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SUMMARY 
The establishment of tools for trends analysis in groundwater is essential 
for the prediction and evaluation of measures taken within context of the 
Water Framework Directive and the draft Groundwater Directive. This report 
describes the development of trend detection and extrapolation methods. A 
novel approach for demonstrating trends is presented for the Dutch Meuse 
case, based on back-scaling of time series using 3H/3He ages. The method 
yields convincing results, because it effectively reduces uncertainty in trend 
analysis, which is caused by groundwater age variations. Trend reversal was 
demonstrated for several chemical indicators and trend extrapolation was 
feasible using additional simple regression. The Wallonian Meuse case 
focuses on the complications caused by more-yearly fluctuations of nitrate 
in areas with thick unsaturated zones. A comparison was made between 
parametrical and non-parametrical methods to overcome these inherent 
sources of variability. Several innovative approaches are presented for the 
Brévilles catchment in France. Especially the impulse-response approach 
and the possibilistic regression approach helped to understand the 
functioning of the groundwater system with respect to pesticide transport. 
Advantages of these approaches are that the require only information on 
high temporal resolution monitoring data and rainfall inputs. 
 
 
 
 
MILESTONES REACHED 
 
T2.4: Statistical time trend estimation and extrapolation at test locations 
 
The extrapolated trends in groundwater seems to be interesting for surface 
water – groundwater interaction studies in work packages FLUX and BASIN.  
The effective demonstration of trend reversal in groundwater due to effective 
Manure regulations in the lower Meuse basin is interesting within the work 
of EUPOL. 
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1. Introduction to TREND 2 (TNO) 

 
1.1 Background and objectives 
The implementation of the EU Water Framework Directive (2000/60/EU) and the draft 
Groundwater Directive asks for specific methods to detect the presence of long-term 
anthropogenically induced upward trends in the concentration of pollutants in 
groundwater. Specific goals for trend detection have been under discussion during the 
preparation of the recent draft of the Groundwater Directive. The draft Directive defines 
criteria for the identification and reversal of significant and sustained upward trends and 
for the definition of starting points for trend reversal. Figure 3.1.1 illustrates the trend 
reversal concept, as communicated by EU Commission Officer Mr. Ph. Quevauviller. 
The figure 3.shows how the significance of trends is related to threshold concentrations 
which should be defined by the member states.  
 

 
Figure 1.1 Trend reversal concept of the draft EU Groundwater Directive. 
 
Trends should be reversed when concentrations increase up to 75% of the threshold 
concentration. Member states should reverse trends which present a significant risk of 
harm to associated aquatic ecosystems, directly dependent terrestrial ecosystems, 
human health, whether actual or poten 
tial, of the water environment, through the program of measures referred to in Article 11 
of the Water Framework Directive, in order to progressively reduce pollution of 
groundwater. Thus, there is a direct link between trends in groundwater and the status 
and trends in related surface waters. This notion is central to the overall objectives of 

the AQUATERRA research project. 

Working hypothesis 1: 
Groundwater quality is of utmost importance to the quality of surface waters. Establishment
of trends in groundwater is essential for prediction and evaluation of measures taken within
the Framework Directive and the draft Groundwater Directive. 

 
Accordingly, the work package TREND-2 of Aquaterra is dedicated to the following 
overall objectives. 
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Development of operational methods to assess, quantify and extrapolate trends in 
groundwater systems. The methods will be applied and tested at various scales and in 
various hydrogeological situations. The methods applied should be related to the trend 
objectives of the Water Framework Directive and draft Groundwater Directive. In 
addition to the DOW, it is our ambition to link changes in groundwater quality to 
changes in surface water quality.  
Linking changes in land use, climate and contamination history to changes in 
groundwater chemistry. We define a temporal trend as ‘a change in groundwater 
quality over a specific period in time, over a given region, which is related to land use 
or water quality management’, according to Loftis 1991, 1996. 

 
It should be noted that trends in groundwater quality time series are difficult to detect 
because of (1) the long travel times involved, (2) possible obscuring or attenuating 
effect of physical and chemical processes, (3) spatial variability of the subsurface, 
inputs and hydrological conditions and (4) short-term natural variability of groundwater 
quality time series. The TREND 2 package is dedicated to the development and 
validation of methods which overcome many of these problems.  
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Working hypothesis 2: 
Detection of trends in groundwater is complicated by spatial variations in pressures, in flow
paths and groundwater age, in chemical reactivity of groundwater bodies, and by temporal
variations due to climatological factors. Methods for trend detection should be robust in
dealing with this inherent variability. 
roundwater pollution is caused by both point and diffuse sources. Large scale 
roundwater quality, however, is mainly connected to diffuse sources, so that the 
REND 2 project will concentrate on trends in groundwater quality connected to diffuse 

nputs, notably nutrients, metals and pesticides. We will consider a number of large 
asins in Europe and try to devise a trend monitoring method and network. Although 

rends in groundwater quality can occur at large scales, linking groundwater quality to 
and use and contamination history requires analysis at smaller scale, i.e. groundwater 
ubsystems. Thus, the approach zooms in on groundwater system analysis around 
bservation locations. Results will be extended to large scale monitoring.  

.2 General methods used in TREND 2 
esearch activities within TREND 2 focus on the following issues: 

nventory of monitoring data of different basins and sub-catchments. The inventory 
ocuses on observation points with existing long time series. The wells should 
referably be located in agricultural areas, because pesticides and nutrients are the 
ain concern in trend detection for the Water Framework Directive. Additional 

nformation will be collected about historical land use changes and related changes in 
he input of solutes into the groundwater system. 
evelopment of suitable trend detection concepts. Trend detection concepts include 
oth statistical approaches (classical parametrical and non-parametrical methods, 
ybrid techniques) and conceptual approaches (time-depth transformation, age dating) 
ethods for trend aggregation for groundwater bodies. The Water Framework Directive 
emands that trends for individual points are aggregated on the spatial scale of the 
roundwater bodies. The project will focus on robust methods for trend aggregation. 
rend extrapolation. Trend extrapolation will be based on statistical extrapolation 
ethods and on deterministic modelling. Both 1D and 3D model may be applied to 
redict future changes and to compare these with measured data from time series.  
ecommendations for monitoring. Results from the various case studies will be used to 
utline recommendations for optimizing monitoring networks for trend analysis 
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1.3 TREND 2 case studies 
The following case studies have been selected for testing the methodologies: 
 
Table 1.1: Case studies 
Basin Contaminants Institutes 
Meuse   
Dommel upper tributaries Nitrate, sulfate, Ni, Cu, Zn, Cd TNO/UU 
Noord-Brabant region Nitrate, sulfate, Ni, Cu, Zn, Cd TNO/UU 
Wallonian catchments: 
Néblon 
Pays Herve 
Hesbaye 
Floodplain Meuse 

Nitrate Ulg 

Brévilles   
Brévilles catchment Pesticides BRGM 
Elbe 
Czech subbasins 
Schleswig-Holstein 

 
Nitrate 
Nitrate 

IETU 

 
These cases have different spatial scales and different hydrogeological situations. 
Details on the various cases are provided in the subsequent chapters of this report.  
 
