IOPscience

Home Search Collections Journals About Contact us My IOPscience

A theoretical survey of atomic structure and forbidden transitions in the $4p^k$ and $4d^k$ ground configurations of tungsten ions W^{29 +} through W^{43 +}

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2012 J. Phys. B: At. Mol. Opt. Phys. 45 025003 (http://iopscience.iop.org/0953-4075/45/2/025003)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 193.190.193.1 The article was downloaded on 22/12/2011 at 14:13

Please note that terms and conditions apply.

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 025003 (15pp)

A theoretical survey of atomic structure and forbidden transitions in the $4p^k$ and $4d^k$ ground configurations of tungsten ions W²⁹⁺ through W⁴³⁺

Pascal Quinet

Astrophysique et Spectroscopie, Université de Mons—UMONS, B-7000 Mons, Belgium and IPNAS, Université de Liège, B15 Sart Tilman, B-4000 Liège, Belgium

E-mail: quinet@umons.ac.be

Received 19 September 2011, in final form 25 November 2011 Published 22 December 2011 Online at stacks.iop.org/JPhysB/45/025003

Abstract

Energy levels, wavelengths and radiative decay rates have been calculated for states within the $4p^k$ (k = 1-5) and $4d^k$ (k = 1-9) ground configurations in highly charged tungsten ions. Magnetic dipole (M1) and electric quadrupole (E2) transition probabilities have been obtained using the fully relativistic multiconfiguration Dirac–Fock (MCDF) approach including the correlations within the n = 4 complex, some $n = 4 \rightarrow n' = 5$ single excitations and quantum electrodynamics effects. The validity of the method is assessed through limited comparison with experimental and theoretical data previously published as well as with new relativistic Hartree–Fock calculations. The excellent agreement observed between our new MCDF *A*-values and those obtained using different theoretical approaches together with a detailed analysis of configuration interaction effects does not confirm the very recent GRASP2K calculations of Jonauskas *et al* (2012 *At. Data Nucl. Data Tables* **98** 19) for M1 lines within the 4d^k configurations, the latter results remaining in large disagreement with all other methods in many cases.

1. Introduction

Atomic data of tungsten are strongly needed for the identification and interpretation of emission lines from future fusion reactors (such as ITER), which will use this element as plasma-facing material (see e.g. Matthews *et al* 2007, Pitts *et al* 2009, Hawryluk *et al* 2009). In this context, forbidden lines are of great interest for plasma diagnostics because the corresponding radiation intensities are often very sensitive to electron temperature and density. Consequently, reliable radiative data for such forbidden lines in different ionization stages of tungsten are to be determined from experimental measurements or theoretical calculations.

On the experimental side, several studies led to the identification of a bit more than a hundred of the forbidden lines in tungsten ions, from W^{28+} to W^{57+} in a tokamak or electronbeam ion trap (EBIT) from ultraviolet to x-ray regions (Tragin *et al* 1988, Neu *et al* 1997, 2001, Porto *et al* 2000, Utter *et al*

2000, Pütterich *et al* 2005, Radtke *et al* 2007, Ralchenko *et al* 2006, 2007, 2008, 2011a, Clementson *et al* 2010). All of these data were compiled at the National Institute of Standards and Technology (NIST) by Ralchenko *et al* (2011b) who critically evaluated wavelengths for observed lines and energy levels for many ionization stages of tungsten. Together with the previously published analyses of the spectra of neutral and singly ionized tungsten by Kramida and Shirai (2006) and of multiply charged ions W^{2+} through W^{73+} by Kramida and Shirai (2009), NIST compilation provides reference data for all tungsten spectra including magnetic dipole and electric quadrupole radiation.

Forbidden transitions in tungsten ions were also investigated using different theoretical methods over the last few decades. More precisely, the multiconfiguration Dirac– Fock method was used for computing transition probabilities for forbidden lines in the $3p^k$ configurations in W⁵⁷⁺ (Huang *et al* 1983), W⁵⁸⁺ (Saloman and Kim 1989), W⁵⁹⁺ (Huang

1984), W⁶⁰⁺ (Huang 1985) and W⁶¹⁺ (Huang 1986). Feldman et al (1991, 2001) and Doron and Feldman (2001) performed a systematic study of density-sensitive magnetic dipole lines in Ti-like ions including W53+. Fully relativistic, ab initio calculations of wavelengths and oscillator strengths were carried out by Fournier (1998) for 11 tungsten ions from Rblike W³⁷⁺ to Co-like W⁴⁷⁺. Decay rates for forbidden lines were also obtained by Charro et al (2002, 2003) for W⁵⁵⁺ and W⁶¹⁺ ions using the relativistic quantum defect orbital (RQDO) approach, by Safronova and Safronova (2010) for W⁴⁺, W²⁷⁺, W⁴⁴⁺, W⁵⁴⁺, W⁶¹⁺, W⁶²⁺, W⁶⁹⁺ and W⁷⁰⁺ ions using the relativistic many-body perturbation theory (RMBPT) and by Quinet et al (2010) for W, W^+ and W^{2+} species using the relativistic Hartree-Fock (HFR) method. Using the relativistic flexible atomic code (FAC), Ralchenko et al (2011a) calculated wavelengths and transition probabilities corresponding to some forbidden lines within the $3d^k$ (k = 1–9) ground configurations of tungsten ions W^{47+} through W⁵⁵⁺. This work was considerably extended in our recent work (Quinet 2011) in which forbidden transitions connecting all energy levels within the $3p^k$ (k = 1-5) and $3d^k$ (k =1–9) configurations in tungsten ions from W^{47+} to W^{61+} were investigated using the multiconfiguration Dirac-Fock (MCDF) method. Magnetic dipole transitions between levels of the $4d^k$ ground configurations of tungsten ions W^{29+} through W³⁷⁺ were analysed using large-scale configuration interaction methods by Jonauskas et al (2010) who reported theoretical wavelengths and transition probabilities for a limited number (45) of lines between 44 and 98 nm. Finally, very recently, relativistic calculations for M1 transitions in the $4d^k$ configurations of W²⁹⁺-W³⁷⁺ ions using the GRASP2K code were carried out by Jonauskas et al (2012) who observed large discrepancies with theoretical transition probabilities previously published.

The aim of this paper is to extend these works by investigating the magnetic dipole and electric quadrupole transitions involving all of the levels belonging to the ground configurations of highly charged tungsten ions with an open 4d shell ($W^{29+}-W^{37+}$) or an open 4p shell ($W^{39+}-W^{43+}$). For these lines, energy levels, wavelengths and transition probabilities were computed using the fully relativistic MCDF method including the most important configuration interaction effects as well as quantum electrodynamics (QED) corrections. The theoretical model used as well as a comparison between all available data is presented in detail in the following sections.

2. Theoretical approach

The investigation of highly charged tungsten ions considered in this paper requires the simultaneous consideration of electronic correlation and relativistic effects. The MCDF method in the form developed by Grant and coworkers (Grant *et al* 1980, McKenzie *et al* 1980) is ideal for this purpose. Consequently, this approach was used in this paper with the latest version of GRASP, the general-purpose relativistic atomic structure package, developed by Norrington (2009). The computations were performed in the extended average level (EAL) mode in which a weighted trace of the Hamiltonian

is optimized using level weights proportional to 2J+1. This was completed with the inclusion of the relativistic twobody Breit interaction and the QED corrections due to selfenergy and vacuum polarization using the routines developed by McKenzie et al (1980). In these routines, the leading corrections to the Coulomb repulsion between electrons in QED are considered as a first perturbation using the transverse Breit operator given by Grant and McKenzie (1980), the second-order vacuum polarization corrections are evaluated using the prescription of Fullerton and Rinker (1976) and the self-energy contributions are estimated by interpolating the hydrogenic n = 1, 2 results of Mohr (1974, 1975) and by scaling to higher *n* states according to $1/n^3$. Moreover, the nuclear effects were estimated by considering a uniform charge distribution with the usual atomic weight of tungsten, i.e. 183.85.

For the $4p^k$ configurations (ions $W^{39+}-W^{43+}$), single and double excitations within the n = 4 complex together with single excitations from 4p to 5p and 5f orbitals were considered by including the configurations of the type $4s^{2}4p^{k} + 4p^{k+2} + 4s4p^{k}4d + 4s^{2}4p^{k-2}4d^{2} + 4s^{2}4p^{k-2}4f^{2} +$ $4p^{k}4d^{2} + 4p^{k}4f^{2} + 4s^{2}4p^{k-1}4f + 4s^{2}4p^{k-1}5p + 4s^{2}4p^{k-1}5f.$ In a similar way, for the $4d^k$ configurations (ions W^{29+} - W^{37+}), single and double excitations within the n = 4complex together with single excitations from 4d to 5s and 5d orbitals were included by considering the following multiconfiguration expansions: $4s^24p^64d^k + 4s^24p^44d^{k+2} +$ $4s4p^{6}4d^{k+1} + 4p^{6}4d^{k+2} + 4s^{2}4p^{5}4d^{k}4f + 4s^{2}4p^{6}4d^{k-2}4f^{2} +$ $4s^24p^64d^{k-1}5s + 4s^24p^64d^{k-1}5d$. A detailed list of electronic configurations included in the calculations for each tungsten ion is given in table 1. It is interesting to note that most of the configurations included in the latter model have the strongest interaction with $4d^k$, as demonstrated by Jonauskas *et al* (2010) who calculated the configuration interaction strengths between the $4d^k$ configuration and about 50 other configurations. It was also shown by the latter authors that the most important mixings for those configurations are determined near the half-filled 4d shell, where the number of configuration state functions is the largest.

When performing our calculations, we noted that the most important configuration interactions affecting the $4s^24p^k$ configurations were due to $4p^{k+2}$, $4s4p^k4d$ and $4s^24p^{k-2}4d^2$, while, for the $4s^24d^k$ configurations, the largest mixings involved $4s^24p^54d^k4f$, $4s^24p^44d^{k+2}$ and $4s^24p^64d^{k-2}4f^2$.

For the energy levels of interest, i.e. those belonging to the $4p^k$ and $4d^k$ configurations, the relativistic two-body Breit corrections were found to vary from 330 to 16700 cm⁻¹, while QED effects were found to vary from 0 to 1700 cm⁻¹. This represents relative contributions to the total energies ranging from 0.5% to 2.7% for Breit interaction and from 0% to 0.12% for QED effects.

3. Energy level structure

Energy levels calculated in this work using the MCDF method described above for the $4p^k$ and $4d^k$ ground configurations in tungsten ions from W²⁹⁺ to W⁴³⁺ are reported in table 2. For each level, the main component of the computed eigenvector

Table 1.	Electronic	configuratio	ns included	in MCE	OF calculation	is of forbidd	en transitions	s within	the $4p^k$	and 4d ^k	ground	configura	tions of
tungsten	ions.												

Ion	Configurations
W ²⁹⁺	$\frac{4s^{2}4p^{6}4d^{9} + 4s4p^{6}4d^{10} + 4s^{2}4p^{5}4d^{9}4f + 4s^{2}4p^{6}4d^{7}4f^{2} + 4s^{2}4p^{6}4d^{8}5s}{4s^{2}4p^{6}4d^{8}5d}$
W^{30+}	$4s^{2}4p^{6}4d^{8} + 4s^{2}4p^{4}4d^{10} + 4s4p^{6}4d^{9} + 4p^{6}4d^{10} + 4s^{2}4p^{5}4d^{8}4f + 4s^{2}4p^{6}4d^{6}4f^{2} + 4s^{2}4p^{6}4d^{7}5s + 4s^{2}4p^{6}4d^{7}5d$
W ³¹⁺	$4s^{2}4p^{6}4d^{7} + 4s^{2}4p^{4}4d^{9} + 4s4p^{6}4d^{8} + 4p^{6}4d^{9} + 4s^{2}4p^{5}4d^{7}4f + 4s^{2}4p^{6}4d^{5}4f^{2} + 4s^{2}4p^{6}4d^{6}5s + 4s^{2}4p^{6}4d^{6}5d$
W ³²⁺	$4s^{2}4p^{6}4d^{6} + 4s^{2}4p^{4}4d^{8} + 4s4p^{6}4d^{7} + 4p^{6}4d^{8} + 4s^{2}4p^{5}4d^{6}4f + 4s^{2}4p^{6}4d^{4}4f^{2} + 4s^{2}4p^{6}4d^{5}5s + 4s^{2}4p^{6}4d^{5}5d$
W ³³⁺	$4s^{2}4p^{6}4d^{5} + 4s^{2}4p^{4}4d^{7} + 4s4p^{6}4d^{6} + 4p^{6}4d^{7} + 4s^{2}4p^{5}4d^{5}4f + 4s^{2}4p^{6}4d^{3}4f^{2} + 4s^{2}4p^{6}4d^{4}5s + 4s^{2}4p^{6}4d^{4}5d$
W ³⁴⁺	$4s^{2}4p^{6}4d^{4} + 4s^{2}4p^{4}4d^{6} + 4s4p^{6}4d^{5} + 4p^{6}4d^{6} + 4s^{2}4p^{5}4d^{4}4f + 4s^{2}4p^{6}4d^{2}4f^{2} + 4s^{2}4p^{6}4d^{3}5s + 4s^{2}4p^{6}4d^{3}5d$
W ³⁵⁺	$4s^24p^64d^3 + 4s^24p^4d^5 + 4s4p^64d^4 + 4p^64d^5 + 4s^24p^54d^34f + 4s^24p^64d4f^2 + 4s^24p^64d^25s + 4s^24p^64d^25d$
W^{36+}	$4s^24p^64d^2 + 4s^24p^4d^4 + 4s4p^64d^3 + 4p^64d^4 + 4s^24p^54d^24f + 4s^24p^64f^2 + 4s^24p^64d^5s + 4s^24p^64d^5d$
W ³⁷⁺	$4s^24p^64d + 4s^24p^44d^3 + 4s^4p^64d^2 + 4p^64d^3 + 4s^24p^54d4f + 4s^24p^65s$ + $4s^24p^65d$
W ³⁹⁺	$4s^24p^5 + 4s4p^54d + 4s^24p^34d^2 + 4s^24p^34f^2 + 4p^54d^2 + 4p^54f^2 + 4s^24p^44f$ + $4s^24p^45p + 4s^24p^45f$
W^{40+}	$4s^24p^4 + 4p^6 + 4s^4p^4d + 4s^24p^24d^2 + 4s^24p^24f^2 + 4p^4dd^2 + 4p^44f^2$ + $4s^24n^34f + 4s^24n^35p + 4s^24n^35f$
W^{41+}	$4s^{2}4p^{3} + 4p^{5} + 4s^{4}p^{3}4d + 4s^{2}4p4d^{2} + 4s^{2}4p4d^{2} + 4p^{3}4d^{2} + 4p^{3}4f^{2} + 4s^{2}4p^{2}4f^{2}$
W^{42+}	$4s^{2}4p^{2} + 4p^{4} + 4s4p^{2}4d + 4s^{2}4d^{2} + 4s^{2}4f^{2} + 4p^{2}4d^{2} + 4p^{2}4f^{2} + 4s^{2}4p4f$ + 4s^{2}4p5p + 4s^{2}4p5f
W^{43+}	$4s^{2}4p + 4p^{3} + 4s4p4d + 4p4d^{2} + 4p4f^{2} + 4s^{2}4f + 4s^{2}5p + 4s^{2}5f$

in both *LS*- and *jj*-coupling schemes is also given in that table. In the *jj* notation adopted, nl_{-} corresponds to the case $j_{-} = l - 1/2$, while *nl* is written for $j_{+} = l + 1/2$. As seen from the table and as expected for such highly ionized atoms, *jj* coupling appears much more adequate than the *LS* one, the average *jj* purities obtained in this work being found to be equal to 99% and 84%, for the 4p^k and 4d^k configurations, respectively, while the corresponding average *LS* contributions are found to range from 77% to 52%. Consequently, the *jj* designation has been used throughout this paper. For simplicity, in table 2 each energy level belonging to a particular ion is labelled as $nl^{k}[i]_{J}$, where nl^{k} is the electronic configuration, *i* is an order number in this configuration and *J* is the total angular momentum.

