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3 IPNAS, Université de Liège, Bat.15, Sart Tilman, B-4000 Liège, Belgium
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Abstract
Using the quantum chemistry package MOLPRO and an adapted basis set, we have calculated
the adiabatic potential energy curves of the first 20 1�+, 19 3�+, 12 1�, 9 3�, 4 1� and 2 3�

electronic states of the HeH+ molecular ion in CASSCF and CI approaches. The results are
compared with previous works. The radial and rotational non-adiabatic coupling matrix
elements as well as the dipole moments are also calculated. The asymptotic behaviour of the
potential energy curves and of the various couplings between the states is also studied. Using
the radial couplings, the diabatic representation is defined and we present an example of our
diabatization procedure on the 1�+ states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

HeH+, or hydrohelium cation, is thought to be the first
molecular species to appear in the Universe, its formation
being due to radiative association between H+ and He (Roberge
and Dalgarno 1982). In addition, the high fractional abundance
of HeH+ should allow its detection in stars formed from
primordial material such as the recently discovered very metal-
poor stars HE1327−2326 and HE0107−5240 (Frebel et al
2005) or in He-rich environment as in the white dwarfs SDSS
J133739+000142 and LHS 3250 (Harris et al 2004). The
inclusion of HeH+ in the existing atmospherical models of
those objects could have serious implications. It should also
be present in the planetary nebula NGC7027 but has eluded
observation (Moorhead et al 1988). In fact, up to now,
none of the several attempts to extraterrestrial observation of
HeH+ have been conclusive (Engel et al 2005). Considering
that the excited states of HeH+ are too shallow or unstable
to support a visible or UV spectrum, those assessments
have risen up a number of studies to obtain theoretically

and experimentally the most accurate rotational spectrum of
HeH+ in the ground state, culminating with the recent work
of Stanke et al (2006). In addition to extremely accurate
knowledge of the spectroscopic properties of the hydrohelium
cation, the various mechanisms leading to its formation or
decay must be investigated to obtain a correct estimation
of the population of the levels. In this context, the first
experimental data for the photodissociation cross section in
the far UV have been obtained recently using the free electron
laser FLASH at Hambourg (Pedersen et al 2007), showing
important disagreement with the previous theoretical works
and motivating new calculations (Sodoga et al 2009, Dumitriu
and Saenz 2009).

Despite the fact that its astrophysical observation is still
questionable, HeH+ is clearly present in helium–hydrogen
laboratory plasmas. Indeed, since its first observation in mass
spectrometry of discharges in mixtures of helium and hydrogen
in 1925 (Hogness and Lunn 1925), HeH+ has been found
to be one of the major components in other He/H plasma
sources such as high-voltage glow discharges, synchrotron
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devices, inductively coupled plasma generators, capacitively
coupled RF discharges and magnetically confined plasmas,
the last one playing of course a very special role in today’s
development of thermonuclear fusion. Helium emission lines
have been proposed recently as a diagnostic tool for divertor
regions of the tokamak. However, to model the intensity of
these emission lines, knowledge of the cross sections of the
charge transfer processes which populate the emitting levels of
helium up to n = 4 is essential. At low or very low collisional
energy, the theoretical description of charge transfer requires
a molecular approach and the calculation of the excited states
of the HeH+ quasi-molecule (Rosmej et al 2006).

From a theoretical point of view, the hydrohelium cation is
the simplest closed-shell heteronuclear molecule and therefore
a considerable amount of work has been dedicated to high-
precision calculations of its ground state, including accurate
description of relativistic and non-adiabatic effects (Stanke
et al 2008). In a lesser measure, the first excited states have
also been used to assess the efficiency of different ab initio
methods to describe states that are not the lowest of their
symmetry (Richings and Karadakov 2007) or to understand
and remedy the failure of time-dependent density functional
theory to provide accurate charge transfer excitation energies
(Giesbertz et al 2008). The most complete study of the
excited states of HeH+ has been performed by Green et al
in a series of four articles (Green et al 1974a, 1974b, 1976,
1978). States up to n = 3 (where n is the highest principal
quantum number in the dissociation configuration of hydrogen
or helium) have been calculated using a CI (configuration
interaction) method with a combination of Slater-type orbitals
and ellipsoidal orbitals. Despite the fact that this exhaustive
study includes the calculation of dipole matrix elements and
radial non-adiabatic couplings, its accuracy has never been
assessed and the use of these results directly in quantum
molecular dynamics programs is problematic due to the lack
of data for medium or large internuclear distances.

While the first excited states of the neutral HeH molecule
emanate from the excitation of the hydrogen atom alone, the
first part of the electronic spectrum of HeH+ results from a
mixing between states arising from single excitations of neutral
helium or hydrogen. The higher part of the spectrum is built
upon single excitations of the He+ cation as well as double
excitations of neutral helium and of the ground state of the H−

anion.
The purpose of this paper is to reexamine the first part of

the electronic spectrum of a HeH+ molecule and to extend its
description up to n = 4 with high-level ab initio quantum
chemistry methods in order to provide adequate material
required for both spectroscopy and dynamical studies such
as charge transfer processes in excited states (Loreau et al
2010) or photodissociation in the far UV domain (Sodoga et al
2009). In addition, the diabatic representation of the potential
energy curves is investigated. The results of the present work
are compared to the corresponding data in the literature, when
available.

All the data described in this paper are accessible on
demand to the corresponding author of this paper.

2. One electron basis set and asymptotic atomic
energy levels

One problem encountered in this work is the construction of
a reliable Gaussian basis set allowing the description of the
formation of the HeH+ molecular ion from the first Rydberg
states of the H and He atoms up to n = 4. As mentioned above,
the first part of the electronic spectrum corresponds indeed
asymptotically to the excitation of both hydrogen and neutral
helium. Therefore, our basis set consists for each atom of the
aug-cc-pV5Z basis set (Dunning 1989, Woon and Dunning
1994) augmented by [3s, 3p, 2d, 1f ] Gaussian-type orbitals
optimized to reproduce the spectroscopic orbitals of the He and
H excited states. A different atomic basis has been developed
up to n = 4 for He depending on whether the molecular
state under consideration is a singlet or a triplet state. Those
additional sets of orbitals have been obtained by fitting Slater-
type orbitals from calculations performed for each atomic state
using the AUTOSTRUCTURE package (Eissner et al 1974,
Badnell 1986, 1997). In total, a [8s, 7p, 5d, 3f, 1g] basis set
has been used for both atoms. The additional orbitals and their
contraction coefficients are given in the appendix.

