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a b s t r a c t

Over the last several years, our group has undertaken a systematic investigation of atomic properties
of K-vacancy states in many ions. More precisely, reliable data such as level energies, wavelengths, Ein-
stein A-coefficients, radiative and Auger widths were computed for a large number of ions using three
different atomic structure theoretical approaches, i.e. relativistic Hartree–Fock (HFR), AUTOSTRUCTURE
(AS) and multiconfiguration Dirac–Fock (MCDF) methods. Extensive calculations of photoabsorption and
photoionization cross sections were also performed using the Breit–Pauli R-matrix method including the
effects of radiative and Auger damping by means of an optical potential. Here, we report on our overall
progress concerning N, O, Ne, Mg, Al, Si, S, Ar, Ca, Fe and Ni ions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The unprecedented spectral capabilities and sensitivity of recent
orbiting X-ray telescopes (Chandra, XMM-Newton, Suzaku) have
opened the door for quantitatively accurate studies of atomic inner-
shell processes in astrophysical plasmas. In particular, the spectra
from black holes and neutron stars contain inner-shell absorption
lines from a large number of ions. This trend will continue to grow
with the launch of future instruments such as the International
X-ray Observatory (IXO). Such inner-shell processes, particularly
K-shell processes, are observed in the spectral band of the observa-
tories from all ionic stages (i.e. not just H-like or He-like) of the most
abundant elements [1]. It is worth emphasizing that both fluores-
cent emission and K� photoabsorption are observed in Chandra and
XMM-Newton spectra, though never so far from the same source.
These spectra are extremely valuable for they can be used to diag-
nose the conditions of the plasma and its chemical composition.
Until recently, however, atomic parameters for modeling K lines
were not available.

Over the last several years, our team has dedicated significant
efforts toward the study of K-shell processes using different the-
oretical approaches. Here we present an overview of our recent
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progress in ions of the N, O, Ne, Mg, Al, Si, S, Ar, Ca, Fe and Ni
isonuclear sequences for which complete data sets of level ener-
gies, wavelengths, radiative and Auger rates for K lines have been
calculated. For most of these ions, K-shell photoionization cross
sections were also computed.

2. Radiative and Auger rate calculations

Three independent methods were used in our work for atomic
structure calculations. The main body of data was computed with
the pseudo-relativistic Hartree–Fock (HFR) approach of Cowan
[2]. Data accuracy was assessed by means of two other methods:
the multiconfiguration Breit–Pauli method, which incorporates a
scaled Thomas–Fermi–Dirac statistical potential as implemented in
AUTOSTRUCTURE [3,4] and the General Relativistic Atomic Struc-
ture Package (GRASP) based on the multiconfiguration Dirac–Fock
(MCDF) method [5,6].

In HFR and AUTOSTRUCTURE, wave functions are calculated
with the Breit–Pauli relativistic corrections

HBP = HNR + H1B + H2B (1)

where HNR is the usual nonrelativistic Hamiltonian. The one-body
relativistic operators

H1B =
N∑

n=1

fn(SO) + fn(mass) + fn(D) (2)
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represent the spin-orbit interaction, fn(SO), the non-fine-structure
mass variation, fn(mass), and the one-body Darwin correction,
fn(D). The two-body Breit operators are given by

H2B =
∑
n<m

gnm(SO) + gnm(SS) + gnm(CSS) + gnm(D) + gnm(OO) (3)

where the gnm(SO), gnm(SS), gnm(CSS), gnm(D) and gnm(OO) are
the spin-other-orbit, the mutual spin–spin, the spin–spin contact,
the two body Darwin and the orbit–orbit terms. HFR computes
energies, Einstein A-coefficients and Auger rates with nonorthog-
onal orbital bases, which are generated by optimizing the average
energy of each configuration. It also neglects the part of the two-
body Breit operator (3). AUTOSTRUCTURE can use both orthogonal
and nonorthogonal orbital bases for all the electronic configura-
tions considered, which enables estimates of relaxation effects.
Auger rates are computed in both HFR and AUTOSTRUCTURE in
a distorted wave approach.

In the multiconfiguration Dirac–Fock method (MCDF), each
atomic state function (ASF) is represented as a superposition of
configuration state functions (CSF) of the type

� (˛˘JM) =
nc∑

i=1

ci(˛)˚(ˇi˘JM) (4)

where � and ˚ are, respectively, the ASF and CSF; ˘ , J and M are
the relevant quantum numbers for parity, total angular momentum
and its associated total magnetic number; ˛ and ˇi stand for all the
other quantum numbers that are necessary to describe unambigu-
ously the ASFs and CSFs. The summation in Eq. (4) is up to nc, the
number of CSFs in the expansion, and each CSF is built from anti-
symetrized products of relativistic spin orbitals. The ci coefficients,
together with the orbitals, are optimized by minimizing an energy
functional, the latter being built from one or more eigenvalues of
the Dirac–Coulomb Hamiltonian depending on the optimization
option adopted. In our work, we have used the extended average
level (EAL) option in which the (2J + 1) weighted trace of the Hamil-
tonian is minimized. Transverse Breit interaction as well as other
QED interactions, e.g. the vacuum polarization and self-energy,
have been included in the Hamiltonian matrix as perturbations.
Unfortunately, the GRASP code does not treat the continuum and
has thus been exclusively employed in comparisons of radiative
data for bound–bound transitions.

