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Abstract

Brain-derived neurotrophic factor (BDNF) modulates the pruning of synaptically-silent axonal arbors.
The Met allele of the BDNF gene is associated with a reduction in the neurotrophin’s activity-dependent
release. We used diffusion-weighted imaging to construct structural brain networks for 36 healthy subjects
with known BDNF genotypes. Through permutation testing we discovered clear differences in connection
strength between subjects carrying the Met allele and those homozygotic for the Val allele. We trained
a Gaussian process classifier capable of identifying the subjects’ allelic group with 86% accuracy and
high predictive value. In Met carriers structural connectivity was greatly increased throughout the
forebrain, particularly in connections corresponding to the anterior and superior corona radiata as well
as corticothalamic and corticospinal projections from the sensorimotor, premotor and prefrontal portions
of the internal capsule. Interhemispheric connectivity was also increased via the corpus callosum and
anterior commissure, and extremely high connectivity values were found between inferior medial frontal
polar regions via the anterior forceps. We propose that the decreased availability of BDNF leads to
deficits in axonal maintenance in carriers of the Met allele, and that this produces mesoscale changes in
white matter architecture.

Introduction

Secretion of brain-derived neurotrophic factor is essential for synaptic plasticity in the central nervous
system during neurodevelopment [1], as well as in mature brains, in which it promotes long-term potenti-
ation and the formation of long-term memory [2,3]. A common human non-synonymous single-nucleotide
polymorphism in the BDNF gene (Val66Met, rs6265) decreases activity-dependent BDNF release in neu-
rons transfected with the human A allele (Met-BDNF) [4]. It is also associated with variation in human
memory [5, 6], and with several neurological and psychiatric disorders [7]. We reasoned that the persis-
tent differential activity-dependent BDNF release implied by this polymorphism should also be associated
with differences in adult brain structure. Accordingly, the polymorphism affects the anatomy of the hip-
pocampus and prefrontal cortex [8]. In this study we examine structural connectivity in the brains of
normal human participants stratified according to BDNF genotypic group.

Indeed, for any equivalent set of connections, there is substantial variability in the density of cortical
fibers between individuals of the same species [9]. This variability is in part genetically determined.
Functional MRI in monozygotic and dizygotic twins has shown that 60% or more of the inter-subject
variance in transmission efficiency of cortical networks can be attributed to genetic effects [10]. However,
the mechanisms by which this genetic influence impacts human brain connectivity are not yet determined.
Comparison of groups by BDNF genotype may be useful for assessing the impact of activity-dependent
processes on brain connectivity.

Here, we originally hypothesized that there would be decreased structural connectivity in Met carriers
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corresponding to the reduced availability of the neurotrophin. We examined a healthy young population
with diffusion-weighted MR imaging, reconstructed their white matter tracts with probabilistic tractog-
raphy, and examined the effect of carrying the BDNF Met allele at the connectome level. Contrary to
our hypothesis, we found a marked increase in connectivity strength as well as altered track topology for
Met carriers.

Results

Population

In our cohort (n=134), the studied non-synonymous coding single-nucleotide polymorphism (rs6265) was
in Hardy-Weinberg equilibrium (χ2=3.25, p=0.07) with genotypic frequency of 0.6 (G/G), 0.31 (G/A)
and 0.09 (A/A). The final study population comprised 36 healthy subjects aged 18-25. Fifteen (9 male)
were identified as carrying the Met allele. The remaining 21 (9 male) were homozygotes for the Val allele
and were referred to as the Val/Val group. The groups did not vary significantly in IQ or age, nor did
their scores differ for a battery of psychological tests (Supplementary Table 1).

Network-based statistics

In our networks, with 1015 nodes and an average of 66,456 edges, we identified 387 connections in which
the number of connecting tracks was significantly greater in carriers of the Met allele than in the Val
homozygotes (p = 0.0122, permutation testing). The relative connection strengths for these edges are
shown in Fig. 1a.