Our results are also compared in table 2 with available energy levels taken from the latest NIST compilation (Ralchenko *et al* 2011b), which is entirely based on the data listed by Kramida and Shirai (2009) for the ions considered in the present paper. For the $4p^k$ and $4d^k$ configurations, the experimental energy levels reported in these compilations were originally determined from emission spectra observed by Radtke *et al* (2007) for W²⁹⁺ through W³⁷⁺ ions, by Ralchenko *et al* (2007) for W³⁹⁺ and W⁴²⁺ ions, by Pütterich *et al* (2005) for W⁴⁰⁺, W⁴¹⁺ and W⁴³⁺ ions and by Utter *et al* (2002) for W⁴⁰⁺. All of the other NIST values were calculated by Kramida and Shirai (2009) using parametric fitting with Cowan's codes (Cowan 1981). When comparing our MCDF results with experimental energies, good agreement is observed, the average relative differences being found to be equal to 0.2% (W²⁹⁺), 1.1% (W³⁰⁺), 0.5% (W³¹⁺), 0.1% (W^{32+}) , 0.8% (W^{33+}) , 0.7% (W^{34+}) , 1.0% (W^{35+}) , 1.4% (W^{36+}) , 0.3% (W^{37+}) , 0.7% (W^{39+}) , 0.6% (W^{40+}) , 0.3% (W^{41+}) , 0.2% (W^{42+}) and 0.1% (W^{43+}) . However, larger discrepancies (up to 20%) can be observed between our energy levels with those calculated by Kramida and Shirai (2009) but it may reasonably be expected that, for highly ionization degrees such as those considered here, the fully relativistic MCDF method used in our work should be more appropriate than the Hartree–Fock approximation used by Kramida and Shirai (2009) where relativistic effects were included perturbationally.

4. Wavelengths and transition probabilities for forbidden lines

Wavelengths and transition probabilities for magnetic dipole (M1) and electric quadrupole (E2) transitions within the $4p^k$ and $4d^k$ ground configurations of tungsten ions were computed using the MCDF method described above. Results are listed in table 3 for lines with *A*-values greater than 10^4 s⁻¹ except a few weaker lines observed experimentally. If the two types of radiations contribute significantly to the total intensity of a line, the sum of both *A*-values is given in the table. The exclusion criterion of one particular type of radiation for a given transition is that the corresponding transition probability should be less than 1% of the sum of M1 and E2 contributions. As already noted in our previous work on the $3p^k$ and $3d^k$ configurations (Quinet 2011), M1 contributions, while both

Table 2. Energy levels within the $4p^k$ and $4d^k$ ground configurations of tungsten io	ons.
---	------

Ion	Label	LS purity	<i>jj</i> purity	$\frac{E_{\rm MCDF}^{a}}{(10^3 {\rm ~cm}^{-1})}$	$\frac{E_{\rm NIST}{}^{\rm b}}{(10^3~{\rm cm}^{-1})}$
W ²⁹⁺	$4d^{9}[1]_{5/2}$ $4d^{9}[2]_{3/2}$	98% ² D _{5/2} 98% ² D _{3/2}	$\begin{array}{c} 98\% \; ((4d_{-}^4)_0(4d^5)_{5/2})_{5/2} \\ 98\% \; ((4d_{-}^3)_{3/2}(4d^6)_0)_{3/2} \end{array}$	0.00 132.44	0.0 132.16
W ³⁰⁺	$\begin{array}{c} 4d^8[1]_4\\ 4d^8[2]_2\\ 4d^8[3]_0\\ 4d^8[4]_3\\ 4d^8[5]_2\\ 4d^8[6]_1\\ 4d^8[6]_1\\ 4d^8[7]_4\\ 4d^8[8]_2\\ 4d^8[9]_0\\ \end{array}$	$\begin{array}{c} 88\% \ {}^{3}F_{4} \\ 49\% \ {}^{1}D_{2} \\ 57\% \ {}^{3}P_{0} \\ 98\% \ {}^{3}F_{3} \\ 51\% \ {}^{3}P_{2} \\ 98\% \ {}^{3}P_{1} \\ 88\% \ {}^{1}G_{4} \\ 54\% \ {}^{3}F_{2} \\ 57\% \ {}^{1}S_{0} \end{array}$	$\begin{array}{l} 97\% \; ((4d_{-}^4)_0(4d^4)_4)_4 \\ 98\% \; ((4d_{-}^4)_0(4d^4)_2)_2 \\ 95\% \; ((4d_{-}^4)_0(4d^4)_0)_0 \\ 98\% \; ((4d_{-}^3)_{3/2}(4d^5)_{5/2})_3 \\ 96\% \; ((4d_{-}^3)_{3/2}(4d^5)_{5/2})_1 \\ 98\% \; ((4d_{-}^3)_{3/2}(4d^5)_{5/2})_1 \\ 97\% \; ((4d_{-}^3)_{3/2}(4d^5)_{5/2})_4 \\ 97\% \; ((4d_{-}^2)_2(4d^6)_0)_2 \\ 95\% \; ((4d_{-}^2)_0(4d^6)_0)_0 \end{array}$	0.00 26.60 83.09 126.70 154.34 168.11 175.22 275.80 352.11	0.0 [25.3] [83.0] 125.91 151.83? 170.74 175.31 279.54? [355.0]
W ³¹⁺	$\begin{array}{c} 4d^7[1]_{9/2}\\ 4d^7[2]_{3/2}\\ 4d^7[3]_{5/2}\\ 4d^7[4]_{7/2}\\ 4d^7[5]_{9/2}\\ 4d^7[6]_{3/2}\\ 4d^7[6]_{3/2}\\ 4d^7[7]_{5/2}\\ 4d^7[8]_{1/2}\\ 4d^7[9]_{11/2}\\ 4d^7[10]_{7/2}\\ 4d^7[10]_{7/2}\\ 4d^7[11]_{5/2}\\ 4d^7[11]_{5/2}\\ 4d^7[14]_{3/2}\\ 4d^7[15]_{1/2}\\ 4d^7[16]_{9/2}\\ 4d^7[16]_{9/2}\\ 4d^7[17]_{7/2}\\ 4d^7[18]_{5/2}\\ 4d^7[19]_{3/2}\\ \end{array}$	$\begin{array}{c} 63\% \ ^4F_{9/2} \\ 49\% \ ^2P_{3/2} \\ 35\% \ ^2D_{5/2} \\ 86\% \ ^4F_{7/2} \\ 34\% \ ^2H_{9/2} \\ 35\% \ ^4F_{3/2} \\ 59\% \ ^4P_{5/2} \\ 51\% \ ^4P_{1/2} \\ 98\% \ ^2H_{11/2} \\ 98\% \ ^2G_{7/2} \\ 66\% \ ^2F_{5/2} \\ 43\% \ ^2D_{3/2} \\ 55\% \ ^4F_{5/2} \\ 36\% \ ^4P_{3/2} \\ 51\% \ ^2P_{1/2} \\ 60\% \ ^2H_{9/2} \\ 51\% \ ^2P_{1/2} \\ 60\% \ ^2H_{9/2} \\ 52\% \ ^2F_{7/2} \\ 53\% \ ^2D_{5/2} \\ 39\% \ ^2D_{3/2} \end{array}$	$\begin{array}{l} 96\% \left((4d_{-}^4)_0(4d^3)_{9/2})_{9/2} \\ 97\% \left((4d_{-}^4)_0(4d^3)_{3/2})_{3/2} \\ 92\% \left((4d_{-}^4)_0(4d^3)_{5/2})_{5/2} \\ 78\% \left((4d_{-}^3)_{3/2}(4d^4)_{4})_{7/2} \\ 95\% \left((4d_{-}^3)_{3/2}(4d^4)_{2})_{3/2} \\ 93\% \left((4d_{-}^3)_{3/2}(4d^4)_{2})_{3/2} \\ 93\% \left((4d_{-}^3)_{3/2}(4d^4)_{2})_{1/2} \\ 98\% \left((4d_{-}^3)_{3/2}(4d^4)_{4})_{1/2} \\ 98\% \left((4d_{-}^3)_{3/2}(4d^4)_{2})_{7/2} \\ 98\% \left((4d_{-}^3)_{3/2}(4d^4)_{2})_{5/2} \\ 73\% \left((4d_{-}^3)_{3/2}(4d^4)_{2})_{5/2} \\ 73\% \left((4d_{-}^2)_{2}(4d^5)_{5/2})_{5/2} \\ 90\% \left((4d_{-}^2)_{2}(4d^5)_{5/2})_{3/2} \\ 98\% \left((4d_{-}^2)_{2}(4d^5)_{5/2})_{1/2} \\ 98\% \left((4d_{-}^2)_{2}(4d^5)_{5/2})_{7/2} \\ 84\% \left((4d_{-}^2)_{0}(4d^5)_{5/2})_{5/2} \\ 95\% \left((4d_{-})_{3/2}(4d^6)_{0})_{3/2} \\ \end{array}$	0.00 36.35 55.88 124.91 150.66 153.66 159.02 165.37 177.45 192.86 209.48 259.58 276.49 287.07 302.79 306.04 316.68 388.92 445.83	0.0
W ³²⁺	$\begin{array}{c} 4d^{6}[1]_{4}\\ 4d^{6}[2]_{2}\\ 4d^{6}[3]_{0}\\ 4d^{6}[4]_{3}\\ 4d^{6}[5]_{4}\\ 4d^{6}[6]_{1}\\ 4d^{6}[7]_{5}\\ 4d^{6}[8]_{6}\\ 4d^{6}[9]_{2}\\ 4d^{6}[10]_{3}\\ 4d^{6}[11]_{0}\\ 4d^{6}[12]_{2}\\ 4d^{6}[13]_{1}\\ 4d^{6}[14]_{4}\\ 4d^{6}[15]_{3}\\ 4d^{6}[16]_{2}\\ 4d^{6}[16]_{2}\\ 4d^{6}[18]_{4}\\ 4d^{6}[19]_{3}\\ 4d^{6}[20]_{5}\\ 4d^{6}[21]_{6}\\ 4d^{6}[22]_{3}\\ 4d^{6}[23]_{1}\\ 4d^{6}[23]_{1}\\ 4d^{6}[25]_{4}\\ 4d^{6}[25]_{4}\\ 4d^{6}[26]_{2}\\ 4d^{6}[27]_{4}\\ 4d^{6}[28]_{1}\\ 4d^{6}[29]_{2}\\ \end{array}$	$\begin{array}{c} 38\% \ {}^5D_4 \\ 22\% \ {}^3P_2 \\ 47\% \ {}^3P_0 \\ 68\% \ {}^5D_3 \\ 40\% \ {}^5D_4 \\ 53\% \ {}^5D_1 \\ 59\% \ {}^3G_5 \\ 68\% \ {}^3H_6 \\ 48\% \ {}^3F_2 \\ 28\% \ {}^3G_3 \\ 67\% \ {}^3P_0 \\ 36\% \ {}^3D_2 \\ 37\% \ {}^3D_1 \\ 37\% \ {}^1G_4 \\ 41\% \ {}^3F_3 \\ 53\% \ {}^5D_2 \\ 57\% \ {}^5D_0 \\ 41\% \ {}^3H_4 \\ 28\% \ {}^3D_3 \\ 59\% \ {}^3H_5 \\ 68\% \ {}^1I_6 \\ 44\% \ {}^3G_3 \\ 45\% \ {}^3D_1 \\ 32\% \ {}^3F_2 \\ 53\% \ {}^1G_4 \\ 68\% \ {}^3F_2 \\ 52\% \ {}^3F_4 \\ 48\% \ {}^3P_1 \\ 66\% \ {}^1D_2 \end{array}$	$\begin{array}{c} 93\% \left((4d_{-}^4)_0(4d_{-}^2)_4\right)_4\\ 93\% \left((4d_{-}^4)_0(4d_{-}^2)_2\right)_2\\ 82\% \left((4d_{-}^4)_0(4d_{-}^2)_{0}\right)_0\\ 77\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{9/2})_3\right)_84\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{9/2})_4\right)_56\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{9/2})_5\right)_59\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{9/2})_6\right)_59\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{9/2})_6\right)_57\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{3/2})_3\right)_67\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{3/2})_3\right)_67\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{5/2})_2\right)_51\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{5/2})_1\right)_84\% \left((4d_{-}^3)_3(2(4d_{-}^3)_{5/2})_3\right)_79\% \left((4d_{-}^2)_2(4d_{-}^4)_{4})_2\right)_77\% \left((4d_{-}^2)_2(4d_{-}^4)_{4})_3\right)_98\% \left((4d_{-}^2)_2(4d_{-}^4)_{4})_3\right)_98\% \left((4d_{-}^2)_2(4d_{-}^4)_{4})_3\right)_90\% \left((4d_{-}^2)_2(4d_{-}^4)_{2})_17\% \right)_{57\%} \left((4d_{-}^2)_2(4d_{-}^4)_{2})_{17}$	0.00 21.75 70.11 113.87 124.59 127.94 151.07 153.24 167.67 172.84 203.01 209.71 210.90 213.40 222.81 251.33 262.33 274.10 284.26 288.21 302.57 305.09 315.32 325.07 325.26 359.51 372.36 407.40 430.14	0.0 [21.4] [56.0] [122.0] 124.53 [134.0] 151.27 [153.0] [163.0] [170.0] [194.0] [197.0] [201.0] [201.0] [211.0] [258.0] [263.0] [277.0] [285.0] [285.0] [290.0] 302.658 [304.0] [310.0] [313.0] [316.0] [347.0] [359.0] [413.0] [387.0]