1.4 Contents of the current report 
This report describes the results of trend analysis, including both trend detection and 
trend extrapolation. A novel approach for demonstrating trends is presented for the 
Dutch case, based on back-scaling of time series using 3H/3He ages. The method 
yields convincing results, because it effectively reduces uncertainty in trend analysis 
which is caused by groundwater age variations. Trend reversal was demonstrated for 
several chemical indicators and trend extrapolation was feasible using additional 
simple regression. The Wallonian case focuses on the complications caused by more-
yearly fluctuations of nitrate in areas with thick unsaturated zones. A comparison was 
made between parametrical and non-parametrical methods to overcome these inherent 
sources of variability. Several innovative approaches are presented for the Brévilles 
catchment in France. Especially the impulse-response approach and the possibilistic 
regression approach helped to understand the functioning of the groundwater system 
with respect to pesticide transport.  
 
1.5 Structure of the report 
This report describes statistical trend analysis results for the various cases of TREND 
2. Chapters 2 to 4 describe the trend estimation and extrapolation for the the Dutch 
Meuse, the Wallonian Meuse and the Brévilles catchments, respectively. Chapter 5 
gives a brief discussion on the results of the various cases, focusing on opportunities 
and limitations on the integration of methods for trend analysis. 
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1.6 Glossary 
 
Parametrical methods Methods of trend analysis based on an assumption of  a specific 

frequency distribution (for instance normal distribution) 
Non-parametrical methods  Methods of trend analysis which do not make assumptions on. 
Impulse-response approach  Black box model to describe the response of hydraulic head to 

precipitation 
Possibilistic regression
approach 

 Regression methods that use mathematical tools that describe 
information that is incomplete or imprecise 

OXC oxidation capacity  
SUMCAT sum of cations  
LOWESS smooth  LOcally WEighted Scatter-plot Smoothing 
VMW Vlaamse Maatschappij voor Watervoorziening), the Flemish water 

supply company 
Mann Kendall test  Non-parametric trend test, recommended for use in large data sets 

where the normality assumption cannot be checked for all 
individual time series 

Shapiro-Wilks test Test for normality of data for small dataset: n<50 
Shapiro- Francia test Test for normality of data for large dataset: n>50 
D’Agostino’s test  Test for normality of data for large dataset 
Normality Gaussian distributed data 
Kendall´s slope Non-parametrically determined trend slope 
Sen’s slope Non-parametrically determined trend slope 
TEMPO computer tool  Windows-based tool which facilitates groundwater data analysis 

and enables the modelling of time series through iterative 
calibrations of combinations of transfer functions 

Holt's two parameter
method 

 method for exponential smoothing of a time series 

SVM  support vector machine 
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2. Demonstrating trend reversal using tritium-helium 
age scaling: results for the Dutch Meuse subcatchment 

(TNO/UU) 
 
A. Visser1, H.P. Broers2 & B. van der Grift2 

1Department of Physical Geography, Utrecht University 
2TNO-NITG - Division of Soil and Groundwater 
 
TNO-NITG 
Princetonlaan 6 / P.O. Box 80015 
3508 TA Utrecht, The Netherlands 
Tel: +31 30 2564750 
Fax: +31 30 2564755 
h.broers@nitg.tno.nl 
 
2.1 Introduction 
 
In this section we present a new method for the interpretation of groundwater quality 
time series using modern groundwater travel time determination. This method involves 
the back-scaling of the individual time series by the 3H/3He groundwater age, resulting 
in figures that show the measured concentrations plotted against the estimated time of 
recharge. These figures can directly be compared to the input functions of the targeted 
chemicals. We will show that the results of trends in historical inputs can easily be 
observed and detected from these concentration - recharge date plots. 
 
Using simple regression statistics between the aggregated back-scaled time series and 
the estimated input function gives us a tool to extrapolate future time trends, based on 
presumed land use- input scenarios.  
 
2.1.1 Theoretical groundwater age - depth relationship 
For groundwater flow to a fully penetrating drain or watercourse, the following travel 
time distribution can be used (Raats, 1978, 1981):  









−
=

zD
D

N
Dtz lnε

 (2.1) 

where tz; age at depth z [years]; D: aquifer thickness [m]; ε: porosity; N: groundwater 
recharge [m/year] and z: depth below land surface [m]. Equation (2.1) yields a 
horizontal pattern of isochrones (lines of equal groundwater travel time) which is shown 
in Figure 2.1. The equation has proved useful for a range of Dutch conditions, because 
the Netherlands has a flat topography and thick, permeable aquifers.  
 

 
Figure 2.1: Theoretical age-depth relationship with horizontal isochrones, applicable to recharge 
areas in the Dutch Meuse basin (After Broers and Van der Grift, 2004) 
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2.1.2 Variation in groundwater ages 
On a regional scale, the parameters that control this relationship may vary. For 
instance, the aquifer thickness is known to be less in the western part of the Dutch 
Meuse basin (Meinardi, 1994). Heterogeneity in the subsurface will also cause 
deviations from the ideal theoretical case, as can be seen in Figure 2.2. In this 
theoretical example, a discontinuous layer with low permeability affects the flow-field 
such that younger water is able to infiltrate locally to greater depths, replacing older 
water. 

 
Figure 2.2: Effect of a discontinuous layer with low permeability on the flow field and age 
distribution. (After Broers and Van der Grift, 2004) 
 
These variations in groundwater age distribution will cause erroneous interpretation of 
the groundwater quality time series if the ideal theoretical relationship is assumed. 
Figure 2.3 shows the groundwater ages, as determined by 3H/3He groundwater dating 
(as presented in Deliverable T2.3) plotted against the groundwater ages predicted by 
equation 2.1, to show the variation in groundwater ages.  
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Figure 2.3: 3H/3He ages plotted against the expected theoretical ages. 
 
2.2 Data 
The data used for the profiles mentioned in the title were described Table 2.2 of 
Deliverable T2.1. Summarizing, the data include time series since 1980 or 1991 of the 
chemical composition of the groundwater sampled at 14 locations in agricultural 
recharge areas in the lower Meuse basin (shown on Figure 2.4). Measurements 
include field parameters (pH, EC and dissolved oxygen) concentrations of major 
cations (Na, K, Ca, Mg, Fe, Al and NH4) and anions (Cl, NO3, SO4, HCO3 and PO4) and 
trace metals (i.e. Cd, Cu, Ni, Zn). These data were readily avaiblable from the 
provincial monitoring network. 
For the present study, thirty-one screens between 4 and 26 m below surface level were 
sampled for tritium-helium. Samples were analyzed by the Institut für Umweltphysik of 
the Bremen University (Sültenfuß et al., 2004). The measurements were interpreted 
with an estimated recharge temperature of 10°C, an elevation of 0 m above sea level 
and a salinity of zero. See for further details deliverable T2.3. Tritium-helium ages were 
preferred over CFC and SF6 ages, because they were considered more reliable. This 
relates to the associated dissolved noble gas measurements which gave indications of 
age uncertainties. 
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Figure 2.4: Well locations in the agricultural recharge areas in the lower Meuse basin, listed in 
Table 2.2 of Deliverable T2.1 
 
Chemical indicators  
The results of this procedure will be presented for six chemical indicators: three 
reactive targeted contaminants (nitrate, aluminum and potassium), and three 
conditionally conservative indicators (oxidation capacity (OXC), the chloride 
concentration and the sum of cations (SUMCAT)). These three chemical indicators are 
used because they are insensitive to specific subsurface reactions. 
 