For Met carriers the strength at these edges was found to range between 1.75 and 48 times their
strength in Val/Val. Of these edges, 41 (11%) were found to have between 75% and 200% more tracks
in Met carriers than in Val homozygotes. Met carriers had 200% to 400% more tracks in 123 (32%) of
the edges, 400% to 900% more tracks in 104 edges (27%), and even greater factors in the remaining 23
edges (6%). The affected edges were largely central connections and were not short or uncommon fiber
pathways.

Roughly one quarter (96) of the edges that were identified were not present in any of the Val/Val
subjects (i.e. the mean value in Met carriers was significantly greater than the value of zero, found in Val
homozygotes). Fig. 1b shows the mean number of tracks for the 96 edges that were only present in the
Met carriers. The connections unique to Met carriers appeared consistently across the group. We did
not find any edges with significantly lower strength in Met carriers. The identified connectivity changes
are unlikely to represent false positives because of the stringent non-parametric statistical method [11].
Moreover, the reported differences were specific to the BDNF polymorphism; subjects were also divided
by gender (18 F, 18M), and by their adenosine deaminase (ADA) genotype (17 GA, 19 GG), and no
significant results were obtained.

Global network metrics (graph density, number of connected components, transitivity) showed no
variation between groups. Local nodal metrics (degree, clustering coefficient, number of triangles, [close-
ness, betweenness, degree] centrality, highest k -core number) were averaged for each participant and also
did not vary. Wiring cost and network efficiency, compared both for the whole network as well as for
only corticocortical connections, were unaffected by BDNF genotype. The total number of tracks per
connectome, out of the generated 300,000 per subject, did not differ. The lack of significant variation in
any of the network metrics is understandable because the total number of altered edges (387) is less than
1% of the mean number of edges (66,456) per network.
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Classifier performance

The classifier was able to discriminate between Val homozygotes and Met carriers with 86.1% global
accuracy. The predictive value for the Val/Val and Met carrier groups were 94.4% (p=0.001) and 77.8%
(p=0.003), respectively. In Figure 2 the weights obtained by the classifier are visualized as edges in
the brain network. For the classifier trained to identify gender, the global accuracy reached 63.9% (n.s.).
Identifying the subjects’ adenosine deaminase (ADA) genotype was only possible with an accuracy of
58.3% (n.s.).

Tractographic basis

Structural connectivity in Met allele carriers was found to be higher throughout the forebrain (Figure 3).
Large increases were found in connections corresponding to the anterior and superior corona radiata, in-
cluding the corticothalamic and corticospinal projections from the sensorimotor, premotor, and prefrontal
portions of the internal capsule. General interhemispheric connectivity was increased via the corpus cal-
losum and anterior commissure. Extremely high connectivity values were found between inferior medial
frontal polar regions via the anterior forceps. The Met carriers also presented novel connections within
the cingulum, corpus callosum, and anterior forceps, which were not found in the Val homozygotes.

Discussion

Using high-resolution connectome mapping, we observe significant differences in structural brain connec-
tivity between samples of normal young healthy human volunteers recruited based on the Met allele of
the BNDF gene. These differences appear to involve specific fiber tracts; although widespread, they do
not modify connectome parameters computed over the whole brain. They also appear specific to this
allele; no such difference could be found for the polymorphism in the adenosine deaminase gene, or even
for gender. We further demonstrate that this structural information can be used, with a reasonably high
accuracy, to identify the BDNF genotype of an individual from his structural brain wiring.

In many regions the number of connecting tracks in Met carriers is increased by a factor of 3 or more.
These are substantial changes at a mesoscopic anatomical level that are in line with previous findings
by other groups. One large study examined fractional anisotropy (FA) - a measure of the restrictedness
of random motion in water molecules - in 455 subjects and reported higher values, in some areas by up
to 15%, in Met carriers [12]. A larger number of fibers oriented in the same direction would necessarily
increase local anisotropy. Our findings confirm and extend their findings by specifying the nature and
topology of these differences. It is not white matter integrity that is altered between Met carriers and Val
homozygotes, but rather the strength and architecture of their white matter tracts. The connections with
increased strength in Met carriers predominantly involve the thalamus and brainstem, the sensorimotor
areas of parietal and frontal cortex, and the ventral medial prefrontal cortex. The occipital, posterior
parietal, and temporal areas also appear to differ between allelic groups to a lesser extent.

