Non-linear mechanical solvers for GMSH

UCL – March 2012

Authors: J. Babu, G. Becker, V.-D. Nguyen, L. Noels, L. Wu

- Different projects going on
 - Fracture of composites
 - ERA-NET
 - CENAERO, e-Xstream, IMDEA, Tudor
 - Mean-field homogenization with damage
 - ERA-NET
 - CENAERO, e-Xstream, IMDEA, Tudor
 - Fracture or MEMS
 - UCL
 - Fracture of thin structures
 - MS3, GDTech
 - Computational multiscale
 - ARC
- Different methods

- Need of common computational tools
- Need of maximum flexibility

Structure for non-linear finite element analyzes

- •Pure virtual classes
- •Definition of classical material laws
- •Time integration
- •Parallel implementation
- •...

Material Law

Structure for non-linear material laws

- •Defines constitutive model
- Interface with Abaqus, MFH (e-Xstream)
- •Allows defining full coupled problems
- •Allows considering fracture

Non-linear mechanical solvers for GMSH

Interface for dG3D

- Discontinuous Galerkin formulation
 - Finite-element discretization
 - Same discontinuous polynomial approximations for the

• **Trial** functions $\delta \varphi$

- Definition of operators on the interface trace:
 - Jump operator: $\llbracket \bullet \rrbracket = \bullet^+ \bullet^-$
 - Mean operator: $\langle \bullet \rangle = \frac{\bullet^+ + \bullet^-}{2}$
- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable

2012

• Has the optimal convergence rate

- **Discontinuous Galerkin formulation**
 - // & fracture
 - Formulation in terms of the first Piola stress tensor P

$$\boldsymbol{\nabla}_{0} \cdot \mathbf{P}^{T} = 0 \text{ in } \Omega \quad \boldsymbol{\&} \quad \begin{cases} \mathbf{P} \cdot \boldsymbol{N} = \bar{\boldsymbol{T}} \text{ on } \partial_{N} \Omega \\ \boldsymbol{\varphi}_{h} = \bar{\boldsymbol{\varphi}}_{h} \text{ on } \partial_{D} B \end{cases}$$

Weak formulation obtained by integration by parts on each element Ω^e

- Interface term rewritten as the sum of 3 terms
 - Introduction of the numerical flux h

$$\int_{\partial_{I}B_{0}} \left[\!\left[\delta\boldsymbol{\varphi}\cdot\mathbf{P}\left(\boldsymbol{\varphi}_{h}\right)\right]\!\right]\cdot\boldsymbol{N}^{-} d\partial B \to \int_{\partial_{I}B_{0}} \left[\!\left[\delta\boldsymbol{\varphi}\right]\!\right]\cdot\boldsymbol{h}\left(\mathbf{P}^{+},\,\mathbf{P}^{-},\,\boldsymbol{N}^{-}\right) d\partial B$$

- Has to be consistent: $\begin{cases} h\left(\mathbf{P}^{+},\,\mathbf{P}^{-},\,N^{-}\right) = -h\left(\mathbf{P}^{-},\,\mathbf{P}^{+},\,N^{+}\right) \\ h\left(\mathbf{P}_{\mathrm{exact}},\,\mathbf{P}_{\mathrm{exact}},\,N^{-}\right) = \mathbf{P}_{\mathrm{exact}}\cdot N^{-} \end{cases}$
- One possible choice: $\boldsymbol{h}\left(\mathbf{P}^{+},\,\mathbf{P}^{-},\,\boldsymbol{N}^{-}
 ight)=\langle\mathbf{P}
 angle\cdot\boldsymbol{N}^{-}$
- Weak enforcement of the compatibility

$$\int_{\partial_I B_0} \left[\!\!\left[\boldsymbol{\varphi}_h\right]\!\!\right] \cdot \left\langle \frac{\partial \mathbf{P}}{\partial \mathbf{F}} : \boldsymbol{\nabla}_0 \delta \boldsymbol{\varphi} \right\rangle \cdot \boldsymbol{N}^- \ d\partial B$$