The oxidation capacity was defined as the weighted sum of molar concentrations of 
NO3 and SO4 after Postma et al. (1991):  ][SO7][NO5OXC 2

43
−− ∗+∗=

OXC behaves conservatively during the process of nitrate reduction by pyrite oxidation 
under the condition that no other reactions occur, i.e. no subsurface denitrification by 
organic matter.  
Chloride is a conservatively transported ion under normal pH conditions. 
The sum of cations (in fact, major cations: Na, K, Mg, Ca, Fe, Al, NH4) is useful as a 
conditionally conservative indicator when cation-exchange processes dominate the 
transport of the cations and mineral dissolution does not occur. Moreover, the sum of 
cations is an indicator of the total load of solutes in the groundwater. 
 
2.3 Back-scaling of time series 
 
2.3.1 Method 
Better knowledge of the age distribution among the wells enables the use of an 
alternative trend approach, which is based on “back-scaling” the time series with the 
known groundwater age. The main assumption is that groundwater age at a certain 
monitoring screen is constant in time (for example Goode, 1996) This assumption 
seems reasonable given the long time scales of transport compared with the time 
scales of seasonal transient effects. The individual time series which cover the 
monitoring period 1992–2004 were scaled back in time using the tritium-helium age. 
For example, the time series of a monitoring screen with an age of 9 years is scaled 
back to the period 1983–1995.  
 
2.3.2 Example: Oxidation capacity 
Figure 2.5 shows the back-scaled time series of the oxidation capacity are presented. 
Each individual time series is assigned a unique color to distinguish between the time 
series. The time series now reflect the approximate recharge period. The advantages 
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of the method are 2-fold: (a) every time series provides information over a range of 
recharge years, and (b) data of multiple time series is available for each recharge year. 
A LOWESS smooth (LOcally WEighted Scatter-plot Smoothing, Cleveland & Devlin, 
1988) was used to generate a trend line through all the time series data in the graph. 
This trend line reflects the local median of all measurements, which in fact reflects the 
area aggregated median trend. This enables the direct comparison of the measured 
concentrations with the regional historical inputs, which were described in deliverable 
T2.2. 
 
A LOWESS smooth through all the time series is plotted in black. This curve indicates 
the local median of all the time series. The LOWESS smooth is interpreted as the 
aggregated median trend for the agricultural recharge areas of Figure 2.4. The dashed 
black lines are the LOWESS smooths through the residuals between the back-scaled 
time series and the original LOWESS smooth. These indicate the local 25 and 75 
percentile trend of all the time series. This indicates a confidence interval around the 
LOWESS smooth. We are confident that a certain trend is well described by the 
LOWESS smooth, if the confidence shows the same trend.  
 
Since each data point of the time series is plotted at the year of recharge, the median 
curve or LOWESS smooth should resemble the curve of the historical surplus input of 
the agricultural recharge areas which was derived in deliverable T2.2 (red line). 
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Figure 2.5: Time series of oxidation capacity back-scaled to the year of recharge of the 
samples. A LOWESS smooth (black line) is used to show the overall trend in these data. 
Dashed black lines indicate the 50% confidence interval around the LOWESS smooth. Red line 
indicates expected values based on historical inputs. Individual time series from selected 
piezometers have unique colors.  
 
A few remarks can be made about this plot. First of all, there is a large noise in the 
individual time series. From individual time series it is hard to distinguish a trend in 
oxidation capacity. However, combining all the measured data into an aggregated trend 
using the LOWESS smooth, a clear trend reversal is demonstrated for OXC with a 
peak concentration around the year 1985. Both the LOWESS smooth itself, as the 25 
and 75 percentile smooths increase towards a maximum observed oxidation capacity 
in groundwater that has recharged in 1985. Younger water shows a downward trend, 
resulting from the establishment of the Manure Law in 1985 and reduction of manure 
inputs from that time onward. 
 
2.3.3 Results 
From the study of the historical inputs, as described in Deliverable T2.2, we expect an 
upward trend in the concentrations in water recharging before 1985, and a downward 
trend in groundwater recharging after 1985 for solutes that travel with the same velocity 
as the groundwater itself. The following figures of back-scaled time series of 
conservative chemical indicators (OXC, Cl- and SUMCAT) confirm these expectations. 
The reactive indicators (NO3

-, Al and K+) show a somewhat different behaviour, as a 
result of subsurface reaction and consequently non-conservative transport.  
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Figure 2.6: Comparison of measured trends (LOWESS smooths through back-scaled time 
series of six chemical indicators, in black) with historical inputs (red). Reactive indicators (top) 
show large discrepancies with historical inputs. Conservative indicators (bottom) are consistent 
with the expected trends.  
 
2.3.4 Conservative indicators 
The LOWESS smooth in Figure 2.6 indicates an increasing trend over the period 
1950–1985 for all conservative indicators (bottom), a trend reversal and decreasing 
trends after 1985. There is a striking similarity between the estimated historical inputs 
and the trend derived from the monitoring data, even though the individual time series 
showed large fluctuations and probable measurement errors. This confirms the 
expectation that OXC and the sum of cations behave conservatively in the subsurface 
and confirms the increase of concentrations until the introduction of the Netherlands 
Manure Law in 1985 and the decrease afterwards. 
 
2.3.4 Reactive chemical constituents 
The discrepancy between the expected and actual concentrations of nitrate (top left) 
are probably caused by denitrification by pyrite oxidation or organic matter in the 
saturated zone. Nitrate concentrations are lower than expected when nitrate would 
have been transported conservatively. The 25 percentile trend even indicates that 25% 
of the agricultural areas have concentrations below 50 mg/l for all infiltration years. 
However, the median aggregated nitrate trend clearly shows trend reversal with a peak 
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around 1985. Given the close resemblance between the OXC measured and expected 
trends, we propose that the main mechanism of nitrate removal is the oxidation of 
pyrite. Earlier studies indeed show the presence of abundant pyrite in the Noord-
Brabant subsoil (for example Broers 2004). 
 
Aluminum shows strong adsorption and retardation. The upper confidence limit of the 
LOWESS smooth does indicate the expected trends, but the median aggregated 
LOWESS smooth is still increasing in the low concentration range. This is attributed to 
the slow vertical movement of the acidification front. 
 
Similarly, the potassium concentrations are increasing slowly in younger groundwater, 
unlike the input curve. Although the input curve is sharply decreasing since 1985, the 
aggregated median trend mooth is increasing slowly into the 1990s. The 
concentrations remains constant in younger waters, but no trend reversal can be 
observed. This is attributed to the retarding effect of cation exchange between 
potassium and calcium and magnesium; the ratio between the slopes of the input curve 
and the actual measured trend slope give some indication on the effective retardation 
factor, which is about three. This would mean that the maximum concentrations might 
only be reached after the year 2020. 
 
2.3.5 Conclusions 
A groundwater dating method such as 3H/3He provides a novel tool to detect trend 
reversal, aggregating monitoring data for larger areas. This removes the uncertainty in 
trend analysis that is caused by groundwater age variations. Large year to year 
variation in concentrations remain, but the back-scaling of time series yields a large 
number of data points for each year of infiltration. Trends are readily observed in back-
scaled time series. The observed trend reversal in the aggregated monitoring data 
could well be related to the pattern of historical inputs. The upward trend in 
concentrations up to 1985 is clear in all conservative indicators. Even better visible is 
the trend reversal and subsequent downward trend since 1985, caused by the 
establishment of the Manure Law and the subsequent reduction of manure inputs.  
 