It must be stated that the results obtained here are dependent on the regional parcellation of the
structural brain images. Previous studies have shown that the choice of region size and number greatly
impacts the resulting network metrics [13, 14]. In this work we chose to use a previously published and
open-source parcellation scheme that depends on automated atlas-based segmentation [14–17].

Intriguingly, these anatomical changes do not translate into improved performance in either of our
populations. Indeed, by design, our samples were matched for various demographic variables including IQ,
age, and education level. One possible explanation for this phenomenon is that the increased connection
strengths are due to redundant connections that are not essential to sustain the speed or efficiency of
information processing.

The mechanisms causing these alterations cannot be derived from the current data. However, in
addition to its involvement in long-term potentiation and synaptic plasticity [2], BDNF has also been
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implicated in axonal pruning and maintenance. BDNF is released from stimulated “winning” neurites
and binds to the p75NTR receptor on nearby “losing” terminals, triggering the elimination of synaptically
silent axonal terminal arbors [18, 19]. It is tempting to suggest that the reduction in activity-dependent
BDNF secretion accounts for the observed changes in white matter architecture. If indeed silent axons
are relatively less likely to be pruned due to reduced BDNF secretion in Met carriers, brain connectivity
might eventually be less profoundly shaped by experience than in homozygous Val individuals, without
any conspicuous behavioral consequences.

In keeping with this hypothesis, brain maturation from childhood to adolescence is a nonlinear
regionally-selective process [20]. Gray matter loss is abundant, as is axonal myelination, and both con-
tinue until early adulthood. Consistent with our findings, grey matter volume in adults was shown to be
lower in Met carriers in both the lateral frontal cortices and hippocampi [8]. Moreover, these differences
were deemed independent of age (18 to 60) and gender, which suggests that the morphological changes are
occurring prior to adulthood. It is possible that the increase we identify in connecting tracks is a result
of deficits in axonal maintenance during adolescence, a key period of synaptic revision. When tested at
age 11, children in a longitudinal study showed no differences in verbal reasoning that could be associ-
ated with their BDNF genotype. When the same cohort was tested again, the elderly Met homozygotes
outperformed heterozygotes as well as their homozygous Val counterparts in both verbal and non-verbal
reasoning [21]. It has also been reported that Met carriers show enhanced task-switching abilities during
old age [22]. These convergent findings support the idea that the Met allele protects against age-related
detriments in brain function, possibly by providing redundant or degenerate connectivity.

Finally, although we matched our population samples with great care and conducted conservative
statistical analyses, our study is not immune from random sampling biases. The absence of significant
results concerning ADA polymorphism and gender indicate that the reported effects are specific to BDNF
polymorphism. However, contradictory results have been reported about the effect of BDNF polymor-
phism on cognitive performance and disease susceptibility [23], potentially caused by genetic interactions
and global haplotypic diversity [24]. It is important to note that the Val66Met polymorphism has a wide
variation in prevalence worldwide. Its frequency ranges from 0.55% in Sub-Saharan Africa, to 19.9% in
Europe, and 43.6% in Asia [24]. Studies including subjects from different populations should take care
to consider their genetic backgrounds.

Future research should confirm these findings in healthy populations of both young and old subjects,
as well as during the development period from childhood to adolescence. Longitudinal neuroimaging
data would clarify BDNF’s effect on brain development and connectivity, and larger populations may help
identify whether these changes can be fully attributed to the Met allele. It also remains to be seen if these
alterations are more or less profound in Met homozygotes or in subjects with the Val66Met polymorphism.
The prevalence of the Met allele [25] suggests that it confers some evolutionary advantages. It may be
that these advantages, developed during preadolescence, are only manifested in old age.

