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Abstract: Theoretical frequencies of green area index (GAI) measurements were assessed in order to bring out the optimum 
frequencies for the monitoring of the senescence of winter wheat as well as the relationships between metrics which could be derived 
and the final grain yield. Several profiles of GAI decreasing curves were elaborated based on field measurements. Two functions, 
usually employed in green leaf area decreasing curves fitting (i.e., modified Gompertz and logistic functions) were then used to 
characterize the senescence phase and to calculate their metrics. These analyses showed that the two curve fitting functions 
satisfactorily described the senescence phase on frequencies of four to six GAI measurements, well distributed throughout a period of 
30-35 days. The regression-based modeling showed that those involving metrics from logistic function (i.e., maximum value of GAI, 
green area duration and senescent rate) were more suitable than that of the modified Gompertz function for wheat yield estimates. 
Such results could be useful for studies at larger scales (involving remote sensing airplane or satellite data) and focused on the 
senescence in terms of optimum number of measurements and frequencies for developing models for yield estimates. 
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1. Introduction 

Growth and duration of green leaf area of a crop 

determine the percentage of the incident solar 

radiation that will be intercepted by the crop canopy 

across time, thereby influencing canopy 

photosynthesis, photosynthate translocation and final 

yield [1]. The total leaf area of a canopy is often 

quantified by a dimensionless variable called leaf area 

index (LAI), defined as half the total developed area 

of leaves per unit of ground horizontal surface area 

[2]. Many methods of LAI measurements have been 

reported [3-5] and vary greatly in their accuracy, bias 

and ease of measurement. LAI can be measured either 

directly (destructive approaches) or indirectly (non 

destructive approaches). The latter generally use 
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optical sensors and are based on light transmittance or 

on canopy gap fraction measurements. The gap 

fraction is the probability of a light ray missing all 

foliage elements while passing through the canopy [6]. 

Because of the sensitivity of the gap fraction to both 

green and non-green vegetation elements, Baret et al. 

[7] have shown how green area index (GAI), rather 

than LAI or plant area index, was closer to the 

variable that could be estimated from gap fraction on 

the field. GAI, relating to the photosynthetically 

active (green) plant area with no differences between 

leaves, stems and reproductive organs, has been 

widely used in photosynthesis [8], canopy light 

interception [9, 10] and light use efficiency [11] in 

crop models because it is more closely related with 

the fraction of absorbed photosynthetically active 

radiation. Indirect determination of GAI requires 

optical devices able to separate green from senescent 
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or wooden parts within the canopy [4]. Among these 

devices, digital hemispherical photography became 

recently very popular since a large number of very 

high resolution images can be acquired with simple 

commercial cameras and next processed easily with 

most current computers [7]. Hemispherical 

photography is a technique for studying plant 

canopies via  photographs acquired through a 

hemispherical (fisheye) lens from beneath the canopy 

(oriented towards zenith) or placed above the canopy 

looking downward [4]. However, a daily monitoring 

of crop canopy growth at field level, specifically the 

decline of its green area, remains expensive, laborious 

and time consuming. 

In a previous study [12], we demonstrated that 

winter wheat (Triticum aestivum L.) yield can be 

estimated from metrics derived from the decreasing 

part of the GAI at field level. Although, this previous 

study gave interesting results on the senescence 

characterization and final yield estimates, the 

optimum number of GAI measurements has not been 

extensively studied. Moreover, in order to implement 

such methods in a large-scale monitoring framework, 

a good knowledge relating to the optimum number of 

measurements is of great interest. The present paper 

serves as an extension with additional analyses 

according to different frequencies of GAI 

measurements and its influence on: (1) the 

characterization of the senescence phase and (2) the 

performances of regression-based models for yield 

estimation. Based on field measurements of winter 

wheat GAI, different measurements frequencies were 

set up first. Characterizations of the senescence phase, 

as well as the calculation of metrics, were then 

performed through the curve fitting of GAI profiles 

using the modified Gompertz and logistic functions 

[13]. Finally, attention was paid to the 

regression-based models that could be assessed for 

yield estimates, and the usefulness of these findings 

for studies implying remote sensing (airborne or 

satellite) data. 