Ion	Label	LS purity	<i>jj</i> purity	$E_{\rm MCDF}^{a}$ (10 ³ cm ⁻¹)	$\frac{E_{\rm NIST}{}^{\rm b}}{(10^3~{\rm cm}^{-1})}$
	$4d^{6}[31]_{2}$	25% ³ P ₂	$92\% ((4d_{-})_{3/2}(4d^5)_{5/2})_2$	467.58	[460.0]
	$4d^{6}[32]_{0}$	$37\% {}^{1}S_{0}$	$69\% ((4d_{-}^2)_0(4d^4)_0)_0$	474.94	[421.0]
	$4d^{6}[33]_{3}$	39% ³ F ₃	94% ($(4d_{-})_{3/2}(4d^{5})_{5/2})_{3}$	473.82	[467.0]
	$4d^{6}[34]_{0}$	42% ³ P ₀	86% (4d ⁶) ₀	592.01	[577.0]
W^{33+}	$4d^{5}[1]_{5/2}$	28% ⁴ P _{5/2}	90% ((4d ⁴ ₋) ₀ (4d) _{5/2}) _{5/2}	0.00	0.0
	$4d^{5}[2]_{5/2}$	38% ⁶ S _{5/2}	$67\% ((4d_{-}^3)_{3/2}(4d_{-}^2)_4)_{5/2}$	102.17	[105.0]
	$4d^{5}[3]_{7/2}$	35% ⁴ G _{7/2}	$83\% ((4d_{-}^3)_{3/2}(4d_{-}^2)_4)_{7/2}$	142.23	141.61
	$4d^{5}[4]_{3/2}$	$40\% {}^{4}D_{3/2}$	$86\% ((4d_{-}^{3})_{3/2}(4d_{-}^{2})_{2})_{3/2}$	144.92	144.43
	$4d^{5}[5]_{11/2}$	$40\% {}^{2}H_{11/2}$	$96\% ((4d^{2}_{-})_{3/2}(4d^{2})_{4})_{11/2}$	151.05	
	40°[6] _{9/2}	34% $G_{9/2}$	$93\% ((4d^2)_{3/2}(4d^2)_4)_{9/2}$	103.33	
	$4d^{5}[8]$	52% D _{5/2}	$77\% ((40^2)_{3/2}(40^2)_{2})_{5/2}$ 85% ((4d ³)	176.63	
	$4d^{5}[9]_{7/2}$	$47.0 \ r_{1/2}$ 27% ² F ₇	$70\% ((4d^3)_{3/2}(4d^2)_{2})_{1/2}$	187.48	
	$4d^{5}[10]_{2}$	$30\% {}^{2}D_{2/2}$	$73\% ((4d^3)_{2/2}(4d^2)_{0})_{2/2}$	230.41	
	$4d^{5}[11]_{5/2}$	26% ⁶ S _{5/2}	$61\% ((4d^2)_3/2(4d^3)_{0/2})_{5/2}$	242.39	246.199
	$4d^{5}[12]_{7/2}$	$51\% {}^{4}D_{7/2}$	$89\% ((4d^2)_2(4d^3)_{9/2})_{7/2}$	267.05	
	$4d^{5}[13]_{11/2}$	$51\% {}^{2}I_{11/2}$	96% $((4d_{-}^2)_2(4d_{-}^3)_{9/2})_{11/2}$	273.81	
	$4d^{5}[14]_{9/2}$	56% ⁴ G _{9/2}	93% ($(4d_{-}^2)_2(4d^3)_{9/2})_{9/2}$	278.40	
	$4d^{5}[15]_{1/2}$	75% ⁴ D _{1/2}	$89\% ((4d_{-}^2)_2(4d^3)_{3/2})_{1/2}$	285.24	
	$4d^{5}[16]_{3/2}$	52% ⁴ P _{3/2}	$66\% ((4d_{-}^2)_2(4d_{-}^3)_{5/2})_{3/2}$	291.42	
	$4d^{5}[17]_{13/2}$	$86\% {}^{2}I_{13/2}$	99% $((4d_{-}^2)_2(4d_{-}^3)_{9/2})_{13/2}$	293.50	
	$4d^{5}[18]_{5/2}$	$40\% {}^{2}F_{5/2}$	$74\% ((4d_{-}^2)_2(4d_{-}^3)_{3/2})_{5/2}$	297.25	
	$4d^{3}[19]_{9/2}$	51% ² H _{9/2}	$50\% ((4d_{-}^2)_0(4d_{-}^3)_{9/2})_{9/2}$	316.54	
	$4d^{5}[20]_{7/2}$	$61\% {}^{2}G_{7/2}$	90% ($(4d_{-}^{2})_{2}(4d_{-}^{3})_{3/2}$) _{7/2}	323.69	
	$4d^{5}[21]_{5/2}$	$60\% P_{5/2}$	$95\% ((40_)_2(40')_{5/2})_{5/2}$ 76% ((4d ²)_2(4d ³)_2)_2	320.38	
	$4d^{5}[23]_{1/2}$	$36\% {}^{4}P_{1/2}$	$69\% ((4d^2)_2(4d^3)_{5/2})_{3/2}$	346.48	
	$4d^{5}[24]_{7/2}$	$42\% {}^{2}G_{7/2}$	$91\% ((4d^2)_2(4d^3)_{5/2})_{7/2}$	349.24	
	$4d^{5}[25]_{9/2}$	$69\% {}^{2}G_{9/2}$	$48\% ((4d^2)_2(4d^3)_{5/2})_{9/2}$	375.10	
	$4d^{5}[26]_{5/2}$	$33\% {}^{4}P_{5/2}$	$59\% ((4d_{-})_{3/2}(4d^{4})_{4})_{5/2}$	403.81	
	$4d^{5}[27]_{3/2}$	72% ² P _{3/2}	$67\% ((4d_{-}^2)_0(4d^3)_{3/2})_{3/2})_{3/2}$	420.69	
	$4d^{5}[28]_{5/2}$	42% ² D _{5/2}	$66\% ((4d_{-}^2)_0(4d^3)_{5/2})_{5/2}$	428.76	
	4d ⁵ [29] _{7/2}	30% ⁴ F _{7/2}	$89\% ((4d_{-})_{3/2}(4d^{4})_{4})_{7/2}$	433.80	
	$4d^{3}[30]_{3/2}$	$28\% {}^{4}D_{3/2}$	$83\% ((4d_{-})_{3/2}(4d^{+})_{2})_{3/2}$	444.07	
	$4d^{5}[31]_{11/2}$	$56\% {}^{2}H_{11/2}$	$97\% ((4d_{-})_{3/2}(4d^{+})_{4})_{11/2}$	444.26	
	$40^{\circ}[32]_{9/2}$	$34\% - G_{9/2}$	$92\% ((4d_{-})_{3/2}(4d_{-})_{4})_{9/2}$	403.00	
	$4d^{5}[34]_{7/2}$	$43\% {}^{2}G_{7/2}$	$85\% ((4d_{-})_{3/2}(4d_{-})_{2})_{5/2}$	488 64	
	$4d^{5}[35]_{1/2}$	$59\% {}^{2}P_{1/2}$	$84\% ((4d_{-})_{3/2}(4d^{+})_{2})_{1/2}$	514.63	
	$4d^{5}[36]_{3/2}$	$51\% {}^{2}D_{3/2}$	$80\% ((4d_{-})_{3/2}(4d^{4})_{0})_{3/2}$	561.80	
	$4d^{5}[37]_{5/2}$	$33\% {}^{2}D_{5/2}$	$89\% (4d^5)_{5/2}$	601.88	
W^{34+}	$4d^{4}[1]_{0}$	$34\% {}^{3}P_{0}$	$96\% (4d^4)_0$	0.00	0.0
	$4d^{4}[2]_{1}$	61% ⁵ D ₁	96% $((4d_{-}^{3})_{3/2}(4d)_{5/2})_{1}$	115.88	116.87
	$4d^{4}[3]_{2}$	46% ⁵ D ₂	$85\% ((4d_{-}^3)_{3/2}(4d)_{5/2})_2$	158.66	[162.0]
	$4d^{4}[4]_{4}$	$22\% {}^{3}H_{4}$	96% ($(4d_{-}^3)_{3/2}(4d)_{5/2})_4$	158.51	[159.0]
	$4d^{4}[5]_{3}$	$26\% {}^{5}D_{3}$	$89\% ((4d_{-}^3)_{3/2}(4d)_{5/2})_3$	171.22	[173.0]
	$4d^{4}[6]_{0}$	63% ⁵ D ₀	$86\% ((4d_{-}^2)_2(4d_{-}^2)_2)_0$	260.65	263.80
	$4d^{4}[']_{2}$	$41\% {}^{5}D_{2}$	$62\% ((4d_{-}^2)_2(4d_{-}^2)_4)_2$	268.17	267.84
	$40^{-1}[8]_{4}$	39% $^{5}H_{4}$	$71\% ((4d_{-}^{2})_{2}(4d_{-}^{2})_{4})_{4}$	272.76	2/4.6/
	$40 [9]_3$	40% D ₃ 67% ³ H	$70\% ((4d_{2})_{2}(4d_{1})_{4})_{3}$ $98\% ((4d^{2})_{2}(4d^{2})_{4})_{5}$	277.03	[285.0]
	$4d^{4}[11]_{1}$	39% ³ P ₁	$92\% ((4d^2)_2(4d^2)_3)_1$	302.04	305 48
	$4d^{4}[12]_{6}$	50% ³ H ₆	$97\% ((4d^2)_2(4d^2)_4)_6$	306.78	[311.0]
	$4d^{4}[13]_{3}$	$43\% {}^{3}F_{3}$	$80\% ((4d_{-}^2)_2(4d^2)_2)_3$	317.45	[319.0]
	$4d^{4}[14]_{4}$	56% ³ G ₄	$71\% ((4d_{-}^2)_2(4d^2)_2)_4$	319.06	[318.0]
	$4d^{4}[15]_{2}$	33% ³ D ₂	77% ($(4d_{-}^2)_2(4d^2)_2)_2$	321.90	[323.0]
	$4d^{4}[16]_{2}$	45% ³ F ₂	$61\% ((4d_{-}^2)_2(4d^2)_0)_2$	360.33	[355.0]
	$4d^{4}[17]_{4}$	$37\% {}^{3}F_{4}$	$67\% ((4d_{-}^2)_0(4d_{-}^2)_4)_4$	373.77	[363.0]
	$40^{-}[18]_{2}$	$35\% ^{+}D_{2}$	$58\% ((4d_{-}^{2})_{0}(4d_{-}^{2})_{2})_{2}$	409.18	[388.0]
	4d ⁴ [20] ₄	2070 D ₄ 35% ³ F ₂	$67\% ((4d_{3})_{3/2}(4d^{3})_{3/2})_{3/2}$	422.90 423 56	[420.0] [430.0]
		00 13	5////TU /////		1.20.01

Table 2. (Continued.)