- Stabilization controlled by parameter β , for all mesh sizes h^s

$$\int_{\partial_I B_0} \llbracket \boldsymbol{\varphi}_h \rrbracket \otimes \boldsymbol{N}^- : \left\langle \frac{\beta}{h^s} \frac{\partial \mathbf{P}}{\partial \mathbf{F}} \right\rangle : \llbracket \delta \boldsymbol{\varphi} \rrbracket \otimes \boldsymbol{N}^- \ d\partial B :$$

 Those terms can also be explicitly derived from a variational formulation (Hu-Washizu-de Veubeke functional) [Noels & Radovitzky, IJNME 2006 & JAM 2006]

- Taylor impact test
 - Copper bar impacting a rigid wall

Interface for dG3D

- Cohesive Zone Method for fracture
 - Based on the use of cohesive elements
 - Inserted between bulk elements
 - Intrinsic Law
 - Cohesive elements inserted from the beginning
 - Drawbacks:
 - Efficient if a priori knowledge of the crack path
 - Mesh dependency [Xu & Needelman, 1994]
 - Initial slope modifies the effective elastic modulus
 - This slope should tend to infinity [Klein et al. 2001]:
 - » Alteration of a wave propagation
 - » Critical time step is reduced
 - Extrinsic Law
 - Cohesive elements inserted on the fly when
 failure criterion is verified [Ortiz & Pandolfi 1999]
 - Drawback
 - Complex implementation in 3D (parallelization)

Non-linear mechanical solvers for GMSH

Interface for dG3D

Non-linear mechanical solvers for GMSH

- MATERA project: SIMUCOMP
 - CENAERO,
 - e-Xstream, IMDEA Materials Tudor, ULg
 - Application to composites
 - Representative nature?
 - First results

2012

- Thin bodies
 - FRIA (MS3, GDTech)
 - C¹ continuity required
 - Test functions

- New DG interface terms
 - Consistency
 - Compatibility

2012

- Stability

- New cohesive law for thin bodies
 - Should take into account a through the thickness fracture
 - Problem : no element on the thickness
 - Very difficult to separate fractured and not fractured parts
 - Solution:
 - Application of cohesive law on
 - The resultant stress

 $n^{11} \Longrightarrow N(\Delta^*)$

The resultant bending stress

 $\tilde{m}^{11} \Longrightarrow M(\Delta^*)$

- In terms of a resultant opening Δ^{*}

$$\Delta^* = (1 - \beta)\Delta_x + \beta \frac{h}{6}\Delta_r$$

 $h_{\rm eq}$ for non-linear materials

- Application
 - Notched elasto-plastic cylinder submitted to a blast

- Application
 - Fragmentation of a brittle ceramic ring submitted to centrifugal forces
 - Weibull strength distribution

- Future application: Rupture of MEMS

UCL

Interface for Non Local Damage

Interface for Non Local Damage

- MATERA project: SIMUCOMP
 - CENAERO, e-Xstream, IMDEA Materials, Tudor, ULg
- Mean Field Homogenization
 - 2-phase composite

$$\langle \boldsymbol{\sigma} \rangle = v_0 \langle \boldsymbol{\sigma} \rangle_{\omega_0} + v_1 \langle \boldsymbol{\sigma} \rangle_{\omega_1} \langle \boldsymbol{\sigma} \rangle_{\omega_1} = \overline{C_1} : \langle \boldsymbol{\varepsilon} \rangle_{\omega_1} \langle \boldsymbol{\sigma} \rangle_{\omega_0} = \overline{C_0} : \langle \boldsymbol{\varepsilon} \rangle_{\omega_0}$$

Mori-Tanaka assumption

• Extension to damage?

Damage

The numerical results change with the size of mesh and direction of mesh

The numerical results change without convergence

- Implicit non-local approach
 - New equation on an internal variable

- Non-local damage
 - Lemaitre-Chaboche

$$\dot{D} = \left(\frac{Y}{S_0}\right)^n (\dot{p} + c_1 \nabla^2 \dot{p} + c_2 \nabla^4 \dot{p} + \dots)$$
$$= \left(\frac{Y}{S_0}\right)^n \dot{\overline{p}}$$

- *S*⁰ and *n* are the material parameters
- *Y* is the strain energy release rate
- *p* is the accumulated plastic strain
- New equation in the system

$$\overline{p} - c\nabla^2 \overline{p} = p$$

$$\implies \begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\bar{p}} \\ \mathbf{K}_{\bar{p}u} & \mathbf{K}_{\bar{p}\bar{p}} \end{bmatrix} \begin{bmatrix} d\mathbf{u} \\ d\bar{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{ext} - \mathbf{F}_{int} \\ \mathbf{F}_{p} - \mathbf{F}_{\bar{p}} \end{bmatrix}$$