For all values of �, this basis set reproduces the exact
non-relativistic atomic levels of hydrogen up to n = 3
within 15 cm−1. The electronegativity of H− deviates from
the experimental value from 37 cm−1 in a full CI level of
approximation. Different Gaussian basis sets have already
been proposed in the literature mainly for the calculation of
the ground state of HeH+ (Jurek et al 1995 and references
therein) or the ground and excited states of the neutral HeH
molecule which correspond asymptotically to excitations of
H up to n = 3 (van Hemert and Peyerimhoff 1990). Using
this last atomic basis set, the levels for the hydrogen atom are
reproduced within 20 cm−1 for the s and p states and within
70 cm−1 for the d state.

In the non-relativistic approximation, the 1sn� (n = 1–3)
levels of helium are described at a full CI level by our basis
set within 115 cm−1 for s states, 60 cm−1 for p states and
30 cm−1 for d states.

For both atoms, the s states for n = 4 are more difficult to
reproduce, mainly due to the lack of upper states and the large
number of lower states, but are still in a reasonable agreement
(145 cm−1 at most) with the exact values. The other n = 4
states are reproduced within 42 cm−1 for both atoms.

In conclusion, although this basis set is rather small, it is
adapted to the HeH+ system and will allow a correct description
of the potential energy curves as well as the determination
of the non-adiabatic couplings which, in our approach,
require CASSCF (complete active space self-consistent field)
calculations.

3. Potential energy curves

The Born–Oppenheimer adiabatic potential energy curves
(PEC) for the lowest molecular states corresponding
asymptotically to excitation in the n = 1–4 atomic shells
have been calculated as a function of the internuclear
distance R using the MOLPRO molecular structure package
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Table 1. 1�+ states included in the calculations and their
dissociation product. In this table, we use the notation H(n�) or
He(1sn� 1L) to denote the electronic wavefunctions of the
corresponding electronic states. Due to the He+ charge, there is a
Stark effect on the hydrogen levels (see the text). The mixing
coefficients have been calculated by diagonalizing the perturbation
matrix due to the electric field.

Energy (hartree) Dissociative atomic
m at R = 70 au wavefunctionsa

n = 1 1 −2.903 243 07 He(1s2)
2 −2.499 955 02 H(1s)

n = 2 3 −2.145 894 24 He(1s2s 1S)
4 −2.125 564 99 1√

2
H(2s) + 1√

2
H(2p)

5 −2.124 337 65 1√
2
H(2s) − 1√

2
H(2p)

6 −2.123 740 55 He(1s2p 1P o)

n = 3 7 −2.061 570 66 He(1s3s 1S)
8 −2.057 583 00 1√

3
H(3s) − 1√

2
H(3p) + 1√

6
H(3d)

9 −2.056 327 93 He(1s3d 1D)

10 −2.055 370 40 1√
3
H(3s) −

√
2
3 H(3d)

11 −2.053 791 72 He(1s3p 1P o)
12 −2.054 118 89 1√

3
H(3s) + 1√

2
H(3p) + 1√

6
H(3d)

n = 4 13 −2.037 018 79 He(1s4s 1S)
14 −2.035 020 13 1

2 H(4s) − 3
2
√

5
H(4p) + 1

2 H(4d)
− 1

2
√

5
H(4f )

15 −2.032 668 13 He(1s4f 1F o)
16 −2.031 948 05 1

2 H(4s) − 1
2
√

5
H(4p) − 1

2 H(4d)
+ 3

2
√

5
H(4f )

17 −2.030 279 98 He(1s4d 1D)
18 −2.029 618 68 1

2 H(4s) + 1
2
√

5
H(4p) − 1

2 H(4d)
− 3

2
√

5
H(4f )

19 −2.028 511 59 He(1s4p 1P o)
20 −2.028 023 90 1

2 H(4s) + 3
2
√

5
H(4p) + 1

2 H(4d)
+ 1

2
√

5
H(4f )

a It is understood that H(n�) is accompanied by He+(1s) and that
He(1sn� 1L) is accompanied by H+.

(Werner et al 2006). This includes 20 1�+, 19 3�+, 12 1�,
9 3�, 4 1� and 2 3� states, which constitute a total of 66
electronic states. All these states, as well as their energy at
R = 70 au and their dissociation products, are presented in
tables 1–6. To obtain the PEC, we performed a state-averaged
CASSCF (Werner and Knowles 1985, Knowles and Werner
1985) using the active spaces listed in table 7, followed by a
full CI.

As we will not consider any spin-dependent interaction,
the singlet and triplet states can be calculated separately.

3.1. Adiabatic n = 1 potential energy curves

The n = 1 states consist of two 1�+ and one 3�+ states and
are shown in figure 1. All three are bound states that support
a vibrational structure.

Our calculations reproduce correctly the equilibrium
distance of 1.463 au of the X 1�+ state. The dissociation
energy of the ground state calculated by Kolos and Peek
(1976) is De = 16 455.64 cm−1 and a more accurate value of

Table 2. 3�+ states states included in the calculations and their
dissociation product. In this table, we use the notation H(n�) or
He(1sn� 3L) to denote the electronic wavefunctions of the
corresponding electronic states. Due to the He+ charge, there is a
Stark effect on the hydrogen levels (see the text). The mixing
coefficients have been calculated by diagonalizing the perturbation
matrix due to the electric field.