2. Material and Methods 

2.1 Field Data 

Field experiments were carried out during the 

2008-2009 cropping season in three sites in 

Luxembourg: Everlange (49°47′N, 5°57′E), 

Christnach (49°45′N, 6°14′E) and Burmerange 

(49°29′N, 6°19′E). Crop practices (sowing and harvest 

methods, weed control, fungicide treatment) were 

representative of usual wheat production in 

Luxembourg [14]. At each site, the wheat cultivar was 

sown in a randomized block design with four 

replicates. Each plot size was 8 m  1.5 m and each 

replicate block consisted of treated (including double 

and triple fungicide treatment) or untreated (no 

fungicide treatment) plots. The fungicide treatment 

was always a mix of strobilurin and triazol. 

Field GAI data were retrieved from digital 

hemispherical photography (DHP) taken above the 

canopy during the beginning of May and the beginning 

of July 2009 (Table 1). GAI values were determined 

by processing these DHP using the CAN-EYE 1 

software (version 6.2). A description of the CAN-EYE 

software and its underlying equations is given by 

Weiss [5] and Demarez [15]. Due to the plot size, three 

DHP were taken above the canopy of each plot, with a 

spatial sampling of 1.5 m between DHP. 

Measurements were done at a height of approximately 

0.7-1.0 m. The calculation of GAI value for each level 

of fungicide treatment was consequently achieved 

using the total DHP by level of treatment, that is to say 

12 DHP. Canopies were relatively homogeneous 

throughout plots for a given level of fungicide 

treatment. This allowed gathering all DHP for the 

calculation of its corresponding GAI value. 

2.2 Theoretical Frequencies of GAI Measurements 

Theoretical frequencies of measurements based on 

field GAI data were then established. The period of 

measurements spanned approximately over 32 days at 
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Table 1  Classes of combinations based on data of GAI available during the senescence phase GS : growing stage, 
phenological stage according to Zadoks scale [16]. DoY: Day of year. 

 GS 
DoY 

With 4 values With 5 values  
With six
values 

With 
seven 
values 

 C_41 C_42 C_43 C_44 C_45 C_46 C_51 C_52 C_53 C_54 C_55 C_56  C_61 C_62 C_7 

B
ur

m
er

an
ge

 

61 153 X X X X X X X X X X X X  X X X 

69 159 X X X X   X X X X    X X X 

69 163 X X X X  X X X X  X   X X X 

73 173 X     X X X X   X  X X X 

77 177  X   X  X   X X X  X X X 

82 180   X  X   X  X X X  X  X 

83 184    X X X   X X X X   X X 

                   

C
hr

is
tn

ac
h 

65 159 X X X X X X X X X X X X  X X X 

69 163 X X X X   X X X X    X X X 

75 173 X X X X  X X X X  X   X X X 

77 177 X      X X X   X  X X X 

79 180  X   X X X   X X X  X X X 

83 184   X  X   X  X X X  X  X 

85 187    X X X   X X X X   X X 

                   

E
ve

rl
an

ge
 

65 159 X X X X X X X X X X X X  X X X 

69 163 X X X X   X X X X    X X X 

72 173 X X X X  X X X X  X   X X X 

77 177 X      X X X   X  X X X 

79 180  X   X X X   X X X  X X X 

83 184   X  X   X  X X X  X  X 

85 187    X X X   X X X X   X X 
 

Burmerange site, and 35 days at Christnach and 

Everlange sites. Seven GAI measurements have been 

done over this period for all sites. Four classes of 

combinations (class with four, five, six and seven 

values) were therefore elaborated, with at least four 

GAI values in each class (Table 1). Thus, the classes 

of combinations with four or five values (i.e., C_41 to 

C_44, C_51 to C_53) were characterized on the one 

hand by combinations with three or four GAI 

measurements in the first 10 days after the maximum 

GAI value, between growing stage GS 61 and GS 69 

[16], and one GAI measurement in the two last weeks 

of measurements. On the other hand, these classes 

included combinations with three GAI measurements 

in the last two weeks and one or two measurements in 

the first half of the period of measurements (i.e., C_46, 

C_54 to C_56). Combinations with six GAI 

measurements differed only on the date of the final 

measurement considered, while the combination with 

seven values (C_7) was that with all data of GAI 

measured. Each combination was composed by nine 

values of GAI, representing three plots by three sites. 