Up to now, in our recent studies, radiative and Auger decay
data have been calculated for modeling the K lines of the nitrogen,
oxygen, neon, magnesium, aluminium, silicium, sulfur, argon,
calcium, iron and nickel isonuclear sequences. More precisely,
level energies, transition wavelengths, radiative transition proba-
bilities and radiative and Auger widths have been determined for
all the ions along these sequences. The details of the theoretical
procedures used can be found in the references listed in Table 1.
Numerical results and detailed comparisons between the different
methods considered in our work are also given in these original
references. As examples, we show in Figs. 1 and 2 the comparisons
between radiative and Auger decay rates obtained using the
different approaches considered in our work for all nitrogen and
aluminium ions, respectively. As illustrated in these figures, the
general agreement between the different sets of data is very good,
particularly for the strongest K-lines, i.e. those having radiative
and Auger widths greater than 1012 s−1, for which the average
discrepancy does not exceed a few percent if we except a handful
of K-vacancy levels in nitrogen ions for which larger discrepancies
(mainly due to level admixture) are observed. As discussed in [14],
these levels are 1s(2S)2s2p3(5S◦)4S3/2

◦, 1s(2S)2s2p3(3S◦)2S1/2
◦,

1s(2S)2s2p3(1P◦)2P1/2
◦ (N III), 1s(2S)2s2p2(4P)3P0,1,2,

1s(2S)2s2p2(2P)1P1 (N IV) and 1s(2S)2s2p(3P◦)2P1/2,3/2
◦ (N V).

We also note that the general agreement between our different

Table 1
Isonuclear sequences for which radiative and Auger decay rates for K-lines have
been calculated in the present work.

Z Isonuclear sequence Ions Refs.

7 Nitrogen N I–N VI [14]
8 Oxygen O I–O VII [15]
10 Neon Ne I–Ne IX [16]
12 Magnesium Mg I–Mg XI [16]
13 Aluminium Al I–Al XII [17]
14 Silicium Si I–Si XIII [16]
16 Sulfur S I–S XV [16]
18 Argon Ar I–Ar XVII [16]
20 Calcium Ca I–Ca XIX [16]

26
Iron Fe II–Fe IX [18]

Fe X–Fe XVII [19]
Fe XVIII–Fe XXV [20]

28 Nickel Ni II–Ni XXVII [21]

theoretical approaches seems to improve when increasing the
nuclear charge. This is essentially due to the fact that the interaction
between n = 2 and n = 3 configuration complexes (considered in
our HFR model only) are more important for the lowest ionization
stages.

3. K-shell photoionization and photoabsorption cross
sections

Resonances have a large contribution to the photoabsorption
cross-section near the K edge. The Auger rates for levels with a K-
vacancy tend to be large leading to an ejected electron even if the
incident photon does not have enough energy to directly ionize the
K-electron. There are two basic types of Auger processes, participa-
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Fig. 1. Comparison between HFR and AUTOSTRUCTURE (AS) calculations for radia-
tive (a) and Auger (b) widths in nitrogen ions.



Author's personal copy

172 P. Quinet et al. / Journal of Electron Spectroscopy and Related Phenomena 184 (2011) 170–173

1e+00 1e+02 1e+04 1e+06 1e+08 1e+10 1e+12 1e+14

HFR Radiative Width (s
-1

)

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

1e+12

1e+14

O
th

er
 R

ad
ia

tiv
e 

W
id

th
 (

s-1
)

1e+06 1e+08 1e+10 1e+12 1e+14

HFR Auger Width (s
-1

)

1e+06

1e+08

1e+10

1e+12

1e+14

O
th

er
 A

ug
er

 W
id

th
 (

s-1
)

a

b

Fig. 2. Comparison of HFR radiative (a) and Auger (b) widths with AUTOSTRUCTURE
(full circles) and MCDF (open squares) values for aluminium ions.

tor and spectator. In the participator process, the excited electron
is involved in the Auger process while, in the spectator decay, it
is core relaxation which yields the Auger electron. A further com-
plication comes from the fact that the excited state can radiatively
stabilize instead of undergoing the Auger process meaning no pho-
toionization occurs. All of these processes are shown in Fig. 3 and
must be included in the calculations.