Overall, the described novel approach for detection of trend reversal is well suited to 
meet the objectives of the draft Groundwater Directive, as illustrated in Figure 1.1.  
 
The observed trend can well be related to the reconstructed historical inputs. This 
allows the trend propagation and extrapolation based on estimates of future land use, 
which will be presented in the following sections. 
 
2.4 Trend extrapolation 
 
2.4.1 Correlation of back-scaled time series with historical inputs 
To propagate the trends observed in the time series into the future, we rely on the 
extrapolation of the input curves and expected future land use. To do so, we need to 
know whether these input curves are reliable in hindsight. Correlating the historical 
inputs to the observed trends will yield such information. So before extrapolating the 
observed trends using land use scenarios, a simple linear regression between the input 
curves and the LOWESS smooths was applied. This was performed for oxidation 
capacity and sum of cations (being conservative indicators) and nitrate. Because of the 
non-conservative transport of the reactive indicators, this simple trend propagation is 
not valid for other indicators and would require modelling of the transport of these 
chemicals incorporating the subsurface reactions, which is beyond the scope of this 
document. Examples of such an approach were given in Broers & van der Grift (2004).  
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The linear regression plots of the oxidation capacity and sum of cations are presented 
below. In each plot, the predicted concentrations are on the horizontal axis. On the 
vertical axis are the data points of the observed LOWESS smooth and data points of 
the LOWESS smooth indicating the 25 and 75 percentile. 
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Figure 2.7: Linear regression between the predicted oxidation capacity (a), sum of cations (b) 
and nitrate concentration (c) from historical inputs and the LOWESS smooth through the 
observed data. 
 
There is an excellent correlation between the historical inputs and the observed 
concentrations. The correlation coefficients for the LOWESS smooth are as high as 
0.96, 0.98 and 0.94 for oxidation capacity, sum of cations and nitrate respectively. 
However, this relationship is not proportional. The prognosis seems to overestimate 
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high concentrations and underestimate lower concentrations. The result is a set of 
regression lines with a considerable intercept and a slope angle of less than 1. All 
parameters of the regression lines are presented in Table 2.1. 
 
Table 2.1: Regression statistics of predicted and observed oxidation capacity, sum of cations 
and nitrate. 
 oxidation capacity sum of cations nitrate 
 P25 LOWESS P75 P25 LOWESS P75 P25 LOWESS P75 
correlation 
coefficient 

0.96 0.96 0.95 0.98 0.98 0.97 0.94 0.94 0.95

intercept 4.62 8.88 13.4 1.25 2.75 4.32 -47.9 42.1 55.9
Slope 0.48 0.50 0.56 0.50 0.45 0.39 0.23 0.25 0.45
R-squared 0.92 0.92 0.90 0.97 0.96 0.94 0.89 0.89 0.91
standard 
deviation of 
residuals 

0.72 0.75 0.94 0.19 0.18 0.20 6.81 7.35 11.89

 
Although there does not seem to be a 1:1 relationship between input and observed 
concentrations, we will use these regression lines to circumvene this. The residual 
error of the regression line has a standard deviation of 0.75 and 0.18 for oxidation 
capacity and sum of cations respectively. Under the assumption that the underlying 
processes do not change, we would be able to predict the LOWESS smooth of the 
oxidation capacity with a confidence interval of 1.5 meq/l on either side. 
 
Back-scaled time series give the opportunity to ‘validate’ the estimates of the historical 
inputs. Here we used a simple linear regression to relate the historical inputs to the 
actually observed values of oxidation capacity and sum of cations. This linear 
regression showed that there is a good correlation between the predictions based on 
historical input and the observed series. The relationship is not proportional, and large 
values are over predicted by the input function. 

The historical curve for oxidation capacity seems not to fit the observed curve 
well before 1970. The estimates for the atmospheric deposition of this period are quite 
uncertain. To obtain a better correlation, we have used only data on groundwater that 
has recharged after 1970. Especially since this regression line will be used to predict 
ahead future concentrations, the error introduced by the uncertainty in atmospheric 
deposition is unwanted. 

The historical curve for the sum of cations structurally overestimates the 
observed curve before 1960. This error seems to have propagated from the (over) 
estimated use of (calcium) fertilizer in this period. Again, to improve the regression line, 
we have only used data of the period 1960-present. 

The upward part of the trend of nitrate is affected by pyrite oxidation and 
denitrification in deeper and older water. This does not affect the downward part of the 
trend as much and therefore only recent (post 1985) groundwater data was used in the 
regression. 
 
2.4.2 Future inputs of agricultural pollution 
A new system of regulating manure and fertilizer use will be in place in the Netherlands 
as of January 1st 2006. This scheme reduces the maximum allowable amount of 
nitrogen and phosphor that may be applied to agricultural land, with respect to the 
current legislation. The aim of the new system is to furhter comply with EU Nitrates 
Directive and specifically to reduce the concentration of nitrate in the upper five meter 
of groundwater to the required level of 50 mg/l.  
 
In the period 2006 to 2008, maximum allowed manure use is reduced gradually 
towards levels which are to comply with the 50 mg/l standard. Failure to reach this limit 
will result in further reduction of the inputs. 
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Using the same accounting system of manure and fertilizer distribution as described in 
Deliverable T2.2, the effects of the measures on the deposition of other chemicals has 
been calculated. The following assumptions have been made to perform these 
calculations: 

• land use ratios remain constant 
• concentrations of chemicals in manure, fertilizer and crops remain constant 
• crop yield remains constant 
• atmospheric deposition remains constant 

 
Furthermore, we assume that the Netherlands will comply to the EU threshold in 2010, 
and that the 2010 regulations remain in effect in the following years.  
 
2.4.3 Trend extrapolation 
Under these assumptions, the following input curves for nitrate, oxidation capacity and 
sum of cations are obtained. These were used to extrapolate the LOWESS smooth 
through the back-scaled time series graphs, as in Figure 2.8 .  
 

 
Figure 2.8: Extrapolated time trends of oxidation capacity, sum of cations and nitrate 
concentration. Extrapolation (gray) uses linear regression between observed LOWESS smooth 
curves (black) and predicted concentrations (red). 
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The extrapolated time trend of oxidation capacity shows only a gradual decrease over 
the period 2000-2020. This extrapolated trend seems to be weaker than the one 
observed in the LOWESS smooth, but keep in mind that the most recent years of the 
LOWESS smooth are based on very few measurements.  
The extrapolated time trend of sum of cations seems more consistent with the 
observed trend of the LOWESS smooth. It shows a gradual decrease towards about 
5.5 meq/l.  
 
The extrapolated median time trend of nitrate very slowly decreases towards about 80 
mg/l in 2020. As with oxidation capacity, the predicted decrease seems to be weaker 
than the trend in the LOWESS smooth. Note that the concentrations still seems to stay 
above 100 mg/l in 25% the cases, based on the extrapolated P75 trend). These results 
derived from measured data indicate that the proposed manure reduction might not be 
enough to actually reach the standard of 50 mg/l in groundwater. 
 
Using the groundwater ages in the sampled wells, it is possible to predict the median 
concentrations of chemical indicators in groundwater that will be sampled during the 
next 10 or 20 years. So for each well, a median (and P25 and P75) prediction can be 
made for some time in the future. The median of these individual predictions will serve 
as the predicted concentration for the agriculture-recharge area. Individual time series 
may vary strongly from this median. This procedure has been applied to the shallow 
and deep screens separately, to gain insight in the changes in concentrations at 
different depth intervals. 
 