2.3 Characterizing the Senescence Phase of Green Area 

The modified Gompertz (Eq. 1) and logistic (Eq. 2) 

functions [13] were chosen to describe the senescent 

phase in this study. Their formulae are given as follows: 

   mtkGAItGAI  expexp)( max  (1) 

   mtk

GAI
tGAI




exp1
)( max    (2) 

Where GAImax refers to the maximum value of GAI, m 

is the position of the inflection point in the decreasing 

part of the GAI curve, k is the relative senescence rate, 



Importance of a Well-distributed Frequency of Measurements in the Senescence  
Monitoring of Winter Wheat and Yield Estimates 

  

1206

and t is the thermal time expressed in growing 

degree-days. 

The duration of green area during the senescence 

phase is expressed by the metric m. In Eq. 1 it 

corresponds to the thermal time taken to reach 37% 

(50% in Eq. 2) of green area remaining. 

The quality of curve fitting was assessed through 

the variance accounted for (VAF) using these 

functions, the mean absolute error (MAE) and the root 

mean square error (RMSE). The corresponding 

formulae of these indicators are given in Table 2. 

2.4 Relationship between Metrics of the Senescence 

Phase and Observed Yields 

Results from multiple linear regressions were used to 

assess the relationships between metrics characterizing 

the senescence phase and observed yields. Multiple 

linear regressions were done separately by set of inputs 

according to each curve fitting function from which 

metrics are derived (Table 3). 

To test the robustness and the ability of the 

generated regression-based models to estimate wheat 

grain yield at field level, a leave-one-out cross 

validation was performed. Statistics indicators (RMSE, 

MAE, relative RMSE [RRMSE], adjusted R2 [adj. R2]) 

were used to quantify the performances of these 

models (Table 2). 

3. Results and Discussion 

3.1 Curve Fitting of GAI Profiles 

Globally, at least 85% of total combinations had a 

VAF value greater than 90%, regardless of the curve 

fitting function. The mean VAF value for the class 

combination with four and five GAI measurements 

varied between 85% and 99%, and between 93% and 

98% for the class combination with six and seven GAI 

measurements. RMSE were low and ranging between 

0.1 and 0.3 m2 m-2 on average in all class 

combinations, suggesting a good fit. We can therefore 

report that the two curve fitting functions satisfactorily 

describe the senescence phase. Nonetheless, some 

differences between these functions were noted in the 

quality of their fitting. Comparing results of the two 

curve-fitting functions, out of 135 combinations, there 

were 93 where VAF using the logistic function was 

greater than those obtained using the modified 

Gompertz function. Similarly, in the case of MAE (or 

RMSE), there were 64% of combinations with MAE
 

Table 2  Statistics indicators and their definition. 

Statistic Formula 

Variance accounted for 100 1  

Mean absolute error 
1

| | 

Root mean square error  

Adjusted R2 . ² 1
1 1 ²

 

Relative root mean square error 100  

SSE: sum of squared errors; E: estimated yields; O: observed yields; Ō: mean value of the observed yields; n: number of observations; 
p: number of parameters in the model. 
 

Table 3  Parameters of models. 

