of zebrafish Neurog3 and with the consensus aminoacid sequence of the bHLH of all Neurog proteins.

(RRXKANXRRXRMHNLXALDXXLXLFXXLPFXDPXdXLKJETLRFAXNYIWALXXTXR). All these searches identified only 2 neurog genes in the zebrafish genome, neurog3 (AF181996) and neurog1 (AF107301).

Riboprobes, Whole-mount in situ hybridization (WISH)

Antisense riboprobes were made by transcribing linearized cDNA clones with SP6, T7, or T3 polymerase using digoxigenin or DNP labeling mix (Roche) according manufacturer's instructions. They were subsequently purified on NucAway spin columns (Ambion) and ethanol-precipitated. The zebrafish acvlf [69], acvlfβ [69], ovfβ [37], iltl [70], neurod1 [71], per66 [72], neurog3 [30], atoh1a [73], atoh1b [73], neurod1a [74], neurod1b [74], atoh1c [75], atoh1d [76], ovlfβ [77], ovflbβ9 [42], axn [78], petr1 [79], iltlβ [79], somatostatine 2 (PPS) [80], glibulin [81] and glucagon [80] probes have been described elsewhere. The neurod2, neurod4 and neurog1 probes were obtained from Imagegene clones MAOGp998E0411982Q (Pet1, SP6), IRBCop991C31D (Pet1, T7) and IRBCop991B0232D (EcoRI, T7) respectively. Single whole-mount and double fluorescent in situ hybridizations were carried out as described [37].

For visible WISH, quantifications of the number of cells were performed by counting the cells under the microscope by focusing successively on each layer of stained cells. For that purpose, the NBT/BCIP staining was carefully monitored in order to avoid an overstaining which would have prevented us to visualize the individual cell boundaries. This method has been validated by counting the number of all−expressing cells at 24 hpf after a visible WISH or after a fluorescent WISH analyzed by confocal microscopy and found very similar results (a mean of 49 cells counted by the first method and of 47 for the second) (see Figure 7 in [59]). For fluorescent WISH, quantifications were performed by determining the volume occupied by specific cells in control and morphants, 100% being arbitrarily fixed as the mean of the volume occupied by these cells in control morphants. Cell volume has been calculated by the program Imaris (Bitplane) on the confocal images of each embryo.

Whole-mount immunohistochemistry and TUNEL assay

Whole-mount immunohistochemistry were performed using the following antibodies: rabbit polyclonal antibody against GFP (1:500, chemicon), guinea pig polyclonal antibody against Insulin (1:500, Biomedex), rabbit polyclonal antibody against Sonnotatatin (1:1000, MP Biomedical). The embryos were fixed with 2% formaldehyde in 0.1 M PIPES, 1.0 mM MgSO4 and 2 mM EGTA overnight at 4°C and washed 3 times with PBS/0.3% Triton X-100. The yolk was manually removed, the embryos permeabilized for 1 h with PBS/1% Triton X-100 and then blocked for 2 h in PBS/4% BSA/0.3% Triton X-100 at RT. Both primary and secondary antibodies were incubated overnight in the same blocking buffer. Washes were done with PBS/0.3% Triton X-100 for 3 h to remove excess antibodies.
The fragmented DNA of apoptotic cells was identified by the TUNEL method (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling), using the ApopTag Apoptosis in situ detection kit (Chemicon) where the fragmented DNA fragments are labeled with digoxigenin-nucleotide, subsequently recognized by peroxidase coupled anti-digoxigenin antibody and revealed by incubating with tyramide-FITC substrate. Briefly, after the whole-mount immunohistochemistry, the endogenous peroxidase were inactivated by incubation 1 h in 3% H2O2 at RT, washed 3 times in PBS/1% Triton X-100 and incubated in Equilibration Buffer for 1h. The TdT Reaction was performed by incubating the embryos in a mixture of 18 μl of Reaction Buffer and 6 μl TdT Enzyme ON at 37°C. The reaction was stopped with 500 μl of Stop/Wash Buffer for 10 min. Then, the embryos were rinsed 3×10 min with PBS/0.3% Triton X-100. The detection was performed by incubating the embryos with 50 μl Anti-Digoxigenin Conjugate (Peroxidase) ON at 4°C, rinsing 3×10 min with PBS/0.3% Triton X-100 and incubating in 50 μl Amplification Reagent (Perkin Elmer) + Tyramide-FITC (1:5000) for 1 h at RT. After 3×15 min washes in PBS/0.3% Triton X-100, embryos were mounted in Prolong (Invitrogen) and imaged.

Imaging

Microscope pictures were performed with an Olympus DP70 photomicroscope fixed on a BX60 Olympus microscope. Confocal imaging was performed using a Leica TCS SP2 inverted confocal laser microscopy (Leica Microsystems, Germany). Digitized images were acquired using a 63X (NA 1.2) Plan-Apo water-immersion objective at 1024×1024 pixel resolution. For multicolor imaging, FITC was visualized by using an excitation wavelength of 488 nm and the emission light was dispersed and recorded at 500–535 nm. Cy3 was detected by using an excitation wavelength of 543 nm and the fluorescence emission was dispersed and recorded at 555–620 nm. The acquisition was set up to avoid any cross-talk of the two fluorescence emissions. Series of optical sections were carried out to analyze the spatial distribution of fluorescence, and for each embryo, 64 μl were recorded with a Z-step ranging between 1 and 2 μm. Image processing, including background subtraction, was performed with Leica software (version 2.5). Captured images were exported as TIFF and further processed using Adobe Photoshop and Illustrator CS2 for figure mounting.