Table 2. (Continued.)								
Ion	Label	LS purity	<i>jj</i> purity	$E_{\rm MCDF}^{a}$ (10 ³ cm ⁻¹)	$\frac{E_{\rm NIST}{}^{\rm b}}{(10^3~{\rm cm}^{-1})}$			
	$4d^{4}[21]_{1}$	54% ³ D ₁	$72\% ((4d_{-})_{3/2}(4d^{3})_{3/2})_{1}$	438.27	[443.0]			
	$4d^{4}[22]_{0}$	54% ³ Po	$54\% ((4d^2)_0(4d^2)_0)_0$	444.48	[426.0]			
	$4d^{4}[23]_{5}$	$66\% {}^{3}G_{5}$	$98\% ((4d_{3})_{2/2}(4d^{3})_{0/2})_{5}$	444.13	[449.0]			
	$4d^{4}[24]_{6}$	50% ¹ L	$97\% ((4d_{-})_{3/2}(4d^{3})_{0/2})_{6}$	449.98	[455.0]			
	$4d^{4}[25]_{2}$	$32\% {}^{3}F_{2}$	$58\% ((4d_{-})_{2/2}(4d^{3})_{2/2})_{2}$	468 13	[468.0]			
	$4d^{4}[26]_{2}$	$35\% {}^{3}D_{2}$	$56\% ((4d_{-})_{3/2}(4d^{3})_{3/2})_{2}$	474 88	[475.0]			
	$4d^{4}[27]_{0}$	$71\% {}^{1}S_{0}$	$51\% ((4d_{-})_{3/2}(4d^{3})_{3/2})_{0}$	504 24	[455.0]			
	$4d^{4}[28]_{1}$	52% ³ P	$71\% ((4d_{-})_{3/2}(4d^{3})_{5/2})_{1}$	517.76	[512.0]			
	$4d^{4}[29]_{2}$	$51\% {}^{3}F_{2}$	$71\% ((4d_{-})_{3/2}(4d^{3})_{5/2})_{1}$	518 59	[512.0]			
	$4d^{4}[30]_{4}$	$60\% {}^{1}G_{4}$	$87\% ((4d_{-})_{3/2}(4d_{-})_{5/2})_{4}$	525.17	[504.0]			
	$4d^{4}[31]_{2}$	$51\% {}^{1}D_{2}$	$49\% ((4d_{-})_{3/2}(4d_{-})_{5/2})_{4}$	534.65	[513.0]			
	$4d^{4}[32]$	37% ³ E	$94\% (14^{-3})_{2}(14^{-3})_{2}(14^{-3})_{2}$	595 56	[507.0]			
	$4d^{4}[33]_{4}$	38% ¹ D	$86\% (4d^4)$	630.11	[597.0]			
	$4d^{4}[34]_{0}$	$50\% D_2$ 50% S ₀	$85\% (4d^4)_0$	710.15	[619.0]			
W ³⁵⁺	$4d^{3}[1]_{3/2}$	$49\% {}^{4}F_{3/2}$	$95\% (4d^3)_{3/2}$	0.00	0.0			
	$4d^{3}[2]_{5/2}$	$88\% {}^{4}F_{5/2}$	$87\% ((4d^2)_2(4d)_{5/2})_{5/2}$	120.83	121.554			
	$4d^{3}[3]_{3/2}$	$39\% {}^{4}P_{3/2}$	$96\% ((4d^2)_2(4d)_{5/2})_{3/2}$	140.65	140.75			
	$4d^{3}[4]_{7/2}$	$45\%^{2}G_{7/2}$	$93\% ((4d^2)_2(4d)_{5/2})_{7/2}$	153.10	156 41			
	$4d^{3}[5]_{1/2}$	59% ⁴ P _{1/2}	$98\% ((4d^2)_2(4d)_{5/2})_{1/2}$	156.62	160.69			
	$4d^{3}[6]_{0/2}$	$42\% {}^{2}H_{0}$	$97\% ((4d^2)_2(4d)_{5/2})_{1/2}$	157.16	[159 5]			
	$4d^{3}[7]_{4}$	42% $H_{9/2}$	$80\% ((4d^2)_2(4d)_{5/2})_{5/2}$	221 74	[225.9]			
	4d ³ [8]	50% ⁴ E	$67\% ((4d_{-})_{0}(4d_{-})_{2})_{2}$	272.15	273 252			
	$4d^{3}[0]_{2}$	$57\% \frac{4}{F_{0}}$	$94\% ((4d_{-})_{3/2}(4d_{-})_{4})_{7/2}$	272.15	275.25			
	$4d^{3}[10]$	10% 4P	$88\% ((4d_{-})_{3/2}(4d_{-})_{4/9/2})$	200.00	200.57			
	$4d^{3}[11]$	$50\% {}^{2}P$	$98\% ((4d_{-})_{3/2}(4d_{-})_{2})_{3/2}$	298.70	312 202			
	$4d [11]_{1/2}$	$\frac{3970}{120}$ $\frac{1}{2}$	$96\%((4d_{-})_{3/2}(4d_{-})_{2})_{1/2}$ $86\%((4d_{-})_{-}(4d^{2})_{-})$	315.82	312.201			
	$4d [12]_{5/2}$	$42.0 D_{5/2}$	$00\%((4d_{-})_{3/2}(4d_{-})_{4})_{5/2}$	210.27	222.012			
	$4d [13]_{11/2}$	410^{-2} D	99% ((4d_) _{3/2} (4d_) ₄) _{11/2} 02% ((4d_) (4d ²))	319.57	522.01? [244.0]			
	$40 [14]_{5/2}$	$41\% D_{5/2}$ $81\% ^2E$	95% ((4d $_{3/2}$ (4d $_{2})_{5/2}$ 70% ((4d $_{3/2}$ (4d $_{2}))$	244.85	[344.0]			
	$4u [13]_{7/2}$	$6170 \Gamma_{7/2}$	$70\% ((4d_{-})_{3/2}(4d_{-})_{2})_{7/2}$	208 54	[330.0]			
	$4d [10]_{3/2}$	52% 2C	$78\% ((40_{-})_{3/2}(40_{-})_{0})_{3/2}$	125 12	402.41			
	$40^{\circ}[17]_{9/2}$	$32\% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	90% (40 ⁻) _{9/2}	455.15	[456.0]			
	$4d^{3}[10]$	$43\% D_{3/2}$	$87\% (40^{-})_{3/2}$	478.10	[465.0]			
	4d ² [19] _{5/2}	$01\% - D_{5/2}$	95% (4d ²) _{5/2}	309.82	[310.0]			
W^{36+}	$4d^{2}[1]_{2}$	74% ³ F ₂	$98\% (4d_{-}^2)_2$	0.00	0.0			
	$4d^{2}[2]_{0}$	73% ³ P ₀	$96\% (4d_{-}^2)_0$	64.79	67.78			
	$4d^{2}[3]_{3}$	99% ³ F ₃	99% ($(4d_{-})_{3/2}(4d)_{5/2}$) ₃	140.67	141.31			
	$4d^{2}[4]_{2}$	49% ³ P ₂	$98\% ((4d_{-})_{3/2}(4d)_{5/2})_2$	171.19	174.13			
	$4d^{2}[5]_{1}$	98% ³ P ₁	$98\% ((4d_{-})_{3/2}(4d)_{5/2})_1$	181.39	184.61			
	$4d^{2}[6]_{4}$	$62\% {}^{1}G_{4}$	$95\% ((4d_{-})_{3/2}(4d)_{5/2})_4$	183.00	182.76?			
	$4d^{2}[7]_{4}$	62% ³ F ₄	$95\% (4d^2)_4$	308.40	308.53			
	$4d^{2}[8]_{2}$	47% ³ P ₂	98% (4d ²) ₂	328.67	331.48			
	$4d^{2}[9]_{0}$	$73\% {}^{1}S_{0}$	96% (4d ²) ₀	404.64	[407.0]			
W^{37+}	$4d[1]_{3/2}$	$99\% {}^{2}D_{3/2}$	$99\% (4d_{-})_{3/2}$	0.00	0.0			
	$4d[2]_{5/2}$	99% ² D _{5/2}	99% $(4d)_{5/2}$	154.19	154.64			
W ³⁹⁺	$4p^{5}[1]_{3/2}$	$99\% {}^{2}P_{3/2}$	$99\% ((4p^2)_0(4p^3)_{3/2})_{3/2}$	0.00	0.0			
	$4p^{5}[2]_{1/2}$	$98\% {}^{2}P_{1/2}$	$98\% ((4p_{-})_{1/2}(4p^{4})_{0})_{1/2}$	747.29	742.17			
W^{40+}	$4p^{4}[1]_{2}$	69% ³ P ₂	99% $((4p_{-}^2)_0(4p_{-}^2)_2)_2$	0.00	0.0			
	$4p^{4}[2]_{0}$	$62\% {}^{1}S_{0}$	$99\% ((4p^2)_0(4p^2)_0)_0$	73.25	72.10			
	$4p^{4}[3]_{1}$	99% ³ P ₁	$99\% ((4p_1)_{1/2}(4p^3)_{3/2})_1$	740.74	741.50			
	$4p^{4}[4]_{2}$	$69\% {}^{1}D_{2}$	$99\% ((4p_{-})_{1/2}(4p^{3})_{3/2})_{2}$	778.03	777.40			
	$4p^{4}[5]_{0}$	$61\% {}^{3}P_{0}$	$98\% (4p^4)_0$	1548.19	[1547.0]			
W^{41+}	$4p^{3}[1]_{3/2}$	$46\% {}^{2}P_{3/2}$	99% $((4p_{-}^2)_0(4p)_{3/2})_{3/2}$	0.00	0.0			
	$4p^{3}[2]_{3/2}$	54% ⁴ S _{3/2}	99% $((4p_{-})_{1/2}(4p^{2})_{2})_{3/2}$	716.03	719.60			
	$4p^{3}[3]_{5/2}$	$99\% {}^{2}D_{5/2}$	99% $((4p_{-})_{1/2}(4p^{2})_{2})_{5/2}$	761.33	762.10			
	$4p^{3}[4]_{1/2}$	$99\% {}^{2}P_{1/2}$	$99\% ((4p_{-})_{1/2}(4p^2)_0)_{1/2}$	818.73	[802.0]			
	$4p^{3}[5]_{3/2}$	$52\% {}^{2}P_{3/2}^{1/2}$	$98\% (4p^3)_{3/2}$	1542.64	1528.01			
W 42+	4p2[1]	700% ³ D	$00\% (4n^2)$	0.00	0.0			
vv	+p [1] ₀ 4p ² [2]	$10/0 \Gamma_0$	$p_{7} = p_{10} (+p_{10})$	736.10	0.0			
	40 IZ11	7770 F1	2270 ((4D_1/2(4D)3/2))	/30.10	130.20			

Table 2. (Continued.)								
Ion	Label	LS purity	<i>jj</i> purity	$E_{\rm MCDF}^{a}$ (10 ³ cm ⁻¹)	$\frac{E_{\rm NIST}{}^{\rm b}}{(10^3~{\rm cm}^{-1})}$			
	$4p^{2}[3]_{2}$	63% ¹ D ₂	99% ($(4p_{-})_{1/2}(4p)_{3/2})_2$	771.71	772.74			
	$4p^{2}[4]_{2}$	63% ³ P ₂	$99\% (4p^2)_2$	1534.70	[1535.0]			
	$4p^{2}[5]_{0}$	$69\% {}^{1}S_{0}$	$98\% (4p^2)_0$	1612.30	[1609.0]			
W^{43+}	$4p[1]_{1/2}$	$99\% {}^{2}P_{1/2}$	$99\% (4p_{-})_{1/2}$	0.00	0.0			
	$4p[2]_{3/2}$	99% ² P _{3/2}	99% (4p) _{3/2}	790.71	791.83			

^a This work.

^b From the latest NIST compilation (Ralchenko *et al* 2011b). The values between parentheses were calculated by Kramida and Shirai (2009) using parametric fitting of Cowan's code. Other values were determined experimentally.

Figure 1. Comparison between calculated wavelengths as obtained in the present work ($\lambda_{\text{This work}}$) and experimental values (λ_{exp}) published by Radtke *et al* (2007) for magnetic dipole (M1) lines within the 4p^k (open circles) and 4d^k (full circles) ground configurations of tungsten ions from W ²⁹⁺ to W⁴³⁺.

types of radiations appear for forbidden lines within the $4p^k$ configurations.

Available experimental wavelengths are also given in table 3 for comparison. These values were determined by Radtke et al (2007) who used high-resolution x-ray and extreme ultraviolet tungsten spectra produced in an EBIT source. Among the emission lines from highly charged tungsten ions observed by these authors, 41 were identified as being due to forbidden transitions within the $4d^k$ ground configurations of W^{29+} through W^{37+} , while 8 lines were identified as arising from the $4p^k$ ground configurations of W^{39+} through W^{43+} . In general, our theoretical results agree rather well with the experimental wavelengths, the mean ratio $\lambda_{This\,work}/\lambda_{exp}$ being found equal to 1.003 \pm 0.009 where the uncertainty represents the standard deviation of the mean. This is illustrated in figure 1 where this ratio is shown as a function of $\lambda_{\text{This work}}$ for each available measured wavelength. However, when looking at this figure in more detail, one can note that the agreement with experimental data is better for forbidden lines within $4p^k (\lambda_{\text{This work}}/\lambda_{\text{exp}} = 0.999 \pm$ 0.003) than for those within the $4d^k~(\lambda_{This\,work}/\lambda_{exp}$ = 1.004 \pm 0.010) ground configurations, the scattering being much larger for the latter than for the former ones. This was already mentioned by Jonauskas *et al* (2010) who critically evaluated the line identifications by Radtke *et al* (2007) for the 4d^k transitions in multicharged tungsten ions thanks to detailed comparisons of experimental wavelengths with values computed using different theoretical approaches. In this study, new interpretations of some lines were proposed that allowed the large theory–experiment deviations that existed in the previous data to be removed. Questionable experimental wavelengths or line identifications in Radtke *et al* (2007) were also highlighted by Jonauskas *et al* (2010) for five transitions in W³⁰⁺ ($\lambda_{exp} = 57.041$, 65.092, 68.757, 79.031 and 79.421 nm), two transitions in W³⁵⁺ ($\lambda_{exp} = 75.664$ and 82.268 nm) and one transition in W³⁶⁺ ($\lambda_{exp} = 52.619$ nm).

In figure 2, we compare the wavelengths calculated in this work for forbidden lines in the 4d^k configurations with those computed by Radtke *et al* (2007) using the Hebrew University Lawrence Livermore Atomic Code (HULLAC) package and with those calculated by Jonauskas *et al* (2010) using the GRASP and FAC codes including only six configurations, i.e. $4s^24p^64d^k + 4s^24p^64d^{k-2}4f^2 + 4s^24p^44d^{k+2} + 4s^24p^54d^k4f^2 + 4s^24p^54d^{k+1}4f$ (GRASP6, FAC6) and using

Table 3. Forbidden transitions within the $4p^k$ and $4d^k$ ground configurations of tungsten ions. Only transitions with *A*-values greater than 10^4 s^{-1} are given except for a few experimentally observed lines. X(Y) stands for $X \times 10^Y$.

Ion	Lower level ^a	Upper level ^a	λ_{exp}^{b} (nm)	λ_{MCDF}^{c} (nm)	Туре	$A_{\mathrm{MCDF}}^{\mathbf{c}}^{\mathbf{c}}$ (s ⁻¹)	A_{prev} (s ⁻¹)
W ²⁹⁺	$4d^{9}[1]_{5/2}$	4d ⁹ [2] _{3/2}	75.664	75.506	M1	3.74(4)	3.72(4) ^d
W^{30+}	$4d^{8}[6]_{1}$	$4d^{8}[9]_{0}$		54.347	M1	1.39(5)	
	$4d^{8}[1]_{4}$	$4d^{8}[7]_{4}$	57.041	57.072	M1	1.71(4)	$1.69(4)^{d}$
	$4d^{8}[4]_{3}$	$4d^{8}[8]_{2}$	65.092	67.070	M1	6.52(4)	$6.49(4)^{d}$
	$4d^{8}[2]_{2}$	$4d^{8}[6]_{1}$	68.757	70.664	M1	2.54(4)	$2.51(4)^{d}$
	$4d^{8}[2]_{2}$	$4d^{8}[5]_{2}$	79.031	78.280	M1	2.83(4)	$2.81(4)^{d}$
	$4d^{\circ}[1]_{4}$	$4d^{\circ}[4]_{3}$	79.421	78.926	MI M1	4.71(4)	4.68(4) ^u
21.	$4a^{3}[5]_{2}$	4d°[8] ₂		82.334	IVI I	1.80(4)	
W^{51+}	$4d'[7]_{5/2}$	$4d'[18]_{5/2}$		43.498	M1	3.07(4)	
	$4d'[3]_{5/2}$	$4d'[12]_{3/2}$		49.093	MI	1.66(4)	
	$40^{7}[4]_{7/2}$	$40^{7}[1^{7}]_{7/2}$		52.145	M1	1.79(4) 2.75(4)	
	$4d^{7}[13]_{5/2}$	$4d^{7}[19]_{5/2}$		59.052	M1	2.75(4) 1.05(4)	
	$4d^{7}[5]_{0/2}$	$4d^{7}[17]_{3/2}$		60 234	M1	2.49(4)	
	$4d^{7}[14]_{2/2}$	$4d^{7}[19]_{3/2}$		62.987	M1	5.05(4)	
	$4d^{7}[5]_{9/2}$	$4d^{7}[16]_{9/2}$		64.360	M1	3.53(4)	
	$4d^{7}[3]_{5/2}$	$4d^{7}[11]_{5/2}$		65.107	M1	1.19(4)	
	$4d^{7}[4]_{7/2}$	$4d^{7}[13]_{5/2}$		65.969	M1	9.63(4)	
	$4d^{7}[1]_{9/2}$	$4d^{7}[5]_{9/2}$	66.676	66.373	M1	3.55(4)	$3.49(4)^{d}$
	$4d^{7}[6]_{3/2}$	$4d^{7}[15]_{1/2}$		67.058	M1	1.54(4)	
	$4d'[8]_{1/2}$	$4d'[15]_{1/2}$		72.771	M1	5.21(4)	
	$4d'[6]_{3/2}$	$4d'[14]_{3/2}$		74.956	MI	3.69(4)	
	$4d'[12]_{3/2}$	4d'[18] _{5/2}		77 508	MI M1	1.55(4)	
	$4d^{7}[2]_{3/2}$	$40^{7}[8]_{1/2}$ $4d^{7}[16]_{1/2}$		77.508	M1 M1	5.74(4) 1.80(4)	
	$4d^{7}[7]_{1/2}$	$4d^{7}[14]_{2}$		78.096	M1	4.07(4)	
	$4d^{7}[1]_{0/2}$	$4d^{7}[4]_{7/2}$	80.488	80.060	M1	5.00(4)	$4.97(4)^{d}$
	$4d^{7}[6]_{3/2}$	$4d^{7}[13]_{5/2}$	001100	81.412	M1	1.06(4)	, (.)
	$4d^{7}[2]_{3/2}$	$4d^{7}[7]_{5/2}$		81.517	M1	1.37(4)	
	$4d^{7}[2]_{3/2}$	$4d^{7}[6]_{3/2}$		85.244	M1	2.14(4)	
	$4d^{7}[3]_{5/2}$	$4d^{7}[7]_{5/2}$		96.956	M1	1.07(4)	
	4d ⁷ [3] _{5/2}	$4d'[6]_{3/2}$		102.270	M1	2.04(4)	
W^{32+}	$4d^{6}[13]_{1}$	$4d^{6}[32]_{0}$		37.873	M1	7.09(4)	
	$4d^{6}[10]_{3}$	$4d^{6}[29]_{2}$		38.865	MI	1.29(4)	
	$40^{\circ}[13]_{1}$	$40^{\circ}[29]_{2}$		45.612	M1	1.79(4)	
	$40^{\circ}[10]_{2}$	$40^{\circ}[31]_{2}$		40.244	M1	1.4/(4) 1.10(4)	
	$4d^{6}[15]_{3}$	$4d^{6}[29]_{2}$		48 332	M1	1.10(4) 1.42(4)	
	$4d^{6}[18]_{4}$	$4d^{6}[33]_{2}$		50.070	M1	1.12(1) 1.10(4)	
	$4d^{6}[12]_{2}$	$4d^{6}[28]_{1}$		50.586	M1	1.16(4)	
	$4d^{6}[19]_{3}$	$4d^{6}[33]_{3}$		52.752	M1	4.59(4)	
	$4d^{6}[6]_{1}$	$4d^{6}[23]_{1}$		53.368	M1	2.57(4)	
	$4d^{6}[28]_{1}$	$4d^{6}[34]_{0}$		54.168	M1	2.70(5)	
	$4d^{6}[19]_{3}$	$4d^{6}[31]_{2}$		54.549	M1	5.01(4)	
	$4d^{6}[18]_{4}$	$4d^{6}[30]_{4}$		55.960	M1	7.30(4)	
	$4d^{6}[7]_{5}$	$4d^{6}[25]_{4}$		57.411	MI	3.14(4)	
	$4d^{6}[1]_{4}$	$4d^{6}[10]_{3}$		57.856	MI M1	1.86(4)	
	40°[4] ₃	40°[19] ₃		50.090	M1	3.00(4)	
	$4d^{6}[20]_{2}$	$4d^{6}[30]_{3}$		59.207 60.755	M1	433(4)	
	$4d^{6}[5]_{4}$	$4d^{6}[19]_{2}$		62.628	M1	2.88(4)	
	$4d^{6}[14]_{4}$	4d ⁶ [27]		62.909	M1	1.68(4)	
	$4d^{6}[9]_{2}$	4d ⁶ [24] ₂		63.531	M1	2.42(4)	
	$4d^{6}[16]_{2}$	$4d^{6}[28]_{1}^{2}$		64.076	M1	1.50(5)	
	$4d^{6}[23]_{1}$	$4d^{6}[31]_{2}$		65.676	M1	3.49(4)	
	$4d^{6}[10]_{3}$	$4d^{6}[24]_{2}$		65.690	M1	1.36(4)	
	$4d^{6}[1]_{4}$	$4d^{6}[7]_{5}$	66.108	66.192	M1	9.28(3)	$9.20(3)^{d}$
	$4d^{6}[12]_{2}$	$4d^{6}[26]_{2}$		66.754	M1	2.79(4)	
	$4d^{\circ}[15]_{3}$	$4d^{\circ}[27]_{4}$		66.869	M1	2.19(4)	
	$4d^{\circ}[5]_{4}$	$4d^{\circ}[18]_{4}$		66.882	Ml	7.09(4)	