Model Parameters of model 
 Modified Gompertz function Logistic function 
Mod. 1 mgomp, GAImax mlog, GAImax 
Mod. 2 kgomp, GAImax klog, GAImax 
Mod. 3 mgomp, kgomp mlog, klog 
Mod. 4 mgomp, kgomp, GAImax mlog, klog, GAImax 
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obtained after fitting by the modified Gompertz 

function greater than those obtained after fitting by the 

logistic function. The ANOVA performed with the 

VAF and the MAE revealed that they were 

significantly different (P < 0.01 in case of the VAF 

and P < 0.05 in case of MAE). The statistical 

difference between the results of the curve fitting 

functions on the one hand, and the number of good 

fitting by the logistic function on the other hand, 

therefore, showed that this latter should be preferred 

to characterize the senescent phase of winter wheat 

GAI at the field level. 

3.2 Frequency of GAI Measurements and 

Characterization of the Senescence Phase 

Each combination studied refers to one theoretical 

frequency of GAI measurement. The mean MAE 

values were almost the same within each class of 

combination. These values were low and ranging 

between 0.02 and 0.29 m2 m-2, for the two 

curve-fitting functions for all the combinations. The 

mean VAF values increased from the first to the last 

in each class of combination (e.g., class with four, five 

and six GAI measurements, Fig. 1). Low mean VAF 

values were associated to combinations C_41, C_42, 

C_51 and C_52 (Fig. 1). These combinations involved 

either three, four or five GAI measurements in the first 

10 to 20 days following GAImax (Table 1). The GAI 

measurements in these combinations were not well 

distributed throughout the senescence phase. The 

period of measurements spanned approximately over 

32 days for Burmerange site and 35 days for both 

Christnach and Everlange sites. All the GAI values in 

the combinations above were ranged between GAImax 

and the end of milky ripening growth stage (Table 1). 

Adding one or two GAI measurements after the first 

20 days following GAImax, along with a 

well-distributed frequency, gave a better description 

of the senescence phase (mean VAF greater than 90%, 

Fig. 1). A good characterization of the decreasing 

phase is one which associates high VAF value and 

low MAE value. In such a case, comparing the mean 

VAF and MAE values, combinations with satisfactory 

characteristics were the last three in class combination 

with four measurements (C_44 and C_46): the mean 

VAF was greater than 95% (Fig. 1) and a mean MAE 

not greater than 0.15 m2 m-2 (Fig. 2). Results of 

combinations C_55, C_56 and C_62 were quite 

similar to these results. 

Data available in this study allowed two classes of 

combination with six measurements and one class 

with seven measurements. This made comparisons 

with other classes difficult. Nonetheless, despite its 

seven measurements during the senescence phase, the 

combination C_7 presented low VAF values and high 

MAE value on average, compared to the best classes 

in combinations with four and five measurements 

(C_44-C_46 and C_55-C_56, Fig. 1 and Fig. 2). This 

could be explained by GAI values which appeared as 

“outlier” in the decreasing phase. An example of 

curve fitting with “outlier” is shown in Fig. 3. 

Statistical indicators of the second curve fitting (Fig. 

3b) are more interesting than those of the first (Fig. 

3a). In this latter, the second GAI value after the 

GAImax tends to increase the MAE and to reduce the 

VAF. The fungicide treatments involved in each site 

allowed different decreasing phases of the GAI. The 

distribution of VAF by fungicide treatment shows that 

three low VAF values were associated to plots with 

two fungicide treatments. In these cases, the 

curve-fitting functions did not suit well to GAI 

profiles. There is no physiological assumption 

explaining this fact. These bad characterizations 

appeared in profiles where some GAI values seem to 

be “outlier”. GAI measurements are sensitive to a 

range of external and internal factors, often inducing 

difficult-to-define errors in the final estimate at the 

scale of interest. Such GAI values might be accounted 

for by differences in photographic exposure (e.g., 

presence of wind, boundary effects) despite every care 

being taken to make these as similar as possible. The 

number of bad curve fitting did not however disturb 
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Fig. 1  Average VAF value by curve fitting function and combination. Numbers in brackets express the range of VAF for the 
combination. SD designs the standard deviation. 
 