Energy (hartree) Dissociative atomic
m at R = 70 au wavefunctionsa

n = 1 1 −2.499 960 40 H(1s)

n = 2 2 −2.175 134 28 He(1s2s 3S)
3 −2.132 884 67 He(1s2p 3P o)
4 −2.125 570 46 1√

2
H(2s) + 1√

2
H(2p))

5 −2.124 343 10 1√
2
H(2s) − 1√

2
H(2p)

n = 3 6 −2.068 801 05 He(1s3s 3S)
7 −2.058 414 57 He(1s3p 3P o)
8 −2.057 588 56 1√

3
H(3s) − 1√

2
H(3p) + 1√

6
H(3d)

9 −2.055 375 99 1√
3
H(3s) −

√
2
3 H(3d)

10 −2.055 206 40 He(1s3d 3D)
11 −2.053 797 35 1√

3
H(3s) + 1√

2
H(3p) + 1√

6
H(3d)

n = 4 12 −2.038 140 67 He(1s4s 3S)
13 −2.035 621 21 He(1s4p 3P o)
14 −2.032 924 54 1

2 H(4s) − 3
2
√

5
H(4p) + 1

2 H(4d)
− 1

2
√

5
H(4f )

15 −2.031 955 57 1
2 H(4s) − 1

2
√

5
H(4p) − 1

2 H(4d)
+ 3

2
√

5
H(4f )

16 −2.029 628 42 He(1s4d 3D)
17 −2.029 559 29 1

2 H(4s) + 1
2
√

5
H(4p) − 1

2 H(4d)
− 3

2
√

5
H(4f )

18 −2.028 033 85 3
2
√

5
H(4p) + 1

2 H(4d) + 1
2
√

5
H(4f )

19 −2.016 557 85 He(1s4f 3F o)

a It is understood that H(n�) is accompanied by He+(1s) and that
He(1sn� 3L) is accompanied by H+.
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Figure 1. Adiabatic potential energy curves (in hartrees) of the
n = 1 states. Comparison with the work of Kolos (1976) and Kolos
and Peek (1976).

16 456.51 cm−1, which include diagonal Born–Oppenheimer
corrections, was given by Bishop and Cheung (1979). From an
experimental point of view, a numerical procedure particularly
successful when data are fragmentary has been employed by
Coxon and Hajigeorgiou (1999) to inverse the spectroscopic
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Table 3. 1� states included in the calculations and their dissociation
product. In this table, we use the notation H(n�) or He(1sn� 1L) to
denote the electronic wavefunctions of the corresponding electronic
states. Due to the He+ charge, there is a Stark effect on the hydrogen
levels (see the text). The mixing coefficients have been calculated
by diagonalizing the perturbation matrix due to the electric field.

Energy (hartree) Dissociative atomic
m at R = 70 au wavefunctionsa

n = 2 1 −2.124 916 60 H(2p)
2 −2.123 684 73 He(1s2p 1P o)

n = 3 3 −2.056 398 37 1√
2
H(3p) + 1√

2
H(3d)

4 −2.056 164 25 He(1s3d 1D)
5 −2.054 563 33 1√

2
H(3p) − 1√

2
H(3d)

6 −2.054 198 37 He(1s3p 1P o)

n = 4 7 −2.033 794 03 1√
3
H(4p) − 1√

2
H(4d) + 1√

6
H(4f )

8 −2.033 453 58 He(1s4f 1F o)

9 −2.030 818 19 1√
3
H(4p) −

√
2
3 H(4f )

10 −2.030 657 50 He(1s4d 1D)
11 −2.028 925 58 1√

3
H(4p) + 1√

2
H(4d) + 1√

6
H(4f )

12 −2.028 775 73 He(1s4p1P o)

a It is understood that H(n�) is accompanied by He+(1s) and that
He(1sn� 1L) is accompanied by H+.

Table 4. 3� states included in the calculations and their dissociation
product. In this table, we use the notation H(n�) or He(1sn� 3L) to
denote the electronic wavefunctions of the corresponding electronic
states. Due to the He+ charge, there is a Stark effect on the hydrogen
levels (see the text). The mixing coefficients have been calculated
by diagonalizing the perturbation matrix due to the electric field.

Energy (hartree) Dissociative atomic
m at R = 70 au wavefunctionsa

n = 2 1 −2.132 825 25 He(1s2p 1P o)
2 −2.124 918 45 H(2p)

n = 3 3 −2.058 144 10 He(1s3p 1P o)
4 −2.056 400 23 1√

2
H(3p) + 1√

2
H(3d)

5 −2.055 261 05 He(1s3d 1D)
6 −2.054 565 18 1√

2
H(3p) − 1√

2
H(3d)

n = 4 7 −2.033 713 07 He(1s4p1P o)
8 −2.033 235 84 1√

3
H(4p) − 1√

2
H(4d) + 1√

6
H(4f )

9 −2.030 816 42 1√
3
H(4p) −

√
2
3 H(4f )

a It is understood that H(n�) is accompanied by He+(1s) and that
He(1sn� 3L) is accompanied by H+.

line positions of the ground-state potential of HeH+. A
remarkable agreement has been obtained with the theoretical
values of Bishop and Cheung (1979).

The value obtained in this work for the dissociation energy
is of 16 464 cm−1. The energy depth in our calculation is
therefore less than 9 cm−1 too shallow and is to be compared
to the result of van Hemert and Peyerimhoff (1990) which is
298 cm−1 too large. Following these authors, this discrepancy
is indicative of a basis set deficiency. The basis set
superposition effect (BSSE) has been evaluated by the
counterpoise method and has been found to be negligible.

Table 5. 1� states included in the calculations and their dissociation
product. In this table, we use the notation H(n�) or He(1sn� 1L) to
denote the electronic wavefunctions of the corresponding electronic
states. Due to the He+ charge, there is a Stark effect on the hydrogen
levels (see the text). The mixing coefficients have been calculated
by diagonalizing the perturbation matrix due to the electric field.