Table 2.2: Predicted median and maximum of regional averaged OXC, SUMCAT and NO3 
concentrations at the shallow and deep screen level. 

  OXC SUMCAT NO3 

 

year Median 
(LOWESS) 

Max 
(P75) 

Median 
(LOWESS) 

Max 
(P75) 

Median 
(LOWESS) 

Max 
(P75) 

2005 15.0 27.2 4.7 7.5 91.7 220.5 
2010 13.8 28.0 4.1 7.7 81.3 239.0 
2015 12.7 24.2 3.7 7.0 71.6 198.6 

sh
al

lo
w

 

2030 12.6 18.0 3.7 5.3 70.8 115.1 

 year   
2005 18.4 28.0 5.8 7.7 113.6 239.0 
2010 20.3 27.8 6.2 7.7 128.9 237.3 
2015 20.4 28.0 6.2 7.7 127.3 239.0 

de
ep

 

2030 13.6 22.0 4.0 6.5 79.8 170.4 
 
It shows that improvements in groundwater quality at a certain depth will be very slow, 
largely because of the variation in groundwater ages. Median groundwater quality in 
shallow screens will slowly improve. Improvement of the maximum of the P75 
prognosis will only occur in 25 years, because groundwater in all screens has than 
been recharged with low inputs groundwater. Before that time, some screens will still 
sample groundwater from around the nitrate peak. Groundwater quality in deep 
screens is expected to deteriorate in the near future – until the arrival of the 1985 
manure peak – before improving. 
 
2.4.4 Discussion 
Groundwater age dating has proven to be very helpful when researching trends in 
groundwater quality. Part of the variation in measured concentrations can be explained 
by variation in groundwater ages, and when this part is reduced, the trends resulting 
from changes in land use become more apparent. The trend reversal and subsequent 
downward trend have been observed in conservative chemical indicators (oxidation 
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capacity and sum of cations) and the downward trend can now also be observed in the 
concentrations of nitrate in young groundwater. 
With this concentration-recharge year relationship, the concentration time series can be 
extrapolated using a prediction of future land use. The correlation between the 
predicted concentrations and the measured concentrations was such that a reliable 
prediction for the future can be made. The largest source of uncertainty is in the 
estimates of manure and fertilizer use. These were based on the policy measures laid 
out for the period until 2010. Policy changes after evaluation of these measures may 
yield a stronger or a weaker downward trend in shallow groundwater quality. 
 Using the groundwater ages and the extrapolated time trends to predict future 
groundwater quality shows that regional improvements of groundwater quality will be 
very slow because of the variation in groundwater ages. Monitoring screens from which 
relatively old water is sampled will produce polluted water for a longer period of time 
than screens with young water. These “older screens” cause the long waiting time 
before groundwater quality has improved over the whole region at a certain depth level. 
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3. Point by Point Statistical Trend Analysis and 
Extrapoled Time Trends at Test Sites in the Meuse BE 

(ULg) 
 
J. Batlle Aguilar1, Ph. Orban1, S. Brouyère1,2 
1Group of Hydrogeology and Environmental Geology, HGULg  
2Aquapôle Ulg 
 
University of Liège, Building B52/3,  
4000 Sart Tilman, Belgium 
Tel: +32.43.662377 
Fax: +32.43.669520,  
Serge.Brouyere@ulg.ac.be 
 
3.1 Introduction 
The Hydrogeology Group of University of Liège (HGULg) has selected 4 main 
groundwater bodies in the Walloon Meuse basin to study groundwater nitrate 
concentration trends: The Hesbaye groundwater body (Geer basin), the Pays of Herve 
groundwater body, the Néblon basin and the alluvial plain of the Meuse river (Figure 
3.1). 
The present deliverable describes in detail the dataset of nitrate measurements 
(number of points, main features…) collected in these basins and the statistical trend 
analysis that has been performed on these data. 
 
 

 
Figure 3.1. Location of groundwater bodies selected. 
 
 
3.2 Description of the dataset of nitrate measurements 
 
3.2.1 Update of the nitrate dataset 
Nitrate concentrations used in this study are mainly from the Nitrate Survey Network 
established by the Walloon Region Government. In this network, boreholes, springs, 
galleries and traditional wells, where sampling and water analyses are carried out 
regularly are considered as monitoring points. This network provides a spatial and 
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temporary representation of nitrate contents in the aquifers. Nevertheless, gaps exist in 
the datasets and in the spatial distribution of monitoring points.  
Annual data obtained from these analyses are stored in a database owned by the 
Walloon Region authorities. Up to now, the latest data available comes from the end of 
2003. The 2004 dataset is still under compilation in the Walloon Region and it was not 
yet available at the time of preparing this deliverable 
During the last months, contacts have also been established with the VMW (Vlaamse 
Maatschappij voor Watervoorziening), the Flemish water supply company, in order to 
have access to data and to water supply wells in the North of the Hesbaye groundwater 
body (included in the Geer basin). In Flanders, the Hesbaye chalk aquifer is confined, 
in contrast to the unconfined part of the aquifer within Walloon Region territory. 
Some points has been deleted from table presented in Deliverable T2.1, because the 
number of records were clearly not enough to carry out a trend analysis, and new 
points from the VMW has been added for the Geer basin (denoted with the HF code in 
Table 1).  
Table 3.1, 3.2, 3.3 and 3.4 in Appendix 3.1 present an updated summary of data 
availability for nitrate trend analysis in groundwater bodies selected in the Walloon 
Meuse basin. 

Deliverable T2.4, final draft, December 1st 19



 

 
 
3.2.2 Dataset features 
Time-series graphs are presented for some sampling points to have a first idea of the 
main features of the datasets (seasonality, outliers…) and the presence of trends. 
Some interesting general features are pointed out here after. 
 
Spatial variations in nitrate contents in the Hesbaye aquifer 
Because of the geological context of the Hesbaye plateau, hydrogeological conditions 
prevailing in the chalk aquifer change from unconfined in the Southern part of the basin 
to confined conditions in the Northern part. As a direct consequence, nitrates are 
almost absent in groundwater of the North of the basin, while concentrations are close 
to the drinking limit in the South. Figure 3.2 and 3.3 shows characteristic time-series 
from the South and North part respectively. The absence of nitrate in the North may 
have two explanations: the occurrence of denitrification processes in the confined part 
of the aquifer or the occurrence of very old, still uncontaminated groundwater. This will 
be discussed later on. 

 
Figure 3.2. Characteristic time-series from a point located in the Southern part of the Hesbaye 
aquifer. 
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Figure 3.3. Characteristic time-series of a point located in the Northern part of the Hesbaye 
aquifer. 
 
Periodic (“seasonal”) variations in nitrate contents 
Many datasets coming from the Hesbaye and the Pays de Herve groundwater bodies 
exhibit clear periodic variations in nitrate concentrations (Figure 3.4 and 3.5). As 
discussed by Brouyère et al., (2004), such periodic variations are explained by 
groundwater table fluctuations in the variably saturated dual-porosity chalk. In principle, 
nitrate spread over the land surface progressively infiltrate across the unsaturated zone 
and migrate slowly downward through the unsaturated chalk matrix. Under low 
groundwater level conditions, the nitrate contamination front is disconnected from the 
aquifer and nitrate concentrations in the aquifer tend to diminish because of dispersion 
and mixing processes. When groundwater levels rise, the contamination front is quickly 
reached and leached: the contamination source is re-activated and nitrate 
concentrations are likely to increase rapidly in the saturated zone. This effect is 
observed in the Geer basin and in the Pays of Herve but not in the Néblon basin 
(mostly limestone aquifers) and in the alluvial plain aquifer (gravel aquifer). 
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Figure 3.4. Multi-annual variations in nitrate concentration at sampling point H-15 in the Geer 
basin. 