Methods

Ethics Statement

Volunteers were recruited through advertisement on the University intranet. They gave their written
informed consent to participate in the study, which was approved by the Ethics Committee of the Faculty
of Medicine at the University of Liège.

Population

Participants were young (18-25 years old), healthy, and lean (Body Mass Index < 26). They were all
right-handed, as determined by the Edinburgh Inventory [26]. None complained about sleep disturbances,
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and this was reflected by the Pittsburgh Sleep Quality Index (PSQI score < 6) [27]. Extreme chronotypes,
according to the Horne and Ostberg morningness-eveningness questionnaire, were excluded (scores < 31
or > 69) [28]. Their sleep midpoint on free days was required to be between 3 and 5.99 as indicated by
the Munich Chronotype Questionnaire [29]. They all scored in the normal range (0-9) on the Epworth
Sleepiness Scale [30]. The absence of medical, traumatic, psychiatric, and sleep disorders was established
through a semi-structured interview.

All participants had normal scores on the 21-item Beck Anxiety Inventory (score < 11) and the 21-
item Beck Depression Inventory-II (score < 14) [31, 32]. They were non-smokers and moderate caffeine
and alcohol consumers. None were on medication other than oral contraceptives. No caffeine was allowed
during the experiment.

Volunteers complying with these criteria were invited to perform Raven’s Progressive Matrices and
a blood sample was obtained for BDNF genotyping [33]. Participants were eventually selected based
on their BDNF genotype. Allelic groups were formed with participants that were matched according
to gender, age, education level, chronotype, PSQI score and IQ (Supplementary Table 1). Subjects
received financial compensation for their blood test and participation in the study.

Genotyping

Genomic DNA was extracted from blood samples using a MagNA Pure LC Instrument. The DNA
sequence of interest was amplified by Polymerase Chain Reaction in a final volume of 50 µl containing
0.6 µM of each primer (Thermo Scientific, Germany), 0.5 µl Faststart Taq DNA Polymerase (Roche
Diagnostics, Germany), 0.8 mM of each deoxynucleotide triphosphate (Roche Diagnostics Germany) and
20 ng of genomic DNA. After 10 min of denaturation at 95◦C, samples underwent 35 cycles consisting
of denaturation (95◦C, 30 sec), annealing (60◦C, 40 sec), and extension (72◦C, 30 sec), followed by a
final extension of 7 min at 72◦C. The amplified DNA product was then subjected to pyrosequencing
(Pyromark Q96 Vacuum Workstation, PSQ 96MA, Pyromark Gold Q96 Reagents, Qiagen, Germany).
The sequences of the primers are available upon request.

Data Acquisition

Data was acquired on a 3 T head-only scanner (Magnetom Allegra, Siemens Medical Solutions, Erlan-
gen, Germany) operated with the standard transmit-receive quadrature head coil. A high-resolution
T1-weighted image was acquired for each subject (3D modified driven equilibrium Fourier transform,
repetition time = 7.92 ms, echo time = 2.4 ms, inversion time = 910 ms, flip angle = 15◦, field of view
= 256 x 224 x 176 mm3, 1 mm isotropic spatial resolution). Seven unweighted (b = 0) volumes were
acquired followed by a set of diffusion-weighted (b = 1000) images using 61 non-collinear directional
gradients.