Energy (hartree) Dissociative atomic
m at R = 70 au wavefunctionsa

n = 3 1 −2.055 406 49 H(3d)
2 −2.055 377 12 He(1s3d 1D)

n = 4 3 −2.032 068 18 He(1s4f 1F o)
4 −2.032 042 21 1√

2
H(4d) + 1√

2
H(4f ))

a It is understood that H(n�) is accompanied by He+(1s) and that
He(1sn� 1L) is accompanied by H+.

Table 6. 3� states included in the calculations and their dissociation
product. In this table, we use the notation H(n�) or He(1sn� 3L) to
denote the electronic wavefunctions of the corresponding electronic
states. Due to the He+ charge, there is a Stark effect on the hydrogen
levels (see the text). The mixing coefficients have been calculated
by diagonalizing the perturbation matrix due to the electric field.

Energy (hartree) Dissociative atomic
m at R = 70 au wavefunctionsa

n = 3 1 −2.055 435 91 He(1s3d 1D) + H+

2 −2.055 408 33 He+(1s) + H(3d)

a It is understood that H(n�) is accompanied by He+(1s) and that
He(1sn� 3L) is accompanied by H+.

In addition, using a B-spline basis set method, we have
resolved the vibrational nuclear equation for 4HeH+ and
obtained 12 vibrational bound states, as was found in the recent
paper of Stanke et al (2006).

The A 1�+ and the a 3�+ states have been studied by
Kolos (1976) in the adiabatic approximation. They both
present weakly attractive potential curves with a minimum
at large internuclear distances, Re = 5.53 au and 4.47 au
for the singlet and the triplet (respectively), to be compared
with our values of 5.53 au and 4.45 au. We have determined
the dissociation energies De = 849.71 cm−1 for the A state
and De = 379.70 cm−1 for the a state. A study of the
vibrational structure of the a 3�+ state of 4HeH+ has been
performed by Chibisov et al (1996) using the potential energy
curve of (Michels 1966) extended by an analytical expression
in the asymptotic region. They found that this potential
supports five bound vibrational levels, while our resolution of
the vibrational motion produced six bound levels. However,
the binding energy of the last level is less than 1 cm−1.
The largest difference between our energy values and those
of Chibisov et al is of 2 cm−1. It is also important to
note that the non-adiabatic couplings between the 3�+ states
have been neglected in both calculations and could modify
significantly the energy of the levels, as it has been shown
already for the vibrational structure of the ground state (Stanke
et al 2006). Finally, in our calculations, we found that four
bound vibrational levels are supported by the A 1�+ state
of 4HeH+.
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Table 7. Active spaces used in state-averaged CASSCF calculations.

n value 1�+ 3�+ 1� 3� 1,3�

1 (6σ, 2π ) (X1�+) (9σ, 4π, 1δ)
(9σ, 4π, 1δ) (A1�+)

2 (9σ, 4π, 1δ) (9σ, 4π, 1δ) (9σ, 4π, 1δ) (9σ, 4π, 1δ)
3 (12σ, 6π, 4δ) (12σ, 8π, 2δ) (4σ, 8π, 6δ) (4σ, 10π, 2δ) (6σ, 4π, 4δ)
4 (28σ, 2δ) (28σ ) (2σ, 13π, 2δ) (6σ, 4π, 4δ)
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Figure 2. Adiabatic potential energy curves for the n = 2–4 1�+

states. Solid curves, states dissociating into He(1sn� 1L) + H+.
Dashed curves, states dissociating into He+(1s) + H(n�).
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Figure 3. Adiabatic potential energy curves for the n = 2–4 3�+

states. Solid curves, states dissociating into He(1sn� 3L) + H+.
Dashed curves, states dissociating into He+(1s) + H(n�).

3.2. Adiabatic potential energy curves for the first Rydberg
1,3�+ states

The n = 2–4 states of HeH+ can be divided into two groups.
The first category dissociated asymptotically into H+ and
neutral He in an excited 1sn� 1,3L state, while the second
one dissociated into He+ in its 1s ground state and an excited
n� state of H. Both categories of states alternated along the
electronic spectrum resulting in a large number of avoided
crossings leading to charge exchange dynamics. For the �

symmetry, the total number of states up to n = 4 is 20 for
the singlets and 19 for the triplets. They are shown in figures
2 and 3, respectively. In these figures, the states of the first
category are plotted as solid curves while the states of the
second category are plotted as dashed curves.

The n = 2 manifolds have a very similar behaviour in
both singlet and triplet spin symmetries. However, for the
singlet states an avoided crossing between the two highest
states occurs at an internuclear distance of 50 au. This crossing
is understandable once looking at the asymptotical behaviour
of those two 1�+ states, which is governed by the Stark
effect. Indeed, at large internuclear distances, the system is
composed of a neutral atom, perturbed by an ion. The atomic
dissociative states are He(1s2p 1P o) + H+ and He+(1s) +
H(2s), respectively for the highest and the lowest state.

If we restrict the description to quadratic effects in the
field, the helium state behaves asymptotically in the presence
of the H+ charge as

E(R) = E0
He(1s2p 1P o)

− αHe(1s2p 1P o)

2R4
(1)

and the 2s state of H, under the electric field produced by He+,
as

E(R) = E0
He+(1s)+H(2s)

+
3

R2
− αH(2s)

2R4
(2)

where E0 represent the atomic energies. In addition, the |2s〉
state of hydrogen becomes 1√

2
|2s〉 − 1√

2
|2p〉.

The first-order Stark effect produces a term proportional
to 1/R2, which vanishes unless the atomic state is degenerate
with a state of opposite parity (Goldman and Cassar 2005).
The term proportional to 1/R4 is due to the second-order
Stark effect, and the constant α is the dipole polarizability.
The polarizabilities for the helium states can be found in
(Yan 2000, 2002) while the polarizabilities for hydrogen are
obtained analytically (Radzig and Smirnov 1985). The result
is that while the helium state presents an almost flat asymptotic
curve, the hydrogen state decreases to its atomic value, and a
crossing occurs in the analytical model at R = 50 au, almost
exactly as in the ab initio calculation.