 

 
Figure 3.5. Multi-annual variations in nitrate concentration at sampling point PH-7 in the Pays of 
Herve groundwater body. 
 
In the Geer basin, a very dense network is available for monitoring variations in 
groundwater levels. As an illustration, Figure 3.6 shows groundwater table variations 
for the longest datasets available in the basin (from 1951 to 2003). Unfortunately, this 
network does not necessarily correspond to nitrate sampling locations.   

 
Figure 3.6. Groundwater level measurements from 1951 to 2003. 

 
Figure 3.7 and 3.8 show groundwater level and nitrate concentration time plots at 
neighbouring observation points. These examples confirm the major impact of periodic 
variations in groundwater levels on the dynamics of nitrate in the chalk aquifer. In the 
subsequent statistical analysis, the seasonal effect of such periodic variations has not 
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been accounted for explicitly because of the difficulty in defining the periodicity of such 
effects that are related to pluri-annual variations in precipitations.  
Neglecting the seasonality is not a problem in trend detection provided that the 
datasets integrate several periods so that the periodic variations compensate and the 
global trend emerges. Doing so on a reduced period of time could of course lead to 
wrong conclusions. In a shorter observation window, the general trend is less likely to 
be observed. 
As an example, performing a trend calculation on a sub-dataset corresponding to 
decreasing groundwater levels could probably lead to the conclusion of a decrease of 
nitrate concentrations in the aquifer with time. Reliability of results depends on the 
length of the time series: longer series will yield more reliable results. This is the case 
for datasets H-9 and H-11 (see Annex). Dataset H-9 provide nitrate data on a long 
period of time, while dataset H-11 is relatively short. For H-9, the result is “evidence of 
an upward trend”, while for H-11, there is “no evidence of a trend”. Such a difference in 
the result can be explained by the length of H-11, which does not allow one detect 
anything in the trend analysis. 
For the datasets in the Geer and Pays of Herve groundwater bodies, the analysis has 
been carried out having this potential problem in mind. However, most of the time, 
datasets that were too short were naturally “eliminated” at the trend detection level, the 
regression test or the Mann Kendall test, which is robust enough to conlude that no 
trend is present. 

 
Figure 3.7. Time series of nitrate concentration (point H-15) and groundwater level 
measurements (point 750).  
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Figure 3.8. Time series of nitrate concentration (point H-13) and groundwater level 
measurements (points 17 and 730). 
 
Presentation of the nitrate datasets 
A total of 97 time-series is presented for the four selected groundwater bodies in 
Appendix 3. The same time and concentration scales are used for each dataset of a 
given groundwater body to allow visual comparison of data from one point to another. 
Figure 3.9 shows an example of a nitrate time plot for each of the four selected 
groundwater bodies considered in the Walloon part of the Meuse basin. 
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Figure 3.9. Nitrate concentration time-series for the Geer basin (top left), Pays of Herve (top 
right), Néblon basin (bottom left) and the alluvial plain aquifer (bottom right). 
 
 
3.3 Statistical trend analysis  
 
3.3.1 Methodology 
For the trend analyses of groundwater quality data in the Walloon region, the following 
procedure has been used (Figure 3.10): 
 
 
 
 
 
 
 
 
1) 
 
 
 
 
2) 
 
 
3) Slope regression

Trend No trend

Linear regression

Normality

Kendall's Slope

Trend No trend

Mann-Kendall test

Non-Normality

Shapiro-Wilks test (<50 values)
Shapiro-Francia test (>50 values)

DATASET

 
Figure 3.10. A three step procedure is adopted for trend analysis of nitrate concentrations in the 
selected groundwater bodies: 1) normality test; 2) trend detection; 3) trend estimation. 
 
(1) Normality of the dataset 
The first step is to evaluate whether the dataset is normally distributed or not. If the 
number of records is less than 50, the Shapiro-Wilks test is used. If the number of 
records is equal or larger than 50, the Shapiro-Francia test is used. D’Agostino’s test 
has been also used to corroborate the results obtained using the two other techniques. 
For most datasets, the D’Agostino’s test corroborates the result obtained with one of 
the two other tests. For the datasets for which the results of the normality test are 
contradictory, it has been decided to apply both trend detection techniques.  
The choice of trend detection method is a function of the results obtained in this step: 
parametric tests are performed on normally distributed datasets and non-parametric 
tests are performed on non-normally distributed datasets. 
 
(2) Trend detection 
The second step consists in performing a test aiming at detecting whether a trend 
exists or not in the dataset. For normally distributed datasets, linear regression is 
applied. The correlation coefficient r is used as an indicator of the existence of the 
trend. In accordance with (Carr 1995), three ranges of correlation degree (trend 
robustness) have been considered for the correlation between time and nitrate 
concentrations:  
 

• strong correlation for r values ranging between 0..8 and 1 (or -0.8 and -1);  
• moderate correlation for r values ranging between 0..5 and 0..8 (or -0.5 and -0.8);  
• weak correlation for r values ranging between 0.1 and 0.5 (or -0.1 and -0.5); 
• no correlation for r values ranging between -0.1 and 0.1. 
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For trend detection on non-normally distributed datasets, the non-parametric Mann-
Kendall test has been selected. It has to be mentioned that this test is very appropriate 
for groundwater quality data, when the amount of records is often limited and the data 
distribution usually not known. It has been applied previously with reliable results in 
numerous studies, including hydrological applications (Hirsch et al., 1982; Lettenmaier 
et al., 1991; Loftis et al., 1991; Zetterqvist 1991; Smith and McCann 2000; Hanson 
2002; Libiseller and Grimvall 2002; Schnabel 2002; Yue et al., 2002; Robinson et al., 
2003; Zhang and Zwiers 2004). The Mann-Kendall test determines the existence of a 
trend by the calculation of an index reflecting the frequency with which concentrations 
observed in later samples are greater or less than those observed in earlier samples. It 
is based on the calculation of differences between pairs of successive data. For 
deciding if a trend exists in the Mann-Kendall test, a significance level of 99% has been 
considered, corresponding to a threshold value of 2.32634 for the Mann-Kendall index. 
 
(3) Trend estimation 
The third step in the trend analysis is the trend estimation or quantification. For 
normally distributed datasets, the trend magnitude is defined by the slope of the linear 
regression equation. For non-normally distributed datasets, the trend magnitude is 
based on the calculation of the Sen’s slope, by calculating the median of all data pairs 
in dataset (Hirsch et al., 1991). Is less affected by data errors, outliers or missing data 
than the linear regression (Hanson 2002).  
 
3.3.2 Results from trend analysis on individual time series 
Table 3.1 summarizes the results of trend analysis grouped by groundwater bodies.  
Estimations of slopes values are given in mg per year. Detailed results are presented in 
Tables 3.2 to 3.5. 
 