Processing & Analysis

The processing workflow was developed in Python and imports modules from the Nipype project [34].
The pipelines used for both single subjects and groups have been detailed as part of the online Nipype
documentation in order to improve transparency and promote reproducibility. Every piece of software
(CMTK, ConnectomeViewer, Dipy, Freesurfer, FSL, Nipype, Nibabel, MRtrix) used to process data in
this paper is currently operating under an open-source license. The process began by segmenting the
structural MR images using the automated labeling of Freesurfer [15]. Segmented structural images
were then further parcellated using the Lausanne2008 atlas for a total of 1015 regions of interest (ROIs)
[14]. Diffusion-weighted images were corrected for image distortions arising from eddy currents using
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linear coregistration functions from the FMRIB Software Library (FSL) [35]. Fractional anisotropy
maps were generated, and a small number of single-fiber (high FA) voxels were used to estimate the
spherical harmonic coefficients of the response function from the diffusion-weighted images [36,37]. Using
non-negativity constrained spherical deconvolution, fiber orientation distribution (FOD) functions were
obtained at each voxel. For our dataset with 61 directions, we used the maximum allowable harmonic
order of 8 for both the response estimation and spherical deconvolution steps. Probabilistic tractography
was performed throughout the whole brain using seeds from subject-specific white-matter masks and
a predefined number of tracts. Fiber tracking settings were as follows: number of tracks = 300,000,
FA/FOD amplitude cutoff for terminating tracks = 0.1, minimum track length = 10 mm, maximum
track length = 200 mm, minimum radius of curvature = 1 mm, tracking algorithm step size = 0.2 mm.
Using tools from Dipy (Diffusion in Python, http://nipy.sourceforge.net/dipy/), the tracks were
affine-transformed into the subject’s structural space. This procedure circumvents the common problem
of having to downsample ROI image files - defined in structural space - so that they can be used in diffusion
space for connectivity mapping, and therefore leads to more accurate connectomes. Connectome mapping
was performed by considering every contact point between each tract and the outlined regions of interest.
Unlike in some past papers (e.g. [14,16]) which considered only fiber start and endpoints, we incremented
our connectivity matrix every time a single fiber traversed between any two regions. This leads to a
far denser network than we have seen before, presumably with more accurate network properties. The
number of tracked fibers which remained in each subject’s connectome was also recorded.

This method of connection mapping may need further optimisation, however, as it can potentially
be linking gray matter cortical regions through unreliably tracked fibers. This is something that may be
avoidable by placing limits on the propagation parameters, or with anatomically or otherwise constrained
tractography approaches [38,39]. The benefits and drawbacks of different mapping techniques should be
explored by future studies.

Numerous network metrics were obtained for each connectome and compared at the group level. At
the nodal level we calculated the degree, clustering coefficient, and number of triangles, as well as three
measures of centrality (closeness, betweenness, degree), and the highest k (i.e. degree) value for each
k -core the node is encompassed by. For the network as a whole we computed the average shortest path
length (i.e. the inverse of efficiency), the wiring cost (using Euclidean distance between nodes), the graph
density, the number of connected components, and the graph’s transitivity [40]. For a complete description
of all of these metrics, the reader is referred to the Python package NetworkX [41]. Tract and network
visualization were performed in TrackVis (Ruopeng Wang, Van J. Wedeen, TrackVis.org, Martinos
Center for Biomedical Imaging, Massachusetts General Hospital), MRtrix, and ConnectomeViewer [42].
Supplementary Fig. 2 provides, for visualization, the orientation distribution functions and generated
fiber tracts for a midbrain coronal slice of a single subject. In Supplementary Fig. 3, the structural
connectome and T1-weighted image are shown for the same subject, and thresholded across two distinct
fiber-count ranges, so that both the core and the density of the network can be seen.

Statistical Analysis

The Network-based Statistic (NBS) was used to identify differences between BDNF allelic groups (Supplementary
Fig. 1a) [11]. For each permutation the t-values at each edge were thresholded above a value of 3. The
supra-threshold components were then compared against the generated null distribution. The null distri-
bution for each test was produced by permuting members of each population 5000 times and estimating
the maximal component size.

A table describing a representative subject’s connection matrix and edge weights is given in Sup-
plementary Table 2. Since the networks in this study have a high number of regions, and we have
performed whole-brain connectome mapping with a relatively low number of fibers, a large proportion
of our network’s edges have low fiber counts. This may be problematic for statistical testing with the

http://nipy.sourceforge.net/dipy/
TrackVis.org
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NBS because these small-integer populations do not provide wide ranges for edge weights and can result
in inaccurate t-values. In future, it may be prudent to generate a larger number of streamlines, reduce
the number of nodes in the network, or restrict analysis to specific parts of the brain. Practically, it
can be computationally intensive to deal with large streamline datasets and networks with high num-
bers of nodes. The trade-off between resolution and resources is something that must be decided by the
researcher with the focus of the study in mind.