Morpholin design and injection

All the morpholinos (Mo) were designed by Gene Tools. The neurog3 morpholinos are complementary to either the ATG (Mo1: 5′-GGATCTCTGAAGTCATTTCTTTCGCAA-3′) or to the 5′ UTR (Mo2: 5′-GCTGGTACGTAAACGCCAAGGTACT-3′). The neurod1 morpholinos are complementary to either the ATG (Mo1: 5′-TTTCTCTCGTGTTGATGACTCTGTCCGATCAT-3′) or the 5′ UTR (Mo2: 5′-CTCTACCTACGTTTACAAATTTATAGTTATTTA-3′). The axelb morpholino, as described by [44,45], is complementary to the ATG (5′-TCGTAAGCAGCAAGTTGAGGCCTCCAT-3′). A standard control Mo, having the sequence, 5′-CTCTTTACCTCAAGTTTACAAATTTA-3′ has also been designed by Gene Tools in a way that it should have no target and no significant biological activity. A morpholino directed against p53 mRNA was used to prevent nonspecific apoptosis [82]. The observed with the axelb morpholino. They were dissolved at a concentration of 3 μM in 1× Danesol buffer containing 0.5% of rhodamine ectrane (to follow the microinjection process) and microinjected at the 1–2 cell stage at a dose of 2.5 ng for Mo1-neurog3, 3 ng for Mo2-neurog3, 3 ng for Mo1 and Mo2 neurod1 and 6 ng for Mo-ncd1 and Neurod1, a mix with 6 ng of Mo-ncd1, 3 ng of Mo2-neurog3 and 3 ng of Mo-p53 was injected. Injected
embryos were then grown in the presence of 0.003% 1-phenyl-2-thiourea until the desired stage, fixed overnight in 4% PFA and stored in 100% methanol before analysis.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LCF, BP and MLV designed the research, LCF, JLP, DGS, VVB and IM performed research and analyzed data, LCF, BP and MLV wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

We thank M. Harmenschi (ac11b), G. Bellipanni (ac11b), E.B. Riley (ato4b1a and ato4b1b), Sheng-Feng L. Hwang (aqr2), S. Wilson (ato4b5), Gong Zhuyang (neuromb1a and neuromb1b), M. Hibi (ato4b1c) and W. Jia (ato4b5) for sending probes. We thank the Sanger Institute Zebrafish Mutant Resource (ZF_HEALTH project) for providing the zebrafish neuromb1 knockout allele na211. The zebrafish lines were raised with the help of M. Winandy (Zebrafish Facility and Transgenesis Platform, GIGA, University of Liege). The results of confocal imaging were obtained thanks to S. Omenese and G. Morresi (Imaging Platforms, GIGA, University of Liege). The results of sequencing were obtained thanks to Genomic-Sequencing Platform, GIGA, University of Liege. L.F. was supported by the FNRS-FRS and the Leon Fredericq fund and J.P. and D.S. by the FRIA. I.M. was supported by the FNRS-FRS and by the Action de Recherches Concertées (University of Liege). B.P. and M.L.V. are Chercheur qualifié FNRS. This work was funded by the Belgian State’s “Interuniversity Attraction Pole” Program (SSTC, PAI).

References

34. Zebrafish Mutant Resource. [http://www.sanger.ac.uk/Projects/D_zeno/zmp/].

68. BLAST +Basic Local Alignment Search Tool. [http://blast.ncbi.nlm.nih.gov/Blast.cgi].

Additional files

Additional file 1 as TIFF
Additional file 1: Figure S1 neurog3 morphants do not display any apparent endocrine defects. WISH showing that the number of cells expressing insulin (A–C), somatostatin (D–F) and ghrelin (G–I) is not changed in the Mo1-neurog3 (B,E,H) or Mo2-neurog3 (C,F,I) morphants compared to the Mo-control (A,D,G) morphants at 30 hpf. All views are ventral with the anterior part to the left.

Additional file 2 as TIFF
Additional file 2: Figure S2 axlta, neurodhl, neurogl, atoh8 and neuroc8 are expressed in the pancreatic area. WISH showing expression of neurog1 (A): axlta (B), neurodhl (C), neuroc8 (D) and atoh8 (E) in the pancreatic region at the indicated stages. All views are ventral with anterior part to the left.

Additional file 3 as TIFF
Additional file 3: Figure S3 Mo1-neuronal and Mo2-neuronal morpholinos block efficiently the expression of GFP from the neuronal eGFP transgenic line. Lateral views of 26–30 hpf tg(neuronal eGFP) embryos injected with Mo1-neuronal (A), Mo2-neuronal (B) or control morpholinos analyzed by bright field illumination (A,B) or by epifluorescence illumination (A’,B’) showing that both morpholinos block efficiently the expression of GFP from the neuronal eGFP transgenic line [40] without disturbing the general morphology of the embryos.

Additional file 4 as TIFF
Additional file 4: Figure S4 TUNEL assays on control and morphant embryos (A–D)
Confocal image projections of 30 hpf and 40 hpf control and neurod1 morphants after TUNEL labeling for apoptotic cells (in green) and immunodetection of inah1 cells. The arrows highlight individual TUNEL+ cells in the neural tube. No TUNEL+ cells were found in the pancreatic region of control or neurod1 morphants at analyzed stages.

Additional file 5 as TIFF
Additional file 5: Figure S5 The double axc1b/neurod1 morphants do not display general developmental defects. Bright field views of wt embryos injected with Mo-axc1b and Mo2-neurod1 morpholinos (A) or control morpholinos (B) showing no general developmental defects in the double morphants at 22 hpf.