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 025003

Table 3. (Continued.)								
Ion	Lower level ^a	Upper level ^a	λ_{exp}^{b} (nm)	λ_{MCDF}^{c} (nm)	Туре	$A_{\mathrm{MCDF}}^{\mathbf{c}}^{\mathbf{c}}$ (s ⁻¹)	$A_{\rm prev}$ (s ⁻¹)	
	4d ⁶ [8] ₆	$4d^{6}[21]_{6}$	66.819	66.969	M1	2.20(4)	$2.18(4)^{d}$	
	$4d^{6}[13]_{1}$	$4d^{6}[26]_{2}$		67.289	M1	1.37(4)		
	$4d^{6}[25]_{4}$	$4d^{6}[33]_{3}$		67.310	M1	1.31(4)		
	$4d^{\circ}[22]_{3}$	$4d^{\circ}[30]_{4}$		67.702	M1	2.14(4)		
	$4d^{\circ}[2]_{2}$	4d°[9] ₂		68.530	MI M1	3.02(4)		
	$40^{\circ}[17]_{0}$	$40^{\circ}[28]_{1}$		08.955	M1	5.02(4) 2.13(4)		
	$4d^{6}[3]_{0}$	$4d^{6}[13]_{1}$		71.030	M1	1.13(4)		
	$4d^{6}[4]_{3}$	$4d^{6}[16]_{2}$		72.747	M1	7.59(4)		
	$4d^{6}[9]_{2}$	$4d^{6}[22]_{3}$		72.768	M1	1.40(4)		
	$4d^{6}[7]_{5}$	$4d^{6}[20]_{5}$		72.923	M1	1.39(4)		
	$4d^{6}[15]_{3}$	$4d^{6}[26]_{2}$		73.152	M1	2.35(4)		
	$4d^{6}[8]_{6}$	$4d^{6}[20]_{5}$		74.095	M1	2.70(4)		
	$4d^{6}[6]_{1}$	$4d^{6}[17]_{0}$		74.410	M1	1.15(5)		
	$4d^{6}[10]_{3}$	$4d^{6}[22]_{3}$	00 202	75.615	MI	2.27(4)	4.07(4)d	
	40°[1] ₄	40°[5] ₄	80.303	80.266	M1 M1	4.15(4) 2.12(4)	4.07(4)	
	40°[0]1 4d ⁶ [7]-	$40^{6}[18]_{2}$		81.042 81.283	M1	2.13(4) 1 33(4)		
	$4d^{6}[9]_{2}$	$4d^{6}[19]_{2}$		85 773	M1	1.55(4) 1.04(4)		
	$4d^{6}[26]_{2}$	$4d^{6}[33]_{3}$		87.483	M1	1.64(4)		
	$4d^{6}[1]_{4}$	$4d^{6}[4]_{3}$		87.820	M1	3.23(4)	$3.18(4)^{d}$	
	$4d^{6}[11]_{0}$	$4d^{6}[23]_{1}$		89.043	M1	1.28(4)		
	$4d^{6}[2]_{2}$	$4d^{6}[6]_{1}$		94.172	M1	4.00(4)		
	$4d^{6}[13]_{1}$	$4d^{6}[23]_{1}$		95.772	M1	1.07(4)		
W^{33+}	$4d^{5}[16]_{3/2}$	$4d^{5}[36]_{3/2}$		36.984	M1	1.23(4)		
	$4d^{5}[15]_{1/2}$	$4d^{5}[35]_{1/2}$		43.594	M1	1.43(4)		
	$4d^{5}[16]_{3/2}$	$4d^{5}[35]_{1/2}$		44.800	M1	2.10(4)		
	$4d^{3}[12]_{7/2}$	$4d^{5}[33]_{5/2}$		47.458	MI	2.67(4)		
	$40^{\circ}[14]_{9/2}$	$40^{\circ}[34]_{7/2}$		47.504	M1 M1	1.45(4) 1.24(4)		
	$4d^{5}[1]_{5/2}$	$4d^{5}[23]_{3/2}$		49.383	M1 M1	1.54(4) 3.91(4)		
	$4d^{5}[12]_{7/2}$	$4d^{5}[32]_{0/2}$		50 350	M1	1.91(4)		
	$4d^{5}[10]_{3/2}$	$4d^{5}[28]_{5/2}$		50.418	M1	1.49(4)		
	$4d^{5}[26]_{5/2}$	$4d^{5}[37]_{5/2}$		50.487	M1	1.07(5)		
	$4d^{5}[13]_{11/2}$	$4d^{5}[32]_{9/2}$		52.124	M1	1.28(4)		
	$4d^{5}[2]_{5/2}$	$4d^{5}[16]_{3/2}$		52.842	M1	3.50(4)		
	$4d^{5}[9]_{7/2}$	$4d^{5}[25]_{9/2}$		53.300	M1	1.70(4)		
	$4d^{5}[11]_{5/2}$	$4d^{5}[28]_{5/2}$		53.658	M1	1.63(4)		
	$4d^{3}[6]_{9/2}$	$4d^{3}[24]_{7/2}$		53.788	M1	1.72(4)		
	$40^{5}[3]_{7/2}$	$40^{5}[21]_{5/2}$		54.304	M1 M1	2.83(4)		
	$4d^{5}[18]_{3/2}$	$4d^{5}[23]_{5/2}$		55 307	M1	1.23(4) 2.40(4)		
	$4d^{5}[3]_{7/2}$	$4d^{5}[19]_{0/2}$		57 370	M1	1.49(4)		
	$4d^{5}[13]_{11/2}$	$4d^{5}[31]_{11/2}$		58.667	M1	5.90(4)		
	$4d^{5}[8]_{1/2}$	$4d^{5}[23]_{1/2}$		58.875	M1	2.20(4)		
	$4d^{5}[23]_{1/2}$	$4d^{5}[35]_{1/2}$		59.471	M1	4.53(4)		
	$4d^{5}[29]_{7/2}$	$4d^{5}[37]_{5/2}$		59.493	M1	5.82(4)		
	$4d^{5}[12]_{7/2}$	$4d^{5}[29]_{7/2}$		59.970	M1	3.58(4)		
	$4d^{3}[14]_{9/2}$	$4d^{3}[31]_{11/2}$		60.290	M1	1.73(4)		
	$4d^{5}[5]_{11/2}$	$4d^{5}[19]_{9/2}$		60.429	MI M1	1.38(4)		
	$4u [2]_{5/2}$ $4d^5[21]_{-12}$	$4u [12]_{7/2}$ $4d^5[34]_{-12}$		61 628	M1	1.20(4) 1.96(4)		
	$4d^{5}[9]_{7/2}$	$4d^{5}[24]_{7/2}$		61.818	M1	1.50(-1) 1.61(4)		
	$4d^{5}[11]_{5/2}$	$4d^{5}[26]_{5/2}$		61.948	M1	1.12(5)		
	$4d^{5}[7]_{5/2}$	$4d^{5}[22]_{3/2}$		62.126	M1	1.09(4)		
	$4d^{5}[6]_{9/2}$	$4d^{5}[20]_{7/2}$		62.358	M1	1.11(4)		
	$4d^{5}[15]_{1/2}$	$4d^{5}[30]_{3/2}$		62.961	M1	4.74(4)		
	$4d^{5}[30]_{3/2}$	$4d^{5}[37]_{5/2}$		63.367	M1	4.75(4)		
	$4d^{5}[14]_{9/2}$	4d ⁵ [29] _{7/2}		64.350	M1	4.10(4)		
	$4d^{5}[3]_{7/2}$	$4d^{5}[18]_{5/2}$		64.510	M1	1.69(4)		
	$4d^{3}[6]_{9/2}$	4d ³ [19] _{9/2}		65.271	M1	4.14(4)		