In our work, photoionization and photoabsorption cross sec-
tions were computed with the Breit–Pauli R-Matrix code [7,8]. In
this approach, wave functions for states of an N-electron target and
a colliding electron with total angular momentum and parity J �
are expanded in terms of the target eigenfunctions

� J˘ = A
∑

i

�
Fi(r)

r
+

∑
j

cj˚j (5)

where the �i functions are vector coupled products of the target
eigenfunctions and the angular components of the incident-
electron functions; Fi(r) are the radial part of the continuum wave
functions that describe the motion of the scattered electron and A
is an antisymetrization operator. The functions ˚j are bound-type
functions of the total system constructed with target orbitals. The
Breit–Pauli relativistic version has been developed in [9,10] and
Auger and radiative dampings were taken into account by means
of an optical potential [11–13] where the resonance energy with
respect to the threshold acquires an imaginary component.

Since an R-matrix calculation involves several steps and there
are dozens of ions to calculate, we have developed a script which
can run through the entire calculation using a single input file. This
saves a lot of hands-on time and provides consistency to our calcu-
lations. The script also contains a method to automatically resolve
the resonance structure ensuring a converged cross-section.

For ions with 10 or fewer electrons, our target expansion was
1s2ln and 1sln+1 where n + 2 is the total number of electrons. Sys-
tems with more than 10 electrons included configurations of the
type 1s22l63ln, 1s22l63ln−13d, 1s22l53ln+1 and 1s2l63ln+1 (l = s, p)
where n + 8 is the total number of electrons. Also the 2s- and 2p-hole
levels were included for these systems in addition to the 1s-hole
levels. For neutral systems, a larger target expansion was needed
due to configuration mixing. The expansion for these atoms was
determined individually. The radial wave functions used in our
cross section calculations were those obtained from AUTOSTRUC-
TURE, but the energies were adjusted using the HFR code.

In Table 2, we present a list of ions for which K-shell photoion-
ization cross sections have been computed so far. In each paper
mentioned in this table, the calculations are described in details
and comparisons are made with previous data when available. The
full cross sections can be found in these original publications as
on-line tables.

Fig. 3. An example of the different processes to be included in K-shell photoionization calculations.
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Table 2
K-shell photoionization cross sections computed in the present work up to now. BP indicates that the calculations are level-resolved using the Breit–Pauli R-matrix codes,
while LS means that the calculations are only term-resolved. The number between brackets indicates the reference for the data.

N O Ne Mg Si S Ar Ca Fe Ni

Li-like BP [14] BP [15] BP [22] BP [22] BP [22] BP [22] BP [22] BP [22] BP [23] BP [25]
Be-like BP [14] BP [15] BP [22] BP [22] BP [22] BP [22] BP [22] BP [22] BP [24] BP [25]
B-like BP [14] BP [15] BP [22] BP [22] BP [22] BP [22] BP [22] BP [22] BP [24] BP [25]
C-like BP [14] BP [15] BP [22] BP [22] BP [22] BP [22] BP [22] BP [22] BP [24] BP [25]
N-like LS [14] LS [15] BP [22] BP [22] BP [22] BP [22] BP [22] BP [22] BP [24] BP [25]
O-like LS [15] BP [22] BP [22] BP [22] BP [22] BP [22] BP [22] BP [24] BP [25]
F-like BP [22] BP [22] BP [22] BP [22] BP [22] BP [22] BP[24] BP [25]
Ne-like LS [22] BP [22] BP[22] BP [22] BP [22] BP[22] BP [24] BP[25]
Na-like BP [26] BP [26] BP [26] BP [26] BP [26] BP [27] BP [25]
Mg-like BP [26] BP [26] BP [26] BP [26] LS [27] LS [25]
Al-like LS [26] LS [26] LS [26] LS [26] LS [27] LS [25]
Si-like LS [26] LS [26] LS [26] LS [27] LS [25]
P-like LS [26] LS [26] LS [26] LS [27] LS [25]
S-like LS [26] LS [26] LS [27] LS [25]
Cl-like LS [26] LS [26] LS [27] LS [25]
Ar-like LS [26] LS [27] LS [25]
K-like LS [26] LS [25]
Ca-like LS [25]

4. Conclusion

In the present paper, we have presented an overview of our
recent calculations concerning the atomic parameters associated
with K-vacancy states in cosmically abundant ions such as those
belonging to the N, O, Ne, Mg, Al, Si, S, Ar, Ca, Fe and Ni isonu-
clear sequences. These new data will be incorporated in the XSTAR
modeling code [27] in order to generate improved opacities in the
K-edge regions of the elements considered, which will lead to use-
ful astrophysical diagnostics when all collisional calculations (in
progress) will be finished.

Nevertheless, the different works summarized here have
already allowed us to highlight some interesting results. Amongst
them, let us mention that, in the study of decay properties of K-
vacancy states in Fe X–Fe XVII ions [19], the K� radiative and KLL
Auger widths have been found to be nearly independent of both the
outer-electron configuration and outer-subshell occupancies. This
has important consequences on the opacities close to the K edge as
demonstrated in iron [28].
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