Groundwater 
body 

Number of 
nitrate points 

Number of 
downward 

trends 

Number of 
upward trends 

Percent  of 
significant 

trends 
Geer basin 26 0 15 57.7% 

Pays of Herve 12 2 6 66.6% 
Néblon basin 6 1 4 83.3% 
Alluvial plain 38 15 11 68.4% 

Table 3.1. Summary of trend tests results for each groundwater body 
 
Table 3.5 shows the number of significant trends (both upward and downward) at the 
nitrate points where statistical test was carried out. One can observe, except for the 
Néblon sub-basin, that in about 60% of the time series a significant trends is present. 
For the Néblon sub-basin just 6 points were taken into account, which could explain the 
high percentage of significant trends.  
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3.3.3 Spatial trend distribution 
In order to have an overview of the spatial trend distribution, trend analysis results are 
represented in Figure 3.11 to 3.14. 
Figure 3.11 shows the distribution of nitrate trends in the Geer basin. As expected, a general 
upward trend is observed in the entire basin. However, as mentioned in point 2.2, two zones 
can be differentiated: the Southern part, corresponding to the unconfined part of the chalk 
aquifer, where high concentrations of nitrate are encountered, and the Northern part 
corresponding to the confined part of the chalk aquifer, where nitrate has not been detected 
(or at very low concentrations only).  
 

 
Figure 3.11. Spatial trend distribution in the Geer basin. 
 
Figure 3.12 shows the distribution in nitrate trends in the Pays de Herve groundwater body. 
The monitoring network is not as developed as in the Geer basin, however, a upward trend is 
generally observed.  
In these two groundwater bodies (Geer and Herve), it is logical to obtain similar results 
because of the same geology (fissured dual porosity chalk overlain by loess formations) and 
land use practices (intensive agriculture and farming).  

 
Figure 3.12. Spatial trend distribution in the Pays of Herve groundwater body. 
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Figure 3.13 presents the distribution of nitrate trends in the Néblon basin. The sampling 
network is very limited but among these points, 4 of them are very integrative because they 
correspond to major drainage galleries owned by a water distribution company. These 4 
points are characterized by upward nitrate trends. This confirms that the groundwater body is 
at risk, even if the nitrate pressure is less pronounced in that basin. 
 

 
Figure 3.13. Spatial trend distribution in the Néblon basin. 
 
Figure 3.14 presents the trend tests results for the alluvial plain. Most sampling locations do 
not exhibit trend or even downward trends in nitrates. In the alluvial plain however, land use 
mainly consists in urbanized and industrialized areas. Agriculture does not constitute a major 
source of contamination risk there. Furthermore, it is likely that the groundwater quality in the 
alluvial plain is strongly influenced by the interactions with the Meuse River. Groundwater – 
surface water interactions are influenced by the existence of dams regulating the level of 
water in the Meuse for navigation and by water supply wells in the alluvial aquifer. It could 
probably be interesting to consider these elements in a more detailed analysis of the results.  
 

 
Figure 3.14. Spatial trend distribution in the alluvial plain groundwater body. 
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3.4 General conclusions and perspectives 
 
3.4.1 Statistical trend analysis 
In this deliverable, a consistent and rigorous approach has been proposed and applied for 
trend detection and quantification in groundwater quality (nitrate) datasets, based on 
statistical techniques. 
Some general observations can be drawn from the point-by-point results obtained for the four 
groundwater bodies selected in the Walloon part of the Meuse basin. The statistical approach 
seems robust and able to discriminate between “clear” and “weak” trends. This is related to 
the two-step procedure: first trend detection, then trend quantification. 
For some datasets, the conclusions of the normality tests were not univocal. However, 
whatever the trend detection and quantification method applied to these datasets, 
conclusions were very similar. Even if, from a pure statistical point of view, the normality of 
the dataset is a factor to be considered for selecting one or another trend analysis technique, 
from a practical point of view, the result of the analysis is not so sensitive to the distribution of 
the dataset. 
 
3.4.2 Extrapolating trends 
The statistical analysis has provided point-by-point estimations of nitrate trends, in the form 
of a slope expressed in mg NO3/year (increase or decrease). This result might be enough 
and appropriate to estimate the short term evolution of groundwater quality in the selected 
basins (few years), particularly for those groundwater bodies overlain by a thick unsaturated 
zone that lead to important buffer effects in the evolution of nitrate concentrations in the 
aquifers (Geer basin, Pays de Herve). 
However, end-users and decision makers such as water companies and regional authorities 
are more interested in the long term evolution of groundwater quality (tens of years) and 
geological and hydrogeological factors are not the only drivers of nitrate trends in 
groundwater: land use is also a key factor. The major disadvantage of using a “pure” 
statistical trend analysis is thus that it is not able to consider variations in land use and 
functional relations between land use and groundwater quality. For long term evaluation of 
nitrate trends, more advanced techniques are thus required, such as transfer functions or 
mechanistic modelling relating land use and groundwater quality. 
From a spatial point of view, advances are also still needed in order to produce reliable 
global estimates of groundwater quality indicators at the scale of the groundwater body, as 
requested by the EU Water Directive. 
 
3.4.3 Future work 
Future work of HGULg in TREND T2 will be focused on the Geer basin where the nitrate 
dataset is dense and relatively uniformly distributed in the basin. Furthermore, this basin has 
been the topic of many previous geological and hydrogeological investigations, making it a 
very interesting case study for integrated research such as within AQUATERRA. 
Between March and May 2005, a sampling campaign was organized in the Geer basin (both 
in the Walloon part and in the Flemish region) for nitrate and tritium measurements. Water 
samples were sent to Dr P. Maloszewski and Dr. W. Stichler at GSF Münich for tritium 
analysis. It is expected that such measurements will contribute to a better understanding of 
spatial variations of nitrate concentrations in the chalk aquifer. Particularly, these results will 
contribute to explaining the absence of nitrate in confined part of the aquifer. Results have 
been obtained recently but time was too short to process them for this deliverable. A second 
sampling campaign is planned in the future. 
In the scope of BASIN R3 (Meuse) research activities, HGULg will develop a groundwater 
flow and transport model for the Geer basin in cooperation with COMPUTE C2. This model 
will be used in the scope of collaboration with workpackages HYDRO H1 (assessment of the 
impact of climate change on groundwater resources) and for nitrate trend analysis and 
forecasting in TREND T2.  
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For this purpose, it will also be investigated how nitrate trend results obtained in the Geer 
basin (presented in this deliverable) can be aggregated and used as calibration and 
validation datasets for the groundwater flow and transport model.  
 
3.5 Appendix 
The 97 time-plots are included in the Appendix. These graphs correspond to 97 nitrate sites 
selected for the four groundwater bodies. 
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4. Conventional and innovative approaches to trends 
analysis: a case study for the Brévilles catchment (BRGM) 

 
 
 
Pinault J.-L., Guyonnet D., Dubus I.G., Baran N., Gutierrez A. & Mouvet C 
BRGM 
 
BRGM 
Avenue C. Guillemin 
BP 6009 
45060 Orléans Cedex 2 France 
T: +33 (0)2 38 64 47 50 
F: +33 (0)2 38 64 34 46 
i.dubus@brgm.fr 
 
4.1 Introduction 
Crop protection products are known to represent a potential risk for human and the 
environment and the presence of pesticides is therefore routinely monitored in environmental 
media such as groundwater, surface water, and, to a lesser extent, the atmosphere. 
Surveillance programs for pesticides have different objectives. While some monitoring 
networks are specifically designed to ascertain whether there is any excess of legal threshold 
concentrations, most surveillance efforts are targeted towards investigating the spatial 
spread of the contamination of water resources by pesticides and/or detecting any positive or 
negative temporal tendency in concentrations. Designing a monitoring study to investigate 
trends in pesticide concentrations represents a significant investment given i) the costs 
involved in analysing organic compounds with accuracy; and, ii) the fact that the fate of 
pesticides is heavily influenced by weather conditions, which means that concentrations need 
to be monitored over a number of years sufficient to differentiate between variations due to 
climatic variability and those that can be attributed to measures taken to reduce pesticide 
contamination.   
 