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 025003

	Table 3. (Continued.)							
Ion	Lower level ^a	Upper level ^a	λ_{exp}^{b} (nm)	λ_{MCDF}^{c} (nm)	Туре	$A_{ m MCDF}^{ m c}$ (s ⁻¹)	$A_{\rm prev}$ (s ⁻¹)	
	$4d^{5}[16]_{3/2}$	$4d^{5}[30]_{3/2}$		65.507	M1	5.99(4)		
	$4d^{5}[17]_{13/2}$	$4d^{5}[31]_{11/2}$		66.331	M1	1.35(4)		
	$4d^{5}[19]_{9/2}$	$4d^{5}[32]_{9/2}$		67.061	M1	3.04(4)		
	$4d^{5}[18]_{5/2}$	$4d^{3}[30]_{3/2}$		68.108	MI	1.95(4)		
	$4d^{5}[4]_{3/2}$	$40^{5}[16]_{3/2}$		68.262	MI M1	4.8/(4)		
	$4d^{5}[22]_{3/2}$	$4d^{5}[35]_{5/2}$	60 236	60.002	M1	2.19(4) 5.63(4)	5 57(4)d	
	$4d [1]_{5/2}$ $4d^5[1]_{5/2}$	$4d^{5}[3]_{-10}$	70.618	70 308	M1	2.03(4) 2.14(4)	2.37(4) 2.12(4) ^d	
	$4d^{5}[20]_{7/2}$	$4d^{5}[32]_{0/2}$	70.010	70.300	M1	1.16(4)	2.12(4)	
	$4d^{5}[27]_{3/2}$	$4d^{5}[36]_{3/2}$		70.867	M1	1.12(4)		
	$4d^{5}[4]_{3/2}$	$4d^{5}[15]_{1/2}$		71.265	M1	4.04(4)		
	$4d^{5}[2]_{5/2}$	$4d^{5}[11]_{5/2}$	70.822	71.318	M1	9.16(4)	$9.03(4)^{d}$	
	$4d^{5}[24]_{7/2}$	$4d^{5}[34]_{7/2}$		71.738	M1	1.30(4)		
	$4d^{5}[9]_{7/2}$	$4d^{5}[21]_{5/2}$		71.995	M1	2.01(4)		
	$4d^{5}[12]_{7/2}$	$4d^{5}[26]_{5/2}$		73.116	M1	3.08(4)		
	$4d^{5}[18]_{5/2}$	$4d^{5}[29]_{7/2}$		73.233	M1	1.93(4)		
	$4d^{5}[3]_{7/2}$	$4d^{5}[14]_{9/2}$		73.440	M1	1.87(4)		
	$4d^{5}[28]_{5/2}$	$4d^{3}[36]_{3/2}$		75.161	MI	1.90(4)		
	$4d^{5}[5]_{11/2}$	$4d^{5}[14]_{9/2}$		78.528	MI M1	1.23(4)		
	$40^{5}[7]_{5/2}$	$40^{5}[18]_{5/2}$		79.058	M1	2.31(4) 1.97(4)		
	$4d^{5}[5]_{7/2}$	$4d^{5}[12]_{7/2}$		81.465	M1	1.87(4) 3.00(4)		
	$4d^{5}[7]_{1/2}$	$4d^{5}[16]_{11/2}$		81.403	M1	1.56(4)		
	$4d^{5}[25]_{0/2}$	$4d^{5}[34]_{7/2}$		88 072	M1	1.30(4) 1 29(4)		
	$4d^{5}[8]_{1/2}$	$4d^{5}[15]_{1/2}$		92.070	M1	2.29(4)		
	$4d^{5}[6]_{9/2}$	$4d^{5}[12]_{7/2}$		96.417	M1	1.20(4)		
	$4d^{5}[1]_{5/2}$	$4d^{5}[2]_{5/2}$		97.874	M1	3.97(4)	$3.90(4)^{d}$	
	$4d^{5}[10]_{3/2}$	$4d^{5}[21]_{5/2}$		104.200	M1	1.01(4)		
W^{34+}	$4d^{4}[2]_{1}$	$4d^{4}[22]_{0}$		30.432	M1	1.73(4)		
	$4d^{4}[21]_{1}$	$4d^{4}[34]_{0}$		36.781	M1	6.76(4)		
	$4d^{4}[9]_{3}$	$4d^{4}[31]_{2}$		38.820	M1	1.00(4)		
	$4d^{4}[7]_{2}$	$4d^{4}[28]_{1}$		40.066	M1	2.11(4)		
	$4d^{4}[11]_{1}$	$4d^{4}[31]_{2}$		42.992	M1	1.29(4)		
	$4d^{+}[10]_{5}$	$4d^{-}[30]_{4}$		43.350	MI	2.91(4)		
	$40^{1}[11]_{1}$	$40^{1}[28]_{1}$		40.338	M1 M1	1.38(4) 2.12(4)		
	$4d [13]_3$	$4d^{4}[33]_{4}$		40.141	M1	2.12(4) 4.36(4)		
	$4d^{4}[5]_{3}$	$4d^{4}[17]_{4}$		40.414	M1	1.30(4)		
	$4d^{4}[11]_{1}$	$4d^{4}[27]_{0}$		49.458	M1	3.90(4)		
	$4d^{4}[8]_{4}$	$4d^{4}[26]_{3}$		49.476	M1	1.03(4)		
	$4d^{4}[3]_{2}$	$4d^{4}[16]_{2}$		49.587	M1	1.61(4)		
	$4d^{4}[28]_{1}$	$4d^{4}[34]_{0}$		51.977	M1	1.66(5)		
	$4d^{4}[21]_{1}$	$4d^{4}[33]_{2}$		52.126	M1	6.23(4)		
	$4d^{4}[9]_{3}$	$4d^{4}[25]_{2}$		52.334	M1	2.94(4)		
	$4d^{4}[5]_{3}$	$4d^{4}[16]_{2}$		52.882	M1	5.60(4)		
	$4d^{4}[6]_{0}$	$4d^{4}[21]_{1}$		56.299	M1	5.87(4)		
	$4d^{4}[16]_{2}$	$4d^{4}[31]_{2}$		57.365	MI	2.70(4)		
	$4d^{4}[19]_{4}$	$4d^{4}[32]_{4}$		57.917	MI M1	/.//(4) 5.21(4)		
	40 ⁻ [20] ₃	$40^{1}[32]_{4}$		58.141 58.788	M1	5.51(4)		
	$4d^{4}[11]_{1}$	$4d^{4}[25]_{2}$		60 209	M1	1.52(4)		
	$4d^{4}[25]_{2}$	$4d^{4}[33]_{2}$		61.736	M1	4.32(4)		
	$4d^{4}[4]_{4}$	$4d^{4}[13]_{3}$		62.916	M1	2.63(4)		
	$4d^{4}[16]_{2}$	$4d^{4}[29]_{3}$		63.187	M1	1.81(4)		
	$4d^{4}[13]_{3}$	$4d^{4}[26]_{3}$		63.520	M1	2.82(4)		
	$4d^{4}[16]_{2}$	$4d^{4}[28]_{1}$		63.520	M1	2.66(4)		
	$4d^{4}[10]_{5}$	$4d^{4}[24]_{6}$		64.314	M1	2.80(4)		
	$4d^{4}[7]_{2}$	$4d^{4}[20]_{3}$		64.351	M1	6.62(4)		
	$4d^{4}[26]_{3}$	$4d^{4}[33]_{2}$		64.419	M1	1.43(4)		
	4d ⁺ [15] ₂	$4d^{-}[26]_{3}$	(()))	65.367	M1	1.32(4)	× 1, - 1 + 1	
	$4d^{2}[2]_{1}$	$4d^{-}[7]_{2}$	66.240	65.663	MI M1	6.52(4)	6.45(4) ^a	
	4u 123 5	4u 15214		00.030	11/1	2.03(4)		

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 025003

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Table 3. (Continued.)							
$ \begin{split} & 4d^4[17]_4 & 4d^4[20]_4 & 66.048 & M1 & 2.20(4) \\ & 4d^4[13]_4 & 4d^4[25]_2 & 66.365 & M1 & 2.93(4) \\ & 4d^4[10]_5 & 4d^4[23]_5 & 66.829 & M1 & 1.64(4) \\ & 4d^4[9]_5 & 4d^4[25]_2 & 68.382 & M1 & 2.29(4) \\ & 4d^4[13]_2 & 4d^4[12]_4 & 68.564 & M1 & 2.56(4) \\ & 4d^4[2]_1 & 4d^4[2]_4 & 69.695 & 69.73 & M1 & 2.30(4) \\ & 4d^4[3]_2 & 4d^4[11]_1 & 69.695 & 69.742 & M1 & 5.03(4) & 4.97(4) \\ & 4d^4[12]_6 & 4d^4[23]_5 & 7.809 & M1 & 1.24(5) & 1.23(5) \\ & 4d^4[3]_2 & 4d^4[12]_6 & 68.060 & 69.073 & M1 & 2.30(4) \\ & 4d^4[11]_6 & 4d^4[23]_5 & 7.809 & M1 & 1.2(4) \\ & 4d^4[11]_6 & 4d^4[23]_5 & 7.809 & M1 & 1.2(4) \\ & 4d^4[14]_4 & 4d^4[23]_5 & 7.809 & M1 & 1.2(4) \\ & 4d^4[14]_4 & 4d^4[23]_5 & 7.809 & M1 & 1.2(4) \\ & 4d^4[14]_4 & 4d^4[23]_5 & 73.664 & 73.538 & M1 & 2.30(4) \\ & 4d^4[3]_2 & 4d^4[9]_3 & 84.465 & M1 & 1.89(4) \\ & 4d^4[3]_2 & 4d^4[9]_3 & 84.465 & M1 & 1.89(4) \\ & 4d^4[3]_1 & 4d^4[2]_1 & 85.563 & 86.000 & M1 & 1.1(4) & 4.08(4) \\ & 4d^4[3]_4 & 4d^4[3]_1 & 94.191 & 91.318 & M1 & 1.42(4) \\ & 4d^4[3]_1 & 4d^4[7]_5 & 91.318 & M1 & 1.42(4) \\ & 4d^4[3]_2 & 4d^4[14]_5 & 94.494 & M1 & 2.47(4) \\ & 4d^4[3]_3 & 4d^4[9]_3 & 56.54 & 56.559 & M1 & 3.70(4) \\ & 4d^4[3]_{12} & 4d^4[14]_{12} & 55.741 & M1 & 4.56(4) \\ & 4d^4[14]_{12} & 4d^4[15]_{12} & 56.632 & 57.086 & M1 & 3.91(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 55.632 & 57.086 & M1 & 3.91(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 56.522 & 5M1 & 3.91(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 56.522 & 5M1 & 3.91(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 56.524 & 56.559 & M1 & 3.91(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 56.634 & 56.559 & M1 & 3.91(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 56.634 & 56.559 & M1 & 3.91(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 26.6431 & M1 & 4.56(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 66.033 & 55.933 & M1 & 1.56(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 66.033 & 55.933 & M1 & 2.56(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 66.3589 & 53.277 & M1 & 3.91(4) & 3.90(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 66.033 & 65.933 & M1 & 2.56(4) \\ & 4d^4[14]_{12} & 4d^4[14]_{12} & 66.5$	Ion	Lower level ^a	Upper level ^a	λ_{exp}^{b} (nm)	λ_{MCDF}^{c} (nm)	Туре	$A_{ m MCDF}^{ m c}$ (s ⁻¹)	$A_{\rm prev}$ (s ⁻¹)	
		$4d^{4}[17]_{4}$	$4d^{4}[30]_{4}$		66.048	M1	2.20(4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{4}[13]_{3}$	$4d^{4}[25]_{2}$		66.365	M1	2.93(4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{4}[8]_{4}$	$4d^{4}[19]_{4}$		66.605	M1	7.16(4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{-}[10]_{5}$	$4d^{-}[23]_{5}$		66.829	MI M1	1.64(4)		
$ \begin{split} & 44^{-}[15]_2 & 44^{+}[19]_4 & 68.564 & M1 & 2.56(4) \\ & 44^{+}[12]_1 & 44^{+}[29]_3 & 69.053 & M1 & 2.63(4) \\ & 44^{+}[2]_1 & 44^{+}[2]_1 & 68.060 & 69.073 & M1 & 1.24(5) & 1.23(5) \\ & 4d^{+}[3]_2 & 4d^{+}[11]_1 & 69.695 & 69.742 & M1 & 5.03(4) & 4.97(4) \\ & 4d^{+}[11]_1 & 4d^{+}[22]_1 & 73.407 & M1 & 2.82(4) \\ & 4d^{+}[11]_1 & 4d^{+}[21]_1 & 73.407 & M1 & 2.82(4) \\ & 4d^{+}[14]_4 & 4d^{+}[23]_5 & 79.958 & M1 & 2.31(4) & 2.29(4) \\ & 4d^{+}[4]_4 & 4d^{+}[2]_1 & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 4d^{+}[1]_0 & 4d^{+}[2]_1 & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 4d^{+}[1]_0 & 4d^{+}[2]_1 & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 4d^{+}[1]_0 & 4d^{+}[2]_1 & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 4d^{+}[1]_2 & 4d^{+}[2]_1 & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 4d^{+}[1]_2 & 4d^{+}[2]_1 & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 4d^{+}[1]_2 & 4d^{+}[2]_1 & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 4d^{+}[1]_2 & 4d^{+}[2]_1 & 2.100 & M1 & 1.49(4) \\ & 4d^{+}[1]_2 & 4d^{+}[2]_1 & 2.100 & M1 & 1.49(4) \\ & 4d^{+}[1]_2 & 4d^{+}[2]_1 & 2.5.563 & M1 & 4.60(4) \\ & 4d^{+}[1]_1 & 2d^{+}[1]_{17/2} & 53.278 & M1 & 1.10(4) \\ & 4d^{+}[4]_{17/2} & 4d^{+}[1]_{17/2} & 56.322 & 57.086 & M1 & 3.67(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 56.322 & 57.086 & M1 & 3.64(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 56.382 & 57.086 & M1 & 3.64(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 56.382 & 57.086 & M1 & 3.64(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 56.382 & 57.086 & M1 & 3.64(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 56.382 & 57.086 & M1 & 3.64(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 56.382 & 57.086 & M1 & 3.64(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 66.03 & 65.272 & M1 & 6.7(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 66.03 & 65.272 & M1 & 6.7(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 66.03 & 65.272 & M1 & 6.7(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 7.640 & 7.0384 & M1 & 7.27(4) \\ & 4d^{+}[1]_{17/2} & 4d^{+}[1]_{17/2} & 7.640 & 7.0393 & M1 & 1.52(4) \\ & 4d^$		40 ⁻ [9] ₃	40 ⁻ [20] ₃		68.233 68.382	M1	4.42(4) 2 20(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{4}[9]_{2}$	$4d^{4}[19]_{4}$		68 564	M1	2.29(4) 2 56(4)		
$ \begin{split} & 44^{4} [2]_{1} & 44^{4} [6]_{0} & 68.060 & 69.073 & M1 & 1.24(5) & 1.23(5)' \\ & 44^{4} [3]_{2} & 44^{4} [11]_{1} & 69.695 & 69.742 & M1 & 5.03(4) & 4.97(4)' \\ & 44^{4} [12]_{0} & 44^{4} [24]_{0} & 70.207 & M1 & 3.08(4) \\ & 44^{4} [11]_{1} & 44^{4} [22]_{0} & 70.207 & M1 & 3.08(4) \\ & 44^{4} [11]_{1} & 44^{4} [21]_{1} & 73.407 & M1 & 2.82(4) \\ & 44^{4} [14]_{4} & 44^{4} [23]_{5} & 79.958 & M1 & 2.04(4) \\ & 44^{4} [14]_{4} & 44^{4} [21]_{1} & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 44^{4} [14]_{4} & 44^{4} [21]_{1} & 85.563 & 86.300 & M1 & 4.11(4) & 4.08(4) \\ & 44^{4} [14]_{4} & 44^{4} [23]_{5} & 84.455 & M1 & 3.76(4) & 3.70(4)' \\ & 44^{4} [18]_{2} & 44^{4} [7]_{2} & 36.009 & M1 & 1.49(4) \\ & 44^{4} [18]_{2} & 44^{4} [19]_{3} & 94.494 & M1 & 2.47(4) \\ & 44^{3} [8]_{7/2} & 44^{3} [16]_{5/2} & 36.009 & M1 & 1.54(4) \\ & 44^{3} [8]_{7/2} & 44^{3} [19]_{5/2} & 47.365 & M1 & 4.60(4) \\ & 44^{3} [10]_{3/2} & 44^{3} [19]_{5/2} & 51.546 & M1 & 3.77(4) \\ & 44^{3} [10]_{3/2} & 44^{3} [19]_{5/2} & 55.741 & M1 & 4.36(4) \\ & 44^{3} [10]_{3/2} & 44^{3} [14]_{5/2} & 56.545 & 56.559 & M1 & 4.60(4) \\ & 44^{3} [10]_{3/2} & 44^{3} [14]_{5/2} & 56.654 & 56.559 & M1 & 4.60(4) \\ & 44^{3} [10]_{3/2} & 44^{3} [14]_{5/2} & 56.654 & 56.559 & M1 & 3.64(4) & 3.62(4)' \\ & 44^{3} [13]_{7/2} & 44^{3} [14]_{5/2} & 56.654 & 56.559 & M1 & 3.64(4) & 3.62(4)' \\ & 44^{3} [13]_{7/2} & 44^{3} [14]_{7/2} & 57.086 & M1 & 3.64(4) & 3.62(4)' \\ & 44^{3} [13]_{7/2} & 44^{3} [13]_{7/2} & 56.382 & 57.086 & M1 & 3.64(4) & 3.62(4)' \\ & 44^{3} [13]_{7/2} & 44^{3} [13]_{7/2} & 56.542 & M1 & 4.08(4) \\ & 44^{3} [14]_{7/2} & 44^{3} [13]_{7/2} & 56.382 & 57.086 & M1 & 3.64(4) \\ & 44^{3} [13]_{7/2} & 44^{3} [13]_{7/2} & 56.542 & M1 & 4.08(4) \\ & 44^{3} [14]_{7/2} & 44^{3} [13]_{7/2} & 56.542 & M1 & 4.08(4) \\ & 44^{3} [14]_{7/2} & 44^{3} [13]_{7/2} & 56.223 & M1 & 3.64(4) \\ & 44^{3} [14]_{7/2} & 44^{3} [13]_{7/2} & 56.223 & M1 & 3.64(4) \\ & 44^{3} [14]_{7/2} & 44^{3} [13]_{7/2} & 67.276 & 77.267 & 77.277 & 77.41 & 77.44 \\ & 44^{3} [13]_{7/2} & 44^{3} [13]_{7/$		$4d^{4}[17]_{4}$	$4d^{4}[29]_{2}$		69.053	M1	2.50(4) 2.63(4)		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$4d^{4}[2]_{1}$	$4d^{4}[6]_{0}$	68.060	69.073	M1	1.24(5)	$1.23(5)^{d}$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$4d^{4}[3]_{2}$	$4d^{4}[11]_{1}$	69.695	69.742	M1	5.03(4)	$4.97(4)^{d}$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$4d^{4}[12]_{6}$	$4d^{4}[24]_{6}$		69.833	M1	2.30(4)		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$4d^{4}[11]_{1}$	$4d^{4}[22]_{0}$		70.207	M1	3.08(4)		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$4d^{4}[12]_{6}$	$4d^{4}[23]_{5}$		72.809	M1	1.12(4)		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$4d^{4}[11]_{1}$	$4d^{4}[21]_{1}$		73.407	M1	2.82(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{4}[4]_{4}$	$4d^{4}[10]_{5}$	73.664	73.538	MI	2.31(4)	2.29(4) ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{-1}[14]_{4}$	$4d^{-}[23]_{5}$		/9.958	MI M1	2.04(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$40^{1}[3]_{2}$	40^{9}	85 563	84.403 86.300	M1	1.89(4)	1 08(1) ^d	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{4}[4]_{0}$	$4d [2]_1$ $4d^4[8]_4$	85.505	80.300	M1	4.11(4) 3.76(4)	$3.70(4)^d$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{4}[3]_{2}$	$4d^{4}[7]_{2}$	00.451	91.318	M1	1.42(4)	5.70(+)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{4}[18]_{2}$	$4d^{4}[28]_{1}$		92.100	M1	1.49(4)		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$4d^{4}[5]_{3}$	$4d^{4}[9]_{3}$		94.494	M1	2.47(4)		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	W^{35+}	$4d^{3}[2]_{5/2}$	$4d^{3}[16]_{3/2}$		36.009	M1	1.54(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[8]_{7/2}$	$4d^{3}[19]_{5/2}$		42.075	M1	2.47(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[10]_{3/2}$	$4d^{3}[19]_{5/2}$		47.365	M1	4.60(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[12]_{5/2}$	$4d^{3}[19]_{5/2}$		51.546	MI M1	3.//(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$40^{\circ}[4]_{7/2}$	$40^{\circ}[15]_{7/2}$		52.149	M1	1.10(4) 1.10(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[4]_{-1}$	$4d^{3}[14]_{-1}$		54 053	M1	1.10(4) 1.89(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[10]_{2}$	$4d^{3}[18]_{2/2}$		55 741	M1	4.36(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[2]_{5/2}$	$4d^{3}[10]_{3/2}$		56.223	M1	3.19(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[7]_{5/2}$	$4d^{3}[16]_{3/2}$	56.654	56.559	M1	3.91(4)	$3.90(4)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[3]_{3/2}$	$4d^{3}[12]_{5/2}$	56.382	57.086	M1	3.64(4)	3.62(4) ^d	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[14]_{5/2}$	$4d^{3}[19]_{5/2}$		58.233	M1	2.65(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[11]_{1/2}$	$4d^{3}[18]_{3/2}$		58.889	M1	2.66(4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[15]_{7/2}$	$4d^{3}[19]_{5/2}$		60.616	M1	1.54(4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[8]_{7/2}$	$4d^{3}[17]_{9/2}$		61.358	M1	6.26(4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[12]_{5/2}$	$4d^{3}[18]_{3/2}$	(1.524	61.624	MI	4.08(4)	2 10(4)d	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$40^{\circ}[0]_{9/2}$	$40^{\circ}[13]_{11/2}$ $4d^{3}[10]$	62 085	01.040 63.272	M1	2.20(4) 6.72(4)	$2.19(4)^{-1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[1]_{3/2}$	$4d^{3}[5]_{10}$	62 230	63 849	M1	1.39(4)	$1.39(4)^d$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[5]_{1/2}$	$4d^{3}[11]_{1/2}$	66.003	65.933	M1	6.71(4)	$6.66(4)^d$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[2]_{5/2}$	$4d^{3}[8]_{7/2}$	65.920	66.084	M1	7.31(4)	$7.27(4)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[9]_{9/2}$	$4d^{3}[17]_{9/2}$		67.324	M1	4.44(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[5]_{1/2}$	$4d^{3}[10]_{3/2}$		70.384	M1	1.15(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[1]_{3/2}$	$4d^{3}[3]_{3/2}$	71.046	71.099	M1	3.72(4)	$3.70(4)^d$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[4]_{7/2}$	$4d^{3}[9]_{9/2}$	75.664	74.906	M1	1.96(4)	$1.95(4)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[6]_{9/2}$	$4d^{3}[9]_{9/2}$	77.476	77.257	M1	3.18(4)	3.15(4) ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[1]_{3/2}$	$4d^{3}[2]_{5/2}$	82.268	82.759	MI	4.53(4)	4.49(4) ^a	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{3}[4]_{7/2}$ $4d^{3}[7]_{5/2}$	$4d^{3}[8]_{7/2}$ $4d^{3}[14]_{5/2}$		83.993 85.939	M1 M1	1.64(4) 1.43(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W^{36+}	$4d^{2}[5]_{1}$	$4d^{2}[9]_{0}$		44.793	M1	1.52(5)	$1.51(5)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{2}[3]_{3}$	$4d^{2}[8]_{2}$	52.619	53.193	M1	1.27(4)	$1.27(4)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{2}[1]_{2}$	$4d^{2}[5]_{1}$	54.120	55.130	M1	3.77(3)	$3.76(3)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{2}[1]_{2}$	$4d^{2}[4]_{2}$	57.430	58.414	M1	2.77(4)	$2.76(4)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{2}[3]_{3}$	$4d^{2}[']_{4}$	59.801	59.620	Ml	5.95(4)	5.92(4) ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4d^{2}[4]_{2}$	4d ² [8] ₂	63.389	63.501	MI M1	4.80(4)	$4.77(4)^{d}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40~[5] ₁ 4d ² [1]	$40^{-}[\delta]_{2}$	08.000	07.899 71.097		2.04(4) 5.20(4)	2.03(4) ^d	
$4d^2[2]_0$ $4d^2[5]_1$ 85.585 85.761 M1 2.11(4) 2.10(4)		$4d^{2}[6]$	$4d^{2}[7]$	70.774	70 7/5	M1	5.39(4) 1 55(A)	1.55(4) ^a	
		$4d^{2}[2]_{0}$	$4d^{2}[5]_{1}$	85.585	85.761	M1	2.11(4)	$2.10(4)^{d}$	