 
Fig. 2  Average MAE value by curve fitting function and by combination. Numbers in brackets express the range of VAF for 
the combination. SD designs the standard deviation.  
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Fig. 3  Curve-fitting of two different GAI profiles in class combination with seven measurements (logistic function). (a) Plot 
with two fungicide treatments; (b) Plot with no fungicide treatment. The dashed line represents the adjusted curve. The 
points are the measured values of GAI. 
 

the overall goodness of fitting. In order to assess the 

relationships between metrics and yield in the 

subsequent analyses, metrics derived from fitting with 

VAF greater than or equal to 80% were taken into 

account. 

3.3 Relationships between Metrics and Grain Yield 

Results of models assessed by combination along 

with their performances criteria are shown in Table 4 

and Table 5. Generally, for all combinations, the 

model Mod. 2 (involving the senescence rate and 

GAImax) did not explain significantly the variability in 

observed yields, regardless the curve-fitting function 

from which metrics were derived. Non statistical 

significativity was also observed in the case of 

combinations C_41, C_42, C_43, C_51, C_52 and 

C_61 according to models Mod. 1, Mod. 3 and Mod. 4. 

The non-significant models were associated to 

combinations with bad curve-fitting characteristics. 

For the other combinations, regression-based models 

were statistically significant and the adj. R2 greater 

than 0.75 (Tables 4 and 5). The adj. R2 and the MAE 

varied between 0.75 and 0.84 and between 0.42 and 

0.51 t ha-1, respectively, according to models 

involving metrics from the modified Gompertz 

function (Table 4). For models involving metrics from 

the logistic function, the adj. R2 ranged between 0.82 

and 0.88, and the MAE between 0.33 and 0.40 t ha-1. 

Models with high level of significance were those 

involving metrics from the logistic function (C_44, 

C_46, C_53 and C_62, Table 5). The corresponding 

RMSE of the three models Mod. 1, Mod. 3 and Mod. 

4 for these combinations varied between 0.35 and 0.49 

t ha-1; whereas the range of the RMSE of models with 

metrics from Gompertz function was between 0.45 

and 0.58 t ha-1 (Tables 4 and 5). Given the statistical 

indicators obtained with models of the combination 

with all GAI measurements (i.e., C_7: adj. R2 ranged 

between 0.81 and 0.87 and RMSE ranged between 

0.38 and 0.50 t ha-1), models with interesting 

characteristics could be obtained in combinations with 

four to six GAI values. These conclusions are 

confirmed through the validation phase performed on 

statistically significant models. 

The results of the cross-validation of significant 

models for each combination are shown in Table 6. 

The RMSE of models were less than 0.62 t ha-1 and 

ranging between 0.44 and 0.62 t ha-1 for models based 

on metrics derived from modified Gompertz function, 

while for that of the logistic function this range was 

between 0.42 and 0.54 t ha-1 (Table 6). According to 

GAI data available in this study, these results showed 
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Table 4  Statistical test results for yield estimates (models based on metrics derived from the modified Gompertz function). 

Mod. 1 

 

Mod. 2 Mod. 3 

 

Mod. 4 

Parameters mgomp, GAImax kgomp, GAImax mgomp, kgomp mgomp, kgomp, GAImax 

 
adj. 
R2 

MAE 
(t 
ha-1) 

RMSE 
(t ha-1) 

Model 
significance 
(P > F)a 

adj. 
R2 

MAE 
(t 
ha-1) 

RMSE 
(t ha-1)

Model 
significance 
(P > F)a 

adj. 
R2 

MAE 
(t 
ha-1)

RMSE 
(t ha-1)

Model 
significance 
(P > F)a 

adj. 
R2 

MAE 
(t 
ha-1) 

RMSE 
(t ha-1)