From figure 4, we see that the asymptotic n = 2 states
are correctly described using the Stark effect up to order 2. To
a lesser extent, it is also the case of the n = 3 singlet states
(see figure 5): for example, the analytical model reproduces
the crossing which occurs at 90 au between the 11th and
12th states dissociating respectively into He+(1s) + H(3s) and
He(1s3p 1P o) + H+ (see table 1).

In the Born–Oppenheimer approximation, in which the
quantum chemical calculations are performed, these crossings
are avoided. However, the large amplitude and the narrowness
of the non-adiabatic couplings at those points indicate that a
full diagonal diabatic representation at the crossing is perfectly
justified.

It is clear from figures 2 and 3 that the number of avoided
crossings increases strongly with n and that their positions
are shifted to larger internuclear distances. Those avoided
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Figure 5. Asymptotic behaviour of the five highest n = 3 1�+ states.

crossings mask partially the intrinsic oscillatory behaviour
of the higher states that has been observed in previous
calculations (Boutalib and Gadea 1992). This behaviour has
been related to the nodal structure of the Rydberg orbitals
which may start to be important in the n = 4 manifold and
can be clearly seen in the last two 3�+ states. The second
observation is that the states belonging to different manifolds
are very close in energy, especially at internuclear distances
smaller than 10 au. In addition, well-defined avoided crossings
couple the last state of a manifold to the first state of the next
manifold at large internuclear distances (7 au between n = 2
and n = 3 and 18 au between n = 3 and n = 4 for the singlet
symmetry).

Finally, due to the presence of the n = 5 states, very close
in energy and not adequately described in our calculations,
the representation of the highest n = 4 states is probably less
accurate than for the other members of the Rydberg series.

The comparison can be made with the previous work of
Green et al (1974a, 1974b, 1976, 1978) for the n = 2 singlet
and triplet states in the range R = 1–5 au and with the data
of Klüner et al (1999) for the three first singlet states in the
range R = 1–10 au. The different sets of results are very
similar for both spin symmetries, the present calculations being
systematically more stable in energy.

We also note that Klüner et al (1999) have associated, at
short internuclear distances, the last state of the n = 2 manifold
in their calculations as dissociating into He(1s2p 1P o) +
H+ while due to the crossing involving this state at 50 au,
it actually corresponds to He+(1s) + H (n = 2) (see table 1).
This is very important since these authors are interested in the
electron transfer mechanism and they have eliminated the last
n = 2 state from their dynamical calculations.

Table 8. Location of the principal non-adiabatic radial couplings for
the n = 1–3 �+ states.

1�+ states R (a0)
3�+ states R (a0)

3–4 3.9 2–3 3.6
4–5 3.1 3–4 2.9
5–6 12.7 4–5 10.6
6–7 7.0 5–6 3.5, 6.8
7–8 2.9, 5.2 6–7 5.5
8–9 4.1 7–8 4.5
9–10 12.0 8–9 10.8, 12.3, 28.0
9–11 12.2 9–10 3.6, 12.1, 26.0

10–11 4.0, 6.6, 12.2 10–11 5.7, 8.8
11–12 2.7, 5.4, 8.8, 25.0

Table 9. Location of the principal non-adiabatic radial couplings for
the n = 1–3 � states.

1� states R (a0)
3� states R (a0)

3–4 7.5 3–4 7.6
4–5 3.5, 18.8 4–5 4.5, 18.8
5–6 18.1 5–6 18.3

For the n = 3 manifold, only Green et al provide a full
set of results for both singlet and triplet states. The differences
with our data are more important than for the n = 2 states in
both spin multiplicities, especially for the highest states which
undergo avoided crossings with the lowest n = 4 states.

Tables 8 and 9 give the location of all the major avoided
crossing points for singlet and triplet states which have
been determined by an analysis of the calculated radial non-
adiabatic couplings (see section 4.1).
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Figure 6. Adiabatic PEC of the n = 2–4 1� states. Solid curves,
states dissociating into He(1sn� 1L) + H+. Dashed curves, states
dissociating into He+(1s) + H(n�).
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Figure 7. Adiabatic PEC of the n = 2–4 3� states. Solid curves,
states dissociating into He(1sn� 3L) + H+. Dashed curves, states
dissociating into He+(1s) + H(n�).

3.3. Adiabatic potential energy curves for the first Rydberg
1,3� and 1,3� states

The potential energy curves of the 1� and 3� states are
presented in figures 6 and 7, respectively. The PEC have
again a very similar behaviour for both spin multiplicities.
Indeed, the first and the third state seem to present a shallow
well, and we also see that an avoided crossing between the last
three n = 3 states occurs at R = 18 au. Finally, the last n = 3
state and the first n = 4 state interact strongly at about 8 au.

Once again, the qualitative comparison with the results of
Green et al for n = 2–3 is good but there are some differences.
The avoided crossing mentioned above occurs at R = 20 au
rather than at R = 18 au in our work, and we also see that the
energy separation at the avoided crossing between the third
and fourth state (internuclear distance of about 8 au) is larger
in our calculation.

Finally, the PEC for the � states are presented in figure 8.
They seem to be almost independent of the spin multiplicity.
In the work of Green et al, the two n = 4 PEC present an
avoided crossing, which is not the case in this work.

It should be noted that the calculation of the � states
is more difficult than for the other symmetries. This is due
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Figure 8. Adiabatic PEC of the n = 3–4 1� and of the n = 3 3�
states (full and dashed lines, respectively). Solid black
curves, states dissociating into He(1sn� 1,3L) + H+. Dashed curves,
states dissociating into He+(1s) + H(n�). Grey curve, the 3� state
dissociating into He(1sn� 3L) + H. Dotted curve, the 3� state
dissociating into He+(1s) + H(n�).

to the fact that MOLPRO can only use Abelian groups, and
the C2v subgroup of C∞v is used for the diatomic molecules.
In this group, the �+ and � states are calculated within the
same CI matrix diagonalization and it is sometimes difficult
to separate the states of those symmetries. The same is true
for the 
 states, which correspond to the same irreducible
representations as the � states in C2v .