	Table 3. (Continued.)								
lon	Lower level ^a	Upper level ^a	λ_{exp}^{b} (nm)	λ_{MCDF}^{c} (nm)	Туре	$A_{ m MCDF}^{ m c}^{ m c}$ (s ⁻¹)	A_{prev} (s ⁻¹)		
W^{37+}	4d[1] _{3/2}	4d[2] _{5/2}	64.668	64.856	M1	3.93(4)	3.97(4) ^d		
W^{39+}	$4p^{5}[1]_{3/2}$	$4p^{5}[2]_{1/2}$	13.474	13.382	M1+E2	7.65(6)	7.36(6) ^e		
W ⁴⁰⁺	$\begin{array}{c} 4p^4[1]_2\\ 4p^4[3]_1\\ 4p^4[1]_2\\ 4p^4[4]_2\\ 4p^4[4]_2\\ 4p^4[1]_2\\ 4p^4[2]_0\end{array}$	$\begin{array}{c} 4p^{4}[5]_{0} \\ 4p^{4}[5]_{0} \\ 4p^{4}[4]_{2} \\ 4p^{4}[5]_{0} \\ 4p^{4}[3]_{1} \\ 4p^{4}[4]_{2} \end{array}$	12.829 13.491	6.459 12.385 12.853 12.984 13.500 14.189	E2 M1 M1+E2 E2 M1+E2 E2	1.96(4) 1.72(7) 4.18(6) 8.23(5) 6.39(6) 4.44(4)	3.93(6) ^e 6.23(6) ^e		
W ⁴¹⁺	$4p^{4}[2]_{0}$ $4p^{3}[2]_{3/2}$ $4p^{3}[1]_{3/2}$ $4p^{3}[3]_{5/2}$ $4r^{3}[1]_{3/2}$	$4p^{4}[3]_{1}$ $4p^{3}[5]_{3/2}$ $4p^{3}[4]_{1/2}$ $4p^{3}[5]_{3/2}$ $4p^{3}[2]_{3/2}$	12.228	14.982 12.098 12.214 12.799	M1 M1+E2 M1+E2 M1+E2	1.97(6) 9.17(6) 4.77(6) 2.60(6)	$1.88(6)^{e}$ $4.60(6)^{e}$		
	$\begin{array}{c} 4p^{3}[1]_{3/2} \\ 4p^{3}[4]_{1/2} \\ 4p^{3}[1]_{3/2} \end{array}$	$ \begin{array}{l} 4p^{3}[5]_{5/2} \\ 4p^{3}[5]_{3/2} \\ 4p^{3}[2]_{3/2} \end{array} $	13.981	13.814 13.966	M1+E2 M1+E2 M1+E2	1.47(6) 1.83(6) 7.05(6)	6.84(6) ^e		
W ⁴²⁺	$ \begin{array}{r} 4p^{2}[2]_{1} \\ 4p^{2}[3]_{2} \\ 4p^{2}[2]_{1} \\ 4p^{2}[1]_{0} \\ 4p^{2}[3]_{2} \end{array} $	$ \begin{array}{r} 4p^{2}[5]_{0} \\ 4p^{2}[5]_{0} \\ 4p^{2}[4]_{2} \\ 4p^{2}[3]_{2} \\ 4p^{2}[4]_{2} \end{array} $	12.964	11.413 11.896 12.522 12.958 13.106	M1 E2 M1+E2 E2 M1+E2	1.04(7) 6.58(5) 4.37(6) 1.48(5) 4.34(6)	1.40(5) ^e		
W ⁴³⁺	$4p^{2}[1]_{0}$ $4p[1]_{1/2}$	$4p^{2}[2]_{1}$ $4p[2]_{3/2}$	12.657	13.585 12.647	M1 M1+E2	4.93(6) 4.55(6)	4.84(6) ^e 4.38(6) ^e		

^a Level designations from table 2.

^b From Radtke et al (2007).

^c This work.

^d FAC calculations from Jonauskas *et al* (2010).

^e Deduced from MCDF oscillator strengths of Fournier (1998).

the FAC code within an extended multiconfiguration basis (FACext) including a number of added configurations ranging from 13 (in W³⁷⁺) to 34 (in W²⁹⁺). It is clearly seen from figure 2 that our wavelengths are in much better agreement with the FACext results ($\lambda_{\text{This work}}/\lambda_{\text{FACext}} = 0.999 \pm 0.001$) than with those obtained with HULLAC ($\lambda_{\text{This work}}/\lambda_{\text{HULLAC}} = 0.999\pm0.005$), GRASP6 ($\lambda_{\text{This work}}/\lambda_{\text{GRASP6}} = 1.000\pm0.005$) and FAC6 ($\lambda_{\text{This work}}/\lambda_{\text{FAC6}} = 1.003\pm0.004$) models. It is thus expected that the accuracy for most wavelengths computed in our work is similar to that estimated by Jonauskas *et al* (2010) for their FACext results, i.e. 0.5%.

A very small number of transition probabilities were determined previously for forbidden lines in tungsten ions considered here. For W^{29+} to W^{37+} ions, Jonauskas *et al* (2010) used the FAC code with an extended multiconfiguration basis for computing the *A*-values of 45 M1 lines. Their results, listed in table 3, are in excellent agreement (within a few per cent) with our calculations. In the case of higher ionization stages ($W^{39+}-W^{43+}$), Fournier (1998) reported oscillator strengths for some M1 lines obtained using the fully relativistic parametric potential code RELAC of Klapisch and coworkers (Aymar *et al* 1970, Klapisch 1971, Klapisch *et al* 1977). The transition probabilities deduced from these *gf*-values are also listed in table 3. Here again, very good agreement (within 5%) is observed except the W⁴¹⁺ 4p³[1]_{3/2}-4p³[3]_{5/2} line for which the relative difference is reaching 18%.

At the same time while performing this work, relativistic calculations for M1-type transitions in the $4d^k$ configurations of $W^{29+}-W^{37+}$ ions were also carried out by Jonauskas *et al* (2012) who used the MCDF method implemented in the GRASP2K code (Fischer et al 2006, Jönsson et al 2007). In the latter study, large discrepancies were obtained for radiative probabilities in comparison with previous FAC data of Jonauskas et al (2010), the differences reaching even up to a factor of 3 for some lines. Such discrepancies were not observed when comparing our MCDF data with FAC results. In order to have additional data, we decided to carry out calculations with an independent approach, i.e. the HFR method of Cowan (1981). This method was used in an *ab initio* way with the same sets of configurations as those used in our MCDF calculations and listed in table 1 and it was verified that HFR wavelengths were in very good agreement with MCDF ones. The transition probabilities obtained with the different approaches are compared in table 4 for all observed M1 lines in W²⁹⁺-W³⁷⁺ ions. As can be seen from this table, our MCDF and HFR results are in very good agreement (within a few per cent) with each other as well as with the FAC calculations of Jonauskas et al (2010). In contrast, the new GRASP2K A-values of Jonauskas et al (2012) show large discrepancies with all of the other three approaches in many cases. In their paper, the latter authors claimed that these discrepancies were essentially due to the larger multiconfiguration basis used in their

Figure 2. Comparison between wavelengths computed in the present work ($\lambda_{\text{This work}}$) and other theoretical values previously obtained by Radtke *et al* (2007) using the HULLAC code (a) and by Jonauskas *et al* (2010) using the GRASP and FAC packages within six configurations (GRASP6 (b), FAC6 (c)) and the extended basis (FACext (d)).

physical models. To verify this, we performed further HFR calculations using an extended set of configurations in two particular ions, i.e. W^{29+} and W^{37+} for which the GRASP2K *A*-values of Jonauskas *et al* (2012) are respectively a factor of 1.5 smaller and 1.5 larger than our values (obtained with both MCDF and HFR methods) and FAC values published by Jonauskas *et al* (2010). More precisely, for these two ions, the lists of interacting configurations given in table 1 were completed by additional configurations chosen among those having the largest configuration interaction strengths with 4d^k as estimated by Jonauskas *et al* (2010). These additional configurations were $4s^24p^44d^k4f^2$, $4s^24p^54d^{k-1}4f5g$, $4s^24p^54d^{k-1}5p5d$,

 $4s4p^{6}4d^{k-1}4f^{2}$, $4s^{2}4p^{6}4d^{k-2}5d^{2}$, $4s4p^{6}4d^{k}5s$, $4s^{2}4p^{6}4d^{k-1}6d$, $\begin{array}{c} 4s^2 4p^5 4d^{k-1} 4f7g,\\ 3d^9 4s^2 4p^6 4d^{k-1} 4f^2, \end{array}$ $4s^24p^54d^{k-1}4f6g$, $4s^24p^64d^{k-2}5d6d$, $4s^24p^54d^{k-1}4f5d$, $3d^94s^24p^54d^{k+1}4f$, $3d^{9}4s^{2}4p^{6}4d^{k-1}4f5f$, $3d^{8}4s^{2}4p^{6}4d^{k}4f^{2}$ and $3d^{8}4s^{2}4p^{6}4d^{k+2}$. It was found that the effect of these configurations on the transition rates was negligible, the variation of A-values being smaller than 0.1% for M1 lines within the $4d^9$ (W²⁹⁺) and 4d (W^{37+}) configurations. This does not seem to confirm that the discrepancies between the GRASP2K data of Jonauskas et al (2012) and all the other theoretical calculations are due to missing configurations in the latter models. Following our present work, the origin of these discrepancies remains thus unclear.