Model 
significance 
(P > F)a 

C_41 -0.03 0.96 1.17 ns -0.03 0.96 1.17 ns -0.10 1.05 1.21 ns -0.23 0.96 1.17 ns 

C_42 -0.01 0.92 1.16 ns -0.04 0.94 1.18 ns -0.19 1.16 1.26 ns -0.2 0.90 1.15 ns 

C_43 0.43 0.73 0.87 ns -0.03 0.91 1.13 ns 0.29 0.86 0.97 ns 0.48 0.61 0.76 ns 

C_44 0.83 0.43 0.48 ** 0.07 0.94 1.11 ns 0.8 0.45 0.51 ** 0.79 0.43 0.47 * 

C_45 0.75 0.51 0.58 ** -0.08 0.90 1.20 ns 0.76 0.48 0.57 ** 0.71 0.48 0.57 * 

C_46 0.84 0.42 0.46 ** 0.03 0.90 1.14 ns 0.83 0.43 0.47 ** 0.81 0.43 0.46 ** 

C_51 -0.01 0.93 1.16 ns -0.06 0.95 1.19 ns -0.24 1.22 1.28 ns -0.15 0.85 1.13 ns 

C_52 0.41 0.73 0.89 ns 0.00 0.93 1.15 ns 0.24 0.86 1.01 ns 0.59 0.53 0.68 ns 

C_53 0.83 0.43 0.47 ** 0.17 0.81 1.05 ns 0.83 0.43 0.48 ** 0.80 0.43 0.47 * 

C_54 0.81 0.46 0.50 ** -0.05 0.92 1.18 ns 0.78 0.49 0.54 ** 0.79 0.44 0.48 * 

C_55 0.81 0.46 0.51 ** -0.04 0.91 1.19 ns 0.78 0.48 0.54 ** 0.77 0.44 0.50 * 

C_56 0.84 0.42 0.47 ** -0.06 0.87 ns 0.84 0.42 0.47 ** 0.8 0.42 0.47 * 

C_61 0.42 0.74 0.88 ns 0.03 0.91 1.14 ns 0.19 0.89 1.04 ns 0.62 0.52 0.65 ns 

C_62 0.84 0.43 0.46 ** 0.16 0.88 1.06 ns 0.83 0.43 0.47 ** 0.82 0.43 0.45 ** 

C_7 0.82 0.44 0.49 ** 0.11 0.93 1.09 ns 0.81 0.45 0.50 ** 0.82 0.41 0.45 ** 
aP value associated with F value (this ratio compares variability explained by the regression line with variability not explained by the 
regression line). Significant level, *P < 0.05; **P < 0.01 and ns: P > 0.05. 
 

Table 5  Statistical test results for yield estimates (models based on metrics derived from the logistic function). 

Mod.1 

 

Mod.2 Mod.3 

 

Mod.4 

Parameters mloo, GAImax klog, GAImax mlog, klog mlog, klog, GAImax 

 
adj. 
R2 

MAE 
(t 
ha-1) 

RMSE 
(t ha-1) 

Model 
significance 
(P > F)a 

adj. 
R2 

MAE 
(t 
ha-1) 

RMSE 
(t ha-1)

Model 
significance 
(P > F)a 

adj. 
R2 

MAE 
(t 
ha-1)

RMSE 
(t ha-1)

Model 
significance 
(P > F)a 

adj. 
R2 

MAE 
(t 
ha-1) 

RMSE 
(t ha-1)