4. Non-adiabatic corrections

We write the total Hamiltonian as the sum of an electronic
part, H el, and a nuclear kinetic part, T N, which itself can be
developed into a radial (H rad) and a rotational (H rot) part:

H = T N + H el

= H rad + H rot + H el.

In the electronic Hamiltonian, the mass polarization term has
been neglected. Using the electronic wavefunctions ζi,�,
solutions of the electronic Schrödinger equation

H elζi,�(r; R) = Ui(R)ζi,�(r;R),

the total wavefunction is expressed as a product of
an electronic and a nuclear wavefunction: 
(R, r) =∑

i,� ζi,�(r;R)ψi,�(R), where r and R stand for the electron
and nuclear coordinates, respectively. � is the quantum
number associated with Lz, the projection of the electronic
orbital angular momentum L onto the z axis.

As the nuclear Hamiltonian is separable, the nuclear
wavefunction is given by the product ψi(R) = ψi(R) |K�〉,
where |K�〉 is an eigenfunction of the operators K2 and Kz,
and K being the total angular momentum.

Using this development, the Schrödinger equation can be
expressed as

∑
j,�′

〈ζi,�|H rad + H rot|ζj,�′ 〉ψj,�′ + (Ui − E)ψi,� = 0 ,

7
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Figure 9. Radial non-adiabatic coupling matrix elements between
the n = 2 1�+ states. The numbers in the subscript refer to the value
of m as defined in table 1.

where

H rad = − 1

2μ
∂2
R

and

H rot = 1

2μR2
N2

= 1

2μR2
[K2 + L2 − 2KzLz − K+L− − K−L+] (3)

where N is the nuclear angular momentum.

4.1. Radial couplings

Using the orthonormality of the electronic wavefunctions, the
matrix elements of the radial Hamiltonian are given by

〈ζi,�| − 1

2μ
∂2
R|ζj,�′ 〉

= − 1

2μ

[
∂2
Rδji + 2〈ζi,�|∂R|ζj,�′ 〉∂R + 〈ζi,�|∂2

R|ζj,�′ 〉]δ�′�

= − 1

2μ

[
∂2
Rδji + 2Fi�,j�′∂R + Gi�,j�′

]
δ�′�.

Since it can be shown that in matrix form G = F
2 + ∂RF (Baer

2006), we only need to calculate the elements of F, which is
block diagonal in �. These couplings were calculated using
a three-point central difference method implemented in the
DDR programme of MOLPRO with a displacement parameter
dR = 0.01 au.

For the analysis of the radial couplings, we will focus on
the n = 2 states since all the k(k − 1)/2 couplings (where k
is the number of states for a given �) cannot be shown here.
We note that the dominant couplings are systematically those
connecting two adjacent states (i.e. the couplings Fi,i±1), as
shown in figure 9 for the n = 2 states. This implies that
states of different values of n can interact at the exception
of the two n = 1 states which are isolated in energy. The
dominant couplings are narrow and their maxima correspond
to the positions of the avoided crossings given in table 8 for
the � states and in table 9 for the � states. The PEC will
cross at those points upon diabatization. These couplings
are known as ‘Landau–Zener couplings’ (Zener 1932). The
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Figure 10. Radial non-adiabatic coupling F34 calculated with
different active spaces (AS), as well as with the basis from (van
Hemert and Peyerimhoff 1990).

radial couplings presented in figure 9 are of this type. On
other hand, some couplings are wider and do not correspond
to clear avoided crossings; instead, the PEC are parallel in
the coupling region. These couplings arise mainly at large
internuclear distances. The dynamics around these couplings
is described by the Rosen–Zener theory (Rosen and Zener
1932). Both types of couplings will give rise to very different
dynamical behaviours. As an example, we will consider the
case of the coupling F34 (shown in figure 10), which can be
separated in a Landau–Zener coupling (centred around R ∼
4 au) and a Rosen–Zener coupling, centred at R ∼ 17 au.
The position and the shape of the long-range coupling are
invariant under changes in the level of electron correlation or
in the atomic basis set used in the calculation, as illustrated in
figure 10.

We observed that some of the radial couplings tend
asymptotically to a constant which differs from zero. This
behaviour is expected for the couplings between two molecular
states of the same symmetry degenerated at infinity when
the calculations of the couplings are done using an origin
of the electronic coordinates at the centre of the nuclear mass
(Belyaev et al 2001).

As the final goal of this work is the study of non-adiabatic
dynamics involving those couplings, we should note here
that a number of authors demonstrated the importance of
electron translation factors at high and intermediate energies
and proposed different methods to take them into account
(Thorson and Delos 1978, Errea et al 1994). It was also
established that these factors are linked to the choice of the
origin of the electronic coordinates (Bransden and McDowell
1992). As we noted the quasi-invariance of the radial couplings
under a translation of the origin of the electronic coordinates
along the internuclear axis (see figure 11), it appears that the
inclusion of translation factors in dynamical simulations will
not be necessary.

4.2. Rotational couplings

From equation (3), we can obtain the matrix elements of the
rotational Hamiltonian between the electronic and rotational
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nuclear functions. They are given by

Hi�K,j�′K ′ = 〈K�|〈ζi,�|H rot|ζj,�′ 〉|K ′�′〉
= 1

2μR2

{[
(K(K + 1) − �2)δij + 〈ζi,�|L2

x + L2
y |ζj,�′ 〉]δ��′

+ 2[K(K + 1) − �(� − 1)]1/2〈ζi,�|iLy |ζj,�′ 〉δ�′,�+1

− 2[K(K+1)−�(�+1)]1/2〈ζi,�|iLy |ζj,�′ 〉δ�′,�−1
}
δKK ′ .

(4)

We see from the formula above that L2
x + L2

y is an
interaction between states of the same � value. In particular,
the diagonal part

(
L2

x + L2
y

)
ii

modifies the energies of the
states. This contribution can be evaluated using MOLPRO
at the CASSCF level, but we will not report it here since it
was shown by Bishop and Cheung (1979) that for the ground
state it is of the same order of magnitude as the effect of the
mass polarization term, which we have neglected. The same
conclusion was reached by Bunker (1968) for H2. We only
mention the fact that asymptotically, these matrix elements
behave as R2, so the corrections to the energies are constants
(see equation (4)) when the internuclear distance is large.