Table 4. Comparison of radiative transition probabilities (*A* in s⁻¹) for experimentally observed M1 lines in W²⁹⁺ through W³⁷⁺ ions. *X*(*Y*) stands for $X \times 10^{Y}$.

Ion	Transition	$\lambda_{exp}{}^a$	$A_{\rm MCDF}^{\rm b}$	$A_{\rm HFR}^{\rm c}$	$A_{\rm FAC}^{\rm d}$	A _{GRASP2K} ^e
W ²⁹⁺	$4d^{9}[1]_{5/2}-4d^{9}[2]_{3/2}$	75.664	3.74(4)	3.82(4)	3.72(4)	2.48(4)
W ³⁰⁺	$\begin{array}{l} 4d^8[1]_4 - 4d^8[7]_4 \\ 4d^8[4]_3 - 4d^8[8]_2 \\ 4d^8[2]_2 - 4d^8[6]_1 \\ 4d^8[2]_2 - 4d^8[5]_2 \\ 4d^8[1]_4 - 4d^8[4]_3 \end{array}$	57.041 67.092 68.757 79.031 79.421	1.71(4) 6.52(4) 2.54(4) 2.83(4) 4.71(4)	1.74(4) 6.66(4) 2.57(4) 2.93(4) 4.83(4)	$1.69(4) \\ 6.49(4) \\ 2.51(4) \\ 2.81(4) \\ 4.68(4)$	1.69(4) 4.65(4) 1.51(4) 2.82(4) 3.66(4)
W ³¹⁺	$4d^{7}[1]_{9/2}-4d^{7}[5]_{9/2}$ $4d^{7}[1]_{9/2}-4d^{7}[4]_{7/2}$	66.676 80.488	3.55(4) 5.00(4)	3.64(4) 5.12(4)	3.49(4) 4.97(4)	3.53(4) 4.00(4)
W ³²⁺	$\begin{array}{l} 4d^6[1]_4 - 4d^6[7]_5 \\ 4d^6[8]_6 - 4d^6[21]_6 \\ 4d^6[1]_4 - 4d^6[5]_4 \end{array}$	66.108 66.819 80.303	9.28(3) 2.20(4) 4.15(4)	9.78(3) 2.26(4) 4.29(4)	9.20(3) 2.18(4) 4.07(4)	1.13(4) 2.19(4) 4.12(4)
W ³³⁺	$\begin{array}{l} 4d^5[1]_{5/2} - 4d^5[4]_{3/2} \\ 4d^5[1]_{5/2} - 4d^5[3]_{7/2} \\ 4d^5[2]_{5/2} - 4d^5[11]_{5/2} \end{array}$	69.236 70.618 70.822	5.63(4) 2.14(4) 9.16(4)	5.75(4) 2.27(4) 9.50(4)	5.57(4) 2.12(4) 9.03(4)	3.71(4) 2.82(4) 9.10(4)
W ³⁴⁺	$\begin{array}{l} 4d^4[2]_1 - 4d^4[7]_2 \\ 4d^4[2]_1 - 4d^4[6]_0 \\ 4d^4[3]_2 - 4d^4[11]_1 \\ 4d^4[4]_4 - 4d^4[10]_5 \\ 4d^4[4]_4 - 4d^4[2]_1 \\ 4d^4[4]_4 - 4d^4[8]_4 \end{array}$	66.240 68.060 69.695 73.664 85.563 86.451	6.52(4) 1.24(5) 5.03(4) 2.31(4) 4.11(4) 3.76(4)	6.88(4) 1.26(5) 5.13(4) 2.43(4) 4.35(4) 3.94(4)	6.45(4) 1.23(5) 4.97(4) 2.29(4) 4.08(4) 3.70(4)	$\begin{array}{c} 1.08(5) \\ 4.11(4) \\ 2.99(4) \\ 2.81(4) \\ 1.23(5) \\ 3.74(4) \end{array}$
W ³⁵⁺	$\begin{array}{c} 4d^3[3]_{3/2} - 4d^3[12]_{5/2} \\ 4d^3[7]_{5/2} - 4d^3[16]_{3/2} \\ 4d^3[6]_{9/2} - 4d^3[13]_{11/2} \\ 4d^3[1]_{3/2} - 4d^3[5]_{1/2} \\ 4d^3[3]_{3/2} - 4d^3[10]_{3/2} \\ 4d^3[2]_{5/2} - 4d^3[8]_{7/2} \\ 4d^3[5]_{1/2} - 4d^3[11]_{1/2} \\ 4d^3[1]_{3/2} - 4d^3[3]_{3/2} \\ 4d^3[4]_{7/2} - 4d^3[9]_{9/2} \\ 4d^3[6]_{9/2} - 4d^3[9]_{9/2} \\ 4d^3[1]_{3/2} - 4d^3[2]_{5/2} \\ \end{array}$	$\begin{array}{c} 56.382\\ 56.654\\ 61.534\\ 62.230\\ 62.985\\ 65.920\\ 66.003\\ 71.046\\ 75.664\\ 77.476\\ 82.268\end{array}$	$\begin{array}{c} 3.64(4)\\ 3.91(4)\\ 2.20(4)\\ 1.39(4)\\ 6.72(4)\\ 7.31(4)\\ 6.71(4)\\ 3.72(4)\\ 1.96(4)\\ 3.18(4)\\ 4.53(4) \end{array}$	$\begin{array}{c} 3.78(4)\\ 3.23(4)\\ 2.27(4)\\ 1.46(4)\\ 6.89(4)\\ 7.59(4)\\ 6.89(4)\\ 3.77(4)\\ 2.02(4)\\ 3.29(4)\\ 4.77(4) \end{array}$	$\begin{array}{c} 3.62(4) \\ 3.90(4) \\ 2.19(4) \\ 1.39(4) \\ 6.67(4) \\ 7.27(4) \\ 6.66(4) \\ 3.70(4) \\ 1.95(4) \\ 3.15(4) \\ 4.49(4) \end{array}$	5.45(4) 2.60(4) 2.62(4) 6.94(3) 6.70(4) 9.71(4) 6.69(4) 3.70(4) 2.44(4) 3.17(4) 6.76(4)
W ³⁶⁺	$\begin{array}{c} 4d^2[3]_3-4d^2[8]_2\\ 4d^2[1]_2-4d^2[5]_1\\ 4d^2[1]_2-4d^2[4]_2\\ 4d^2[3]_3-4d^2[7]_4\\ 4d^2[4]_2-4d^2[8]_2\\ 4d^2[5]_1-4d^2[8]_2\\ 4d^2[1]_2-4d^2[3]_3\\ 4d^2[6]_4-4d^2[7]_4\\ 4d^2[2]_0-4d^2[5]_1\\ \end{array}$	52.619 54.120 57.430 59.801 63.589 68.060 70.774 79.509 85.585	$\begin{array}{c} 1.27(4)\\ 3.77(3)\\ 2.77(4)\\ 5.95(4)\\ 4.80(4)\\ 2.04(4)\\ 5.39(4)\\ 1.55(4)\\ 2.11(4) \end{array}$	$\begin{array}{c} 1.28(4)\\ 3.86(3)\\ 2.84(4)\\ 6.13(4)\\ 4.92(4)\\ 2.13(4)\\ 5.59(4)\\ 1.60(4)\\ 2.26(4) \end{array}$	$\begin{array}{c} 1.27(4)\\ 3.76(3)\\ 2.77(4)\\ 5.92(4)\\ 4.79(4)\\ 2.03(4)\\ 5.35(4)\\ 1.55(4)\\ 2.10(4) \end{array}$	9.04(3) 2.27(3) 2.77(4) 7.63(4) 4.79(4) 3.39(4) 7.53(4) 1.55(4) 6.32(4)
W^{37+}	4d[1] _{3/2} -4d[2] _{5/2}	64.668	3.93(4)	4.06(4)	3.97(4)	5.87(4)

^a From Radtke *et al* (2007).

^b MCDF calculations from this work.

^c HFR calculations from this work.

^d FAC calculations from Jonauskas et al (2010).

^e GRASP2K calculations from Jonauskas et al (2012).

5. Conclusion

A new set of theoretical wavelengths and transition probabilities has been obtained for forbidden lines within the $4p^k$ and $4d^k$ ground configurations of multicharged tungsten ions. These results are intended to help plasma physicists with line identifications and interpretation of spectra emitted by plasmas produced in fusion reactors. The accuracy of the present data was tested by comparison with some available experimental and theoretical wavelengths and with transition rates previously calculated for a few lines using different computational approaches. Our new wavelengths are in excellent agreement with the EBIT measurements and with the most reliable calculations performed previously. Concerning the radiative transition probabilities, although our MCDF results are in excellent agreement with data obtained using other approaches (HFR, FAC), unexpected large differences remain with the recent GRASP2K results of Jonauskas *et al* (2012). However, our detailed analysis does not seem to demonstrate that such differences can be explained by missing configurations in our physical models.

Acknowledgments

The author is Senior Research Associate of the Belgian FRS-FNRS. Financial support from this organization is acknowledged.

References

- Aymar M, Crance M and Klapisch M 1970 *J. Physique* **31** C4 Charro E, Curiel Z and Martin I 2002 *Astron. Astrophys.*
- **387** 1146
- Charro E, Lopez-Ferrero S and Martin I 2003 Astron. Astrophys. 406 741
- Clementson J, Beiersdorfer P and Gu M F 2010 *Phys. Rev.* A **81** 012505
- Cowan R D 1981 *The Theory of Atomic Structure and Spectra* (Berkeley, CA: University of California Press)
- Doron R and Feldman U 2001 Phys. Scr. 64 319
- Feldman U, Doron R, Klapisch M and Bar-Shalom A 2001 *Phys. Scr.* **63** 284
- Feldman U, Indelicato P and Sugar J 1991 J. Opt. Soc. Am. B 8 3 Fischer C F, Gaigalas G and Ralchenko Y 2006 Comput. Phys. Commun. 175 738
- Fournier K B 1998 At. Data Nucl. Data Tables 68 1
- Fullerton L W and Rinker G A 1976 Phys. Rev. A 13 1283
- Grant I P and McKenzie B J 1980 J. Phys. B: At. Mol. Phys. 13 2671
- Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
- Hawryluk R J et al 2009 Nucl. Fusion 49 065012
- Huang K N 1984 At. Data Nucl. Data Tables 30 313
- Huang K N 1985 At. Data Nucl. Data Tables 32 503 Huang K N 1986 At. Data Nucl. Data Tables 34 1
- Huang K N, Kim Y K, Cheng K T and Desclaux J P 1983 At. Data Nucl. Data Tables 28 355
- Jonauskas V, Gaigalas G and Kucas S 2012 At. Data Nucl. Data Tables 98 19
- Jonauskas V, Kisielius R, Kyniene A, Kucas S and Norrington P H 2010 *Phys. Rev.* A **81** 012506

- Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
- Klapisch M 1971 Comput. Phys. Commun. 2 239
- Klapisch M, Schwob J L, Fraenkel B and Oreg J 1977 J. Opt. Soc. Am. 67 148
- Kramida A E and Shirai T 2006 J. Phys. Chem. Ref. Data 35 423
- Kramida A E and Shirai T 2009 At. Data Nucl. Data Tables **95** 305 Matthews G F et al 2007 Phys. Scr. T **128** 137
- McKenzie B J, Grant I P and Norrington P H 1980 Comput. Phys. Commun. 21 233
- Mohr P J 1974 Ann. Phys. 88 52
- Mohr P J 1975 Phys. Rev. Lett. 34 1050
- Neu R, Fournier K B, Bolshukhin D and Dux R 2001 *Phys. Scr.* T 92 307
- Neu R, Fournier K B, Schlögl D and Rice J 1997 J. Phys. B: At. Mol. Opt. Phys. 30 5057
- Norrington P H 2009 http://www.am.qub.ac.uk/DARC/
- Pitts R A et al 2009 Phys. Scr. T 138 014001
- Porto J V, Kink I and Gillaspy J D 2000 Phys. Rev. A 61 054501
- Pütterich T, Neu R, Biedermann C, Radtke R and ASDEX Upgrade Team 2005 J. Phys. B: At. Mol. Opt. Phys. **38** 2071
- Quinet P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195007
- Quinet P, Vinogradoff V, Palmeri P and Biémont E 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144003
- Radtke R, Biedermann C, Fussmann G, Schwob J L, Mandelbaum P and Doron R 2007 Atomic and Plasma-Material Interaction Data for Fusion vol 13 (Vienna: IAEA)
- Ralchenko Y, Draganic I N, Osin D, Gillaspy J D and Reader J 2011a Phys. Rev. A 83 032517
- Ralchenko Y, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U and Holland G E 2008 J. Phys. B: At. Mol. Opt. Phys. 41 021003
- Ralchenko Y, Kramida A E, Reader J and NIST ASD Team 2011b NIST Atomic Spectra Database v.4.1.0
- Ralchenko Y, Reader J, Pomeroy J M, Tan J N and Gillaspy J D 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3861
- Ralchenko Y, Tan J N, Gillaspy J D, Pomeroy J M and Silver E 2006 *Phys. Rev.* A **74** 042514
- Safronova U I and Safronova A S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074026
- Saloman E B and Kim Y K 1989 At. Data Nucl. Data Tables 41 339
- Tragin N, Geindre J-P, Monier P, Gauthier J-C, Chenais-Popovics C,
- Wyart J-C and Bauche-Arnoult C 1988 *Phys. Scr.* **37** 72 Utter S B, Beiersdorfer P and Brown G V 2000 *Phys. Rev.* A **61** 030503
- Utter S B, Beiersdorfer P and Trabert E 2002 Can. J. Phys. 80 1503