Model 
significance 
(P > F)a 

C_41 -0.01 0.95 1.16 ns -0.02 0.96 1.16 ns -0.08 1.04 1.20 ns -0.21 0.95 1.16 ns 

C_42 0.02 0.91 1.14 ns -0.01 0.94 1.16 ns -0.16 1.14 1.24 ns -0.18 0.90 1.14 ns 

C_43 0.48 0.67 0.83 ns 0.1 0.91 1.09 ns 0.28 0.87 0.98 ns 0.48 0.62 0.76 ns 

C_44 0.87 0.36 0.41 *** 0.32 0.81 0.95 ns 0.88 0.34 0.40 *** 0.89 0.30 0.35 ** 

C_45 0.82 0.42 0.49 ** -0.03 0.87 1.17 ns 0.82 0.43 0.49 ** 0.79 0.44 0.49 * 

C_46 0.88 0.33 0.40 *** 0.24 0.84 1.01 ns 0.88 0.34 0.39 *** 0.86 0.35 0.39 ** 

C_51 0.02 0.93 1.14 ns -0.03 0.95 1.17 ns -0.21 1.20 1.27 ns -0.15 0.86 1.13 ns 

C_52 0.46 0.70 0.85 ns 0.08 0.91 1.10 ns 0.21 0.87 1.02 ns 0.55 0.55 0.71 ns 

C_53 0.87 0.36 0.41 *** 0.61 0.58 0.72 * 0.87 0.36 0.41 *** 0.87 0.35 0.39 ** 

C_54 0.84 0.40 0.46 ** 0.06 0.92 1.12 ns 0.85 0.39 0.45 ** 0.86 0.35 0.48 ** 

C_55 0.84 0.40 0.46 ** 0.08 0.91 1.10 ns 0.85 0.39 0.44 ** 0.84 0.37 0.42 ** 

C_56 0.86 0.35 0.44 ** 0.06 0.83 1.12 ns 0.87 0.34 0.42 ** 0.84 0.35 0.42 ** 

C_61 0.46 0.71 0.85 ns 0.12 0.91 1.08 ns 0.18 0.90 1.05 ns 0.56 0.57 0.70 ns 

C_62 0.87 0.36 0.41 *** 0.55 0.65 0.78 * 0.88 0.35 0.39 *** 0.88 0.33 0.36 ** 

C_7 0.83 0.40 0.47 ** 0.48 0.74 0.83 ns 0.86 0.38 0.44 ** 0.87 0.34 0.38 ** 
aP value associated with F value (this ratio compares variability explained by the regression line to variability not explained by the 
regression line). Significant level. *P < 0.05; **P < 0.01; ***P < 0.001 and ns: P > 0.05. 
 

that a number of four to six GAI measurements, well 

distributed throughout the senescence phase (one or 

two measurements in the first half of the period of 

measurements and three measurements in the last two 

weeks), could lead to satisfactory performances of 

models for yield estimation. Comparing models 
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Table 6  Models performances after the validation test (leave-one-out cross-validation). Only statistically significant models 
are shown in the table. 

Modified Gompertz function Logistic function 

 

Mod. 1  Mod. 3  Mod. 4 Mod. 1 Mod. 3  Mod. 4 

RMSE 
(t ha-1) 

MAE 
(t ha-1) 

 

 

RMSE 
(t ha-1) 

MAE 
(t ha-1) 

 

 

RMSE
(t ha-1)

MAE 
(t ha-1) 

RMSE 
(t ha-1) 

MAE
(t ha-1)

RMSE 
(t ha-1) 

MAE 
(t ha-1) 

 

 

RMSE
(t ha-1)

MAE 
(t ha-1) 

C_44 0.51 (4) 0.44  0.56 (4) 0.46  0.56 (4) 0.45 0.44 (4) 0.37 0.43 (3) 0.36  0.41 (3) 0.33 

C_45 0.61 (5) 0.51  0.61 (5) 0.49  0.62 (5) 0.50 0.52 (4) 0.43 0.52 (4) 0.43  0.54 (4) 0.44 

C_46 0.49 (4) 0.43  0.51 (4) 0.43  0.53 (4) 0.43 0.42 (3) 0.34 0.43 (3) 0.35  0.44 (3) 0.35 

C_53 0.51 (4) 0.44  0.44 (3) 0.44  0.52 (4) 0.44 0.44 (4) 0.37 0.44 (4) 0.37  0.43 (3) 0.36 

C_54 0.53 (4) 0.47  0.48 (4) 0.50  0.54 (4) 0.45 0.49 (5) 0.41 0.48 (4) 0.40  0.45 (3) 0.36 

C_55 0.54 (4) 0.47  0.48 (4) 0.49  0.58 (5) 0.46 0.49 (5) 0.40 0.48 (4) 0.39  0.47 (4) 0.38 

C_56 0.49 (4) 0.43  0.45 (3) 0.43  0.53 (4) 0.43 0.46 (4) 0.36 0.45 (4) 0.35  0.48 (4) 0.37 

C_62 0.49 (4) 0.43  0.51 (4) 0.44  0.51 (4) 0.43 0.44 (4) 0.37 0.42 (3) 0.36  0.42 (3) 0.34 

C_7 0.52 (4) 0.44  0.54 (4) 0.46  0.50 (4) 0.41 0.50 (4) 0.41 0.47 (4) 0.39  0.42 (3) 0.35 
aNumbers in brackets designed the RRMSE (expressed in %). 
 

according to the curve-fitting function from which 

metrics were derived, this study also revealed good 

criteria of models involving metrics from the logistic 

function. 