In Supplementary Fig. 1b we projected the observed NBS component onto the tractography of a
single subject. This projection is, in effect, a type of reverse connectome-mapping. Given the connectivity
network, we filtered the set of tracts to show only those that traverse between regions with edges in the
network. Global graph metrics, psychological metrics, and the total number of fibers per connectome,
were compared directly between allelic groups via Student’s t-test. Nodal measures were averaged for each
subject and analyzed in the same manner. All distributions were plotted as combined histogram/kernel-
density maps to evaluate gaussianity prior to statistical analysis. Apart from the results given by the
network-based statistic no significant differences were identified between the two genotypic groups for
any of the graph-level measures. No significant differences were observed between allelic groups in any of
the psychological metrics.

Classification

The multivariate statistical properties of our data were studied with a linear Gaussian Process Classi-
fication method [43] as interfaced by PRoNTo (Pattern Recognition for Neuroimaging Toolbox, http:
//www.mlnl.cs.ucl.ac.uk/pronto) [44]. The classifier was given the fiber-count connection matrices
for each subject and their true classes (e.g. Met carrier, Female). No network metrics, topology, or
spatial information was provided to the classifier. The accuracy and generalisability of the classification
were assessed with a leave-one-out cross-validation procedure: one subject is left out at a time, the clas-
sifier is trained on the remaining data, and the true and predicted (by the trained classifier) class of the
left-out subject are compared. With this linear kernel method weights were also obtained indicating the
contribution to the classification output (in favor of either genotypic group) of each edge in the network.
The same method was employed to discriminate features related to the subjects’ gender and genotype for
the ADA gene. For the purposes of visualization, we thresholded the edges in Figure 2. The removed
portion of the classification weights can be found in Supplementary Fig. 4. Example calculations for
the percent classification weight represented by the remaining edges can be found in the Supplementary
Information.
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Figure 1. Significantly increased regional connectivity and topological changes in Met
carriers. (a) Track count increase for each connected edge in Met carriers (n=15) versus Val/Val
subjects (n=21). (b) Region-to-region track pathways that are present only in the Met carriers.
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Figure 2. Classifier weight distribution. The weights obtained by the classifier have been plotted
as network edges in order to show their spatial distribution. The thresholding procedure removed
99.75% of the edges for clarity. The remaining connections represent 21.69% of the absolute weight.
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Figure 3. Connecting tracks in Met carriers. The average number of tracks connecting two
regions (i.e. the edge weight) in Met carriers was found to range from 1.75 to 48x the value found in the
Val/Val group. The range was so broad that it had to be analyzed in separate stages. Fibers shown are
filtered from a single Met carrier.
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The following equations and figures are supplementary material.
The networks in our study have 1015 anatomically defined nodes. This leads to:

Nedges =
Nnodes ∗ (Nnodes − 1)

2
(1)

Nedges =
1015 ∗ (1015− 1)

2
Nedges = 514, 605

The total of all the classifier weights was obtained by summing the absolute value of all the weights:

Wtotal =

Nnodes∑
i=0,j=0

|Wi,j | (2)

= 2077.6096558590079

For each of the thresholding windows we calculated the percent of total weight represented. For
example, in Figure 2 of the main text, we calculated the weight and amount of edges using the following
method. First, we defined a binarizing threshold function to obtain the number of edges:

f(x) =

{
1 x if -0.1 ≤ n ≤ 0.1
0 x if n > 0.1 or n < -0.1

(3)

Next, we used this to obtain the total number of thresholded edges, and their percent of the total
edges.