- MFH with Non-local damage
 - Based on Linear Composite Comparison [Wu, Noels, Adam & Dogrhi, CMAME2012]

$$\delta \boldsymbol{\sigma} = \upsilon_1 \delta \boldsymbol{\sigma}_1 + \upsilon_0 \delta \boldsymbol{\sigma}_0$$

$$\delta \boldsymbol{\sigma}_0 = (1 - D) \boldsymbol{C}_0^{\text{alg}} : \delta \boldsymbol{\varepsilon}_0 - \hat{\boldsymbol{\sigma}}_0 \delta D \quad \& \quad \hat{\boldsymbol{\sigma}}_0 = \boldsymbol{\sigma}_0 / (1 - D)$$

$$\delta \boldsymbol{\sigma} = \upsilon_1 \boldsymbol{C}_1^{\text{alg}} \delta \boldsymbol{\varepsilon}_1 + \upsilon_0 (1 - D) \boldsymbol{C}_0^{\text{alg}} : \delta \boldsymbol{\varepsilon}_0 - \upsilon_0 \hat{\boldsymbol{\sigma}}_0 \delta D$$

Mori-Tanaka

$$\delta \boldsymbol{\sigma} = \overline{\boldsymbol{C}}^{\text{alg}D} : \delta \boldsymbol{\varepsilon} - \upsilon_0 \hat{\boldsymbol{\sigma}}_0 \frac{\partial D}{\partial \overline{p}} \delta \overline{p}$$

- Finite elements with 4 dofs/node
 - $\begin{cases} \nabla \boldsymbol{\sigma} + \boldsymbol{f} = \boldsymbol{\theta} & \text{for homogenized material} \\ \overline{p} l^2 \nabla^2 \overline{p} = p & \text{related to matrix only} \end{cases}$

$$\implies \begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\bar{p}} \\ \mathbf{K}_{\bar{p}u} & \mathbf{K}_{\bar{p}\bar{p}} \end{bmatrix} \begin{bmatrix} d\mathbf{u} \\ d\bar{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{ext} - \mathbf{F}_{int} \\ \mathbf{F}_{p} - \mathbf{F}_{\bar{p}} \end{bmatrix}$$

- MFH with Non-local damage
 - Epoxy-CF (30%)

2012

Non-linear mechanical solvers for GMSH

iversité 🚺 🖥

Interface for Non Local Damage

Application

- Epoxy CF (50%)
- Laminate 45/-45/-45/45 with a hole
- Finite element mesh in each layer, with appropriate MFH laws

Interface for FE²

Interface for FE²

- Computational Multiscale
 - Macro-scale
 - High-order Strain-Gradient formulation
 - C1 weakly enforced by DG
 - Partitioned mesh

- Computational Multiscale
 - Macro-scale
 - High-order Strain-Gradient formulation
 - C1 weakly enforced by DG
 - Partitioned mesh

- Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions [Nguyen, Béchet,

Geuzaine & Noels COMMAT2011]

- Non-conforming mesh
- Use of interpolant functions
- Stability

2012

Non-linear mechanical solvers for GMSH

Interface for FE²

- Computational Multiscale
 - Macro-scale
 - High-order Strain-Gradient formulation
 - C1 weakly enforced by DG
 - Partitioned mesh
 - Transition
 - Gauss-Points on different processors
 - Each Gauss point is associated to
 - One mesh
 - One solver
 - Data: IPStates, fields of microproblem
 - Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions [Nguyen, Béchet,

Geuzaine & Noels COMMAT2011]

- Non-conforming mesh
- Use of interpolant functions
- Stability

0.101

1.86e-10

Non-linear mechanical solvers for GMSH

0.202

Interface for FE²

Conclusions

NonLinearMechSolver

- Generic tool to solve mechanical problems
- // implementation based on DG

Applications

- Different projects, which include the solver
 - Projects are independent
- First results

2012

- More work coming ...

• Efficient tool for collaborations

- Can be downloaded
- Allows defining a new project easily