The operator iLy , on the other hand, connects states with
�� = ±1 and cannot be neglected. Note that the calculation
of the matrix elements of iLy necessitates the simultaneous
determination of electronic states of different values of � in
the same calculation.

The rotational couplings between the n = 2 1� and
1�+ states are presented in figure 12. Asymptotically, the
couplings between states that dissociate into the same atomic
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Figure 12. Adiabatic rotational couplings between the n = 2 1�+ and 1� states. The numbers in the subscript refer to the value of m as
defined in table 1.
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Figure 13. Permanent dipole moments for the n = 1, 2 1�+ states.
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Figure 14. Transition dipole moments between the n = 2 1�+

states.

species and into the same n manifold are constant. Some
rotational couplings between states dissociating into different
n manifolds make an exception and behave asymptotically as
R, as indicated by Belyaev et al (2001). All the couplings
between states dissociating into different atomic species tend
to zero at large internuclear distances.

5. Adiabatic dipole moments

There are k(k + 1)/2 (where k is the number of states) dipole
matrix elements and we will again restrict our discussion to
the 1�+ states. The permanent adiabatic dipole moments of
the n = 1, 2 states are represented in figure 13, while the
transition dipole moments of the n = 2 states are represented
in figure 14.
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In a given � subspace, the dipole interaction occurs only
through the z component. As there is no ambiguity, we will
thus write the dipole moment between two states i and j as
μij instead of μz,ij .

The behaviour of the dipole moments is consistent with
the calculation of the radial couplings, illustrating the relation
between the two operators (Macı́as and Riera 1978) which
allows the use of the dipole moment rather than the radial
couplings to find a diabatic representation. For example, the
crossing between the dipoles μ55 and μ66 at R = 12.75 au
corresponds to the sharp radial coupling seen in figure 9 at the
same internuclear distance, and is reflected on the transition
dipole moment between the two states, μ56, which presents
a sharp peak in the crossing region. Conversely, when two
permanent dipoles have a peak of opposite value, as do μ44

and μ55 at R = 3.1 au, the sign of the transition dipole μ45

changes abruptly. Again, this is linked to an avoided crossing
between the fourth and fifth states at the same internuclear
distance.

As can be seen from figure 13, all the permanent dipole
moments μii behave asymptotically as R, since the origin
of the coordinates is at the nuclear centre of mass and not
on one of the atoms. As the reduced mass of 4HeH+ is
μ = 0.805 amu, the helium and the hydrogen nuclei are
situated approximatively at −0.2R and 0.8R of the origin,
respectively. The permanent dipole moment can then be
divided into a nuclear and an electronic part. The nuclear
contribution is of 0.4R and is identical for all states, while the
electronic contribution is of 0.4R for the He(1sn� 1L) + H+

states and of −0.6R for the He+(1s) + H(n�) states. For the
latter, there is an additional contribution from the interaction
between the helium 1s electron and the hydrogen n� electron
which explains that the permanent dipole moments for these
states do not tend to the same asymptotic value.

6. Diabatic representation of the Rydberg states

The diabatic representation is defined so as to cancel the
F matrix, which is the case if the adiabatic-to-diabatic
transformation matrix D satisfies the matrix equation

∂RD + F · D = 0. (5)

The diabatic potential energy curves are then given as the
diagonal elements of the transformed matrix U

d = D
−1 ·U · D.

We solve equation (5) by continuity using a grid of 2000 points,
starting from R = 60 au where we require that the adiabatic
and diabatic representations are identical (so that D = I). It
should also be noted that, as we calculate the non-adiabatic
radial coupling at the CASSCF level, we also use the CASSCF
energies, which differ slightly from the CI energies presented
in section 3.

In our diabatization procedure, we will not consider the
complete F matrix, keeping only the couplings Fi,i+1 and
putting all the other couplings to zero. This approximation,
which amounts to a succession of two-states cases, is
used for various reasons. The first one is that, as was
shown in section 4.1, those couplings are systematically
the most important ones. Secondly, it has been shown by
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Figure 15. Diabatic PEC of the n = 1–3 1�+ states.
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Figure 16. Comparison of the diabatic PEC of the n = 1 and n =
2 1�+ states diabatized independently (solid curves) or as a whole
(dashed curves).

Zhu and Nakamura (1997) that this approximation gives
correct results in dynamical calculations even for low energies,
which is confirmed by our calculations of the electron-transfer
cross sections in the n = 2 manifold (Loreau et al 2010).
Thirdly, some of the couplings which we neglect remain non-
zero at large internuclear distance. This phenomenon is known
and has been discussed in detail by Belyaev et al (2001), but
raises a problem in our diabatization method. Indeed, our
procedure is based on the fact that the adiabatic and diabatic
representations coincide at R = ∞, which is not the case if
the couplings do not vanish. As a consequence, these residual
couplings, although small, influence the diabatic PEC at large
R, a feature which is of course undesirable.

We will consider the 1�+ states as an example of the
diabatization procedure. The result of the diabatization
for these states up to n = 3 is given as an example in
figure 15.

It is clear that the diabatization alters considerably the
shape of the ground state. From figure 16, we see that this is
essentially due to the coupling F12 since the same behaviour is
observed when the n = 1 states are diabatized independently.
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Figure 17. Comparison of the diabatic PEC of the n = 2 and n =
3 1�+ states diabatized independently (solid curves) or as a whole
(dashed curves).