Theoretical frequencies of GAI measurements 

allowed a wide range of situations to be analysed. 

Absolute rules on applying, evaluating and choosing a 

function to fit a curve are difficult to establish because 

there are too many factors and purposes (explicative, 

descriptive or predictive purpose) involved in the 

fitting of a curve [17]. The choice of function will, 

therefore, depend on the specific purposes of the study, 

the compliance with expected and observed curve 

shapes and the purpose of comparing parameter values 

with those found in the literature. In our study the 

modified Gompertz and logistic functions were 

chosen to describe and characterize the decreasing 

phase of winter wheat GAI. The logistic function has 

been used in various studies to describe or to simulate 

the process of individual leaves senescence [18-20]. A 

key hypothesis underlying this study is that GAImax 

was determined as a maximum value reached during 

field observations, and consequently depending on the 

initial experimental protocol [12]. Even though this 

initial experimental protocol was elaborated in order 

to minimize such errors in the determination of GAImax, 

further research is needed to determine whether this 

determination could influence the characterization of 

the senescence phase and the performances of 

regression-based models. 

The analyses carried out in this study are very 

interesting because they allow an identification of 

possible frequency of GAI measurements during the 

senescence phase which give a satisfactory estimation 

of grain yields. The regression-based models, 

involving the GAImax, the senescence rate and the 

green area duration (expressed through the time to 

reach 50% or 37% of green area remaining), showed 

satisfactory performances for yield estimation: RMSE 

of about 0.35-0.49 t ha-1, and 0.45 and 0.58 t ha-1 for 

models based on metrics derived from the logistic 

function and modified Gompertz function, 

respectively. Although the study is based on GAI 

calculated from hemispherical photography, it could 

be useful in researches based on data retrieved from 

air- or space-borne sensors in order (1) to characterize 

the shape of wheat senescence phase and (2) to relate 

its yield to metrics calculated from this phase. 

Providing crop-specific biophysical variables, such as 

GAI, at relevant spatial and temporal resolutions can 

help crop growth modelling improvement or simple 

approaches development/improvement for yield 

forecasting at national or regional scales. Remote 

sensing imagery can be acquired by a range of 



Importance of a Well-distributed Frequency of Measurements in the Senescence  
Monitoring of Winter Wheat and Yield Estimates 

  

1212

airborne and space-borne sensors from multispectral 

sensors to hyperspectral sensors with wavelengths 

ranging from visible to microwave, spatial resolutions 

ranging from sub-metre to kilometre and temporal 

frequencies ranging from 30 min to weeks or months 

(XIE [21] for review). The amount of measurements 

in time could be limited, however, resulting in the 

absence of images at critical moments during the 

growing season. This study could therefore serve as a 

basis for further studies on the use of GAI temporal 

profiles retrieved from earth observation satellite data 

and focusing on the phase of senescence in winter 

wheat yield estimates. 

4. Conclusions 

The evolution of wheat canopy during the crop 

season, especially during the grain filling and 

maturation stages, is of great interest in the 

determination of grain yield. This paper sought to 

study the influence of wheat GAI measurements 

frequencies on the monitoring of the senescence and 

the estimation of yield. Based on field monitoring 

spanning over 30-35 days and theoretical frequencies 

of measurements, this study suggests that a number of 

four to six GAI measurements, well distributed 

throughout the senescence phase, could lead to a 

satisfactory description of its decreasing phase using a 

logistic function and acceptable models for yield 

estimation. 
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