N thresh
edges =

Nnodes∑
i=0,j=0

f(Wi,j) (4)

The percent of edges that remain are simply:

Percentthreshedges =
N thresh

edges

Nedges
∗ 100 (5)

Percentthreshedges =
1302

514605

Percentthreshedges = 0.25%

The total weight of the edges that are within the threshold regions can be obtained similarly:

W thresh
total =

Nnodes∑
i=0,j=0

f(Wi,j) ∗ |Wi,j | (6)
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The percent of the total classifier weight contained within the thresholded edges is therefore:

Percentthreshweight =
W thresh

total

Wtotal
∗ 100 (7)

Percentthreshweight =
450.57456206441788

2077.6096558590079

Percentthreshweight = 21%

For future studies it may be simpler to only consider edges that exist in at least one structural network.
This will speed classification and make visualization easier. That is to say, the classification should be
given a mask that contains only edges that exist in the union of all all subject’s networks. This can be
expressed mathematically with set theory as:

Maskinclusive = Subj1 ∪ Subj2 ∪ · · ·Subjn (8)

Figure Legends

Figure 1. Edge weights are stronger in Met carriers. (a) In the structural component pictured each
inter-regional connection has a significantly higher number of tracks for Met carriers. (b) The tracks
shown are produced by filtering a single subject’s tracts using the connections from the network shown
in (a).

Figure 2. Tracks and Orientation Distribution Functions for a single subject. Combined figure for
visualizing the results of the spherical deconvolution and probabilistic fiber tractography steps in the
processing pipeline.

Figure 3. Structural connectome for a single subject. Structural connectivity network built from the
Lausanne2008 regional atlas - with each region displayed as a node - and a set of 300,000 fiber tracks.
Colored edge weights represent the number of tracks that provide any connection between any pair of
regions. The figure is divided into ranges of edge weights for optimal visualization of the (a)
high-valued structural core and the (b) low-valued associative connections.

Tables
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Figure 4. Detailed dissection of the classification weights. (a) The complement of Figure 2 from the
main text. This network details the edges that were filtered in the main text figure, and shows 99.75%
of the edges, which represent only 78% of the total weight. (b) A set of very low contribution edges
between genotypic groups. These very low-valued edges are difficult to interpret. (c) The highest valued
edges that were thresholded out of Figure 2 in the main text. A pattern of posterior parietal and medial
frontal connectivity can be inferred in the Met carriers, but the abundance of edges is still complex to
visualize.

Table 1. Psychological questionnaire results

Measure Val/Val Met carriers t-Test p-Value Meaning

Age 21.4 ± 1.7 20.4 ± 1.3 0.07

IQ 55.6 ± 2.5 56.6 ± 2.6 0.26

Timed IQ 25.2 ± 5.9 27.1 ± 9.6 0.51

Body Mass Index (BMI) 22.3 ± 1.9 21.4 ± 2.1 0.21

Beck Anxiety Inventory (BAI) 4.1 ± 2.7 3.9 ± 2.7 0.82 Normal

Beck Depression Inventory (BDI-II) 3.5 ± 4 1.8 ± 2.3 0.14 Normal

Pittsburgh Sleep Quality Index (PSQI) 2.9 ± 1.3 2.9 ± 1.1 0.98 Good Sleep

Horne-Osberg Chronotype (HO) 53.4 ± 6.5 56.1 ± 7.6 0.27 Neutral Chronotype

Munich Chronotype 4.3 ± 0.7 4.1 ± 0.4 0.58 Normal

Epworth Sleepiness Scale 5.2 ± 2.3 5.8 ± 3.4 0.59 Normal

Values reflect mean ± standard deviation

Table 2. Connectome edge weights

Measure Value

Number of Edges 65,785

Graph density 12.78%

Minimum Edge Weight 1

Maximum Edge Weight 4737

Total Edge Weight 802,470

Mean Edge Weight 12.2

Standard Deviation in Edge Weight 55.8

Percent of Edges with Weight = 1 41.2%

Percent of Edges with Weight = 2 14.6%

Percent of Edges with Weight = 3 8.1%

Percent of Edges with Weight <= 5 72.9%

Percent of Edges with Weight < 100 97.6%

Percent of Edges with Weight >= 100 2.4%

This table details a single random (Val) subject’s network edges. The vast majority of the edges had
weights below a fiber count of 100.