The first excited state also changes dramatically, crossing the
entire n = 2 manifold in the diabatic representation, which is
due to the coupling F23 (see figure 16). However, one must
remember that the non-adiabatic coupling between the two
first 1�+ states is of the Rosen–Zener type, and that therefore
the diabatic representation of those states has little physical
significance. Likewise, the influence of the two first 1�+

states on the diabatic representation of the n = 2 states is very
important but has little effect on the non-adiabatic dynamics
in the n = 2 manifold, as has been observed in the calculation
of charge exchange cross section between He+ and H at low
energies (Loreau et al 2010). To our knowledge, the only
other work on the diabatic representation of the PEC of the
HeH+ ion has been done by Klüner et al (1999) using the
quasi-diabatization procedure proposed by Pacher et al (1988).
These authors compare a 3-state (the three lowest n = 2 states)
and a 4-state (adding the second n = 1 state) diabatization
in a small interval of internuclear distances (0.8 au � R �
5.4 au). It is concluded that the inclusion of the n = 1 state
does not modify the diabatic PEC of the n = 2 manifold, and
this state is therefore neglected in wavepacket simulations of
charge exchange processes involving n = 2 states. Although
we arrive at the same conclusion regarding the dynamics, our
method gives significantly different diagonal as well as non-
diagonal matrix elements of the electronic Hamiltonian in the
diabatic representation.

On the other hand, the effect of the interaction between
the n = 2 and n = 3 manifolds through the F67 matrix element
is relatively small, as shown in figure 17.

Finally, the description of the diabatic n = 3 states
necessitates to take some higher-lying states into account,
since the highest diabatic state undergoes an avoided crossing
around R = 20 (as can be seen in figure 2) with the first
n = 4 state. The inclusion of the first two n = 4 states
in the diabatization, while leaving the first five n = 3 states
unaltered, clearly influences the sixth state by shifting the
position of the avoided crossing to smaller values of R, as
illustrated in figure 18. Therefore, a more correct description
of the last n = 3 diabatic state should include more n = 4
states, even though we are only considering the couplings
between adjacent states.
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Figure 18. Effect of the n = 4 states on the last two n = 3 states.
Solid black curves, the fifth and sixth n = 3 diabatic states. Dashed
curves, the same states, but diabatized with the first n = 4 state. The
fifth n = 3 state is left unaltered, but the avoided crossing of the
sixth n = 3 state is shifted from R = 20 au to R = 17 au. Dots, the
sixth n = 3 state diabatized with the first and second n = 4 state
(solid grey curves). The avoided crossing is further shifted to
R = 16 au.

7. Conclusions

We present an accurate description of 66 low-lying adiabatic
states of HeH+. Using the MOLPRO package and a large
adapted basis set, the potential energy curves of the n = 1–3 as
well as most of the n = 4 states of the molecular ion have been
obtained and compared to previous theoretical works. The
radial and rotational non-adiabatic coupling matrix elements,
as well as the dipole matrix elements, have been calculated for
all the n = 1–3 states. The radial couplings allow us to switch
to the diabatic representation which is used to treat dynamical
processes involving the ion. This material has been used to
calculate the cross section of the photodissociation of the ion
(Sodoga et al 2009) and the cross sections for the charge
transfer processes He+(1s) + H(n�) −→ He(1sn′�′ 1,3L) +
H+ at low energy (Loreau et al 2010).
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Appendix. Basis set

Tables A1, A2 and A3 list additional basis sets for hydrogen
and for the singlet and triplet states of helium.
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Table A1. Additional basis functions for hydrogen.

Coefficient Exponent Coefficient Exponent

2s 0.000 144 19.907 407 3p 0.024 590 0.986 107
−0.005 010 8.988 620 0.260 387 0.181 062
−0.059 868 0.645 915 0.903 505 0.051 409
−0.123 387 0.071 221 −1.874 014 0.007 783

0.891 720 0.024 689 −0.287 389 0.003 281

3s 0.017 083 1.000 840 4p 0.015 689 1.015 267
0.120 859 0.272 819 0.170 182 0.186 800
0.381 641 0.093 336 0.625 077 0.053 622
0.782 727 0.023 846 −2.040 089 0.009 383

−2.036 422 0.019 287 2.535 609 0.002 477
1.594 513 0.004 250

3d 0.050 502 0.199 534
4s 0.013 653 11.939 994 0.495 617 0.051 732

0.167 164 1.060 859 1.609 201 0.018 241
0.662 095 0.188 361 1.213 582 0.007 264

−3.032 473 0.029 081
4.828 012 0.007 375 4d 0.077 845 0.083 401

−4.362 099 0.001 197 0.454 482 0.021 517
−0.894 944 0.003 285

2p 0.005 698 3.101 143
0.067 894 0.567 270 4f 0.026 401 0.033 813
0.407 521 0.158 596 0.169 866 0.010 591
1.082 414 0.052 537 0.204 085 0.004 109
0.800 233 0.020 01

Table A2. Additional basis functions for the singlet states of helium.

Coefficient Exponent Coefficient Exponent

2s 0.002 760 99.181 545 3p 0.002 929 4.673 075
0.030 509 10.536 516 0.037 026 0.848 515
0.196 191 1.905 592 0.244 477 0.227 656
0.775 469 0.424 822 0.806 379 0.070 757

−3.722 470 0.029 920 −2.050 784 0.007 911

3s −0.001 952 99.838 262 4p 0.002 547 4.629 236
0.012 286 49.068 205 0.076 795 0.396 874
0.151 694 2.653 277 0.488 599 0.081 760
0.516 699 0.309 173 3.304 293 0.017 020

−3.156 883 0.038 398 −4.848 362 0.013 667
4.383 564 0.006 064 2.305 369 0.002 285

4s −0.004 235 99.861 298 3d 0.062 634 0.102 716
0.011 613 49.188 130 0.430 990 0.026 362
0.316 811 0.732 304 0.551 594 0.008 950

−2.495 917 0.035 479
4.534 324 0.009 221 4d 0.077 839 0.082 347
4.267 928 0.001 472 0.454 447 0.021 503

−0.894 818 0.003 283

2p 0.000 152 19.984 152
0.002 135 4.719 990 4f 0.026 447 0.033 780
0.025 319 1.021 806 0.170 021 0.010 582
0.160 069 0.292 204 0.204 038 0.004 106
0.592 704 0.101 345
1.066 547 0.039 590
0.527 114 0.016 351
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