The major contributing factors to the explanation of temporal variations in pesticide 
concentrations at a given groundwater point are likely to be:  

i) variations in transport properties (essentially governed by the effective rainfall, i.e. 
the part of the rainfall that effectively contributes to groundwater recharge);  

ii)  spatial and temporal variations in annual applications of the pesticides; and,  
iii) possible variations in the potential for pesticide degradation. The limited number 

of factors involved and the strong influence of hydrology in the determination of 
pesticide trends in groundwater means that statistically-based approaches 
establishing a direct relationship between pesticide concentrations and water 
inputs to groundwater systems, such as transfer function, Bayesian-based or 
neural-network-based approaches are well suited to the reconstruction or 
prediction of past or future changes in groundwater concentrations.  In contrast to 
more deterministic approaches, data requirements are generally low, ensuring 
their cost effectiveness.  

 
The present document reports on the comparative application of three different approaches 
to trends analysis for concentrations of pesticides in water resources.  A total of three 
approaches were investigated:  
A 'conventional' statistical method referred to as the 'Holt's two parameter exponential 
smoothing' was first applied to the data for benchmarking purposes. The methodology is only 
based on the analysis of trends analysis data without recurring to additional information on 
e.g. input fluxes to the system. 
The time series data were also analysed using a method based on the iterative calibration of 
transfer functions through inverse modelling procedures.  The approach was deployed 
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through the TEMPO computer tool which facilitates the application of the methodology to 
experimental datasets.  
Finally, methodological developments were undertaken to investigate how the combination of 
possibilistic concepts and neural network approaches could potentially benefit time series 
analysis.  
 
The supporting data which were used in the present exercise are presented in the earlier 
TREND2 deliverable T2.1 ('Documented spatial data set containing the subdivision of the 
basins into groundwater systems and subsystems, the selected locations per subsystem and 
a description of these sites, available data and projected additional measurements and 
equipment'). The approaches were evaluated for their ability to predict concentrations of 
atrazine and its first metabolite deethylatrazine (DEA) in the Brévilles spring and in various 
piezometers across the Brévilles catchment.  
 
4.2 Time series analysis using 'classical' statistics  
 
4.2.1 The Holt's two parameter method 
A simple and pragmatic model for a time series would be to consider each observation as 
consisting of a constant  and an error component b ε , that is: tt bX ε+= . The constant  is 
relatively stable in each segment of the series, but may change slowly over time. If 
appropriate, then one way to isolate the true value of b , and thus the systematic or 
predictable part of the series, is to compute a kind of moving average, where the current and 
immediately preceding ("younger") observations are assigned greater weight than the 
respective older observations. Simple exponential smoothing accomplishes such weighting, 
where exponentially smaller weights are assigned to older observations. The specific formula 
for simple exponential smoothing is: 

b

 
1).1(. −−+= ttt SXS αα  

 
When applied recursively to each successive observation in the series, each new smoothed 
value (forecast) is computed as the weighted average of the current observation and the 
previous smoothed observation; the previous smoothed observation was computed in turn 
from the previous observed value and the smoothed value before the previous observation, 
and so on. Thus, in effect, each smoothed value is the weighted average of the previous 
observations, where the weights decrease exponentially depending on the value of 
parameter α . If α  is equal to 1 then the previous observations are ignored entirely; if α  is 
equal to 0, then the current observation is ignored entirely, and the smoothed value consists 
entirely of the previous smoothed value (which in turn is computed from the smoothed 
observation before it, and so on; thus all smoothed values will be equal to the initial 
smoothed value ). Values of 0S α  in-between will produce intermediate results. 
In the time series model which was used in the present case, the simple exponential 
smoothing forecasts are "enhanced" by a linear trend component that is smoothed 
independently via the γ  parameter. This model is also referred to as Holt's two parameter 
method. In order to compute the smoothed value (forecast) for the first observation in the 
series, both estimates of  and T  (initial trend) are necessary. By default, these values are 
computed as 

0S 0

( ) ( )110 −= X− NX nT  where  is the length of the series and 
. 

N
2/010 TXS −=

So, when a trend component is included in the exponential smoothing process, an 
independent trend component is computed for each time, and modified as a function of the 
forecast error and the respective parameter. If the γ  parameter is 0, than the trend 
component is constant across all values of the time series (and for all forecasts). If the 
parameter is 1, then the trend component is modified "maximally" from observation to 
observation by the respective forecast error. Parameter values that fall in-between represent 
mixtures of those two extremes. 
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4.2.2 Application to the Brévilles data 
Time series analysis with a linear trend was applied to the forecasting of atrazine, 
deethylatrazine, calcium and nitrate fluxes in spring water (Figure 4.1 to Figure 4.4) at the 
Brévilles site. A 15-day time rate was used in calculations. In all cases the forecast was 
performed from 16/5/2005, the first step after the last observation on 1/5/2005, to 28/9/2005, 
i.e. over a total of 10 time steps. 
 
Although the exponential smoothing process is a predictive technique which is used widely, 
its use to forecast fluxes in spring water is an ill-posed problem, i.e. an error on the 
estimation of parameter γ  may induce very different forecasts, without being able to certify a 
value is more likely than another.  
 
In all cases, the forecast strongly depends on the parameter γ  whose incidence on the fitting 
of the model is very low, which is a typical characteristic of ill-posed problems. This drawback 
is inherent in the time series analysis whatever the predictive method that is used. Clearly, in 
the case of the Brévilles spring data, more information has to be taken into account into the 
model to produce a reliable forecast. Moreover, the uncertainty of predicted fluxes and 
concentrations has to be estimated according to the external conditions responsible for the 
transfer from the soils to the spring. For these reasons, it is believed that conventional 
statistics are somewhat limited and that more advanced techniques such as those which are 
presented in section ** and ** should be preferred.  The use of such techniques enables the 
drawing of a relationship between multiple inputs and an output variable, the use of non-
linear transfer functions, the inclusion of a transport delay between the soils and the spring 
and the accounting of dispersion processes during transport in the unsaturated zone.  
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Figure 4.1. Forecasting of atrazine fluxes  in spring water at Brévilles. Fluxes of atrazine are 
expressed in microg/s to facilitate comparison with measured fluxes at Brévilles. The y axis to the left 
of the figure corresponds to atrazine fluxes while that to the right correspond to the residuals  

561.30 =S  a) 1.0,6.0 == γα  
003.00 −=T  b) 4.0,6.0 == γα  
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Figure 4.2. Forecasting of deethylatrazine fluxes in spring water at Brévilles. Fluxes of DEA are 
expressed in microg/s to facilitate comparison with measured fluxes at Brévilles. The y axis to the left 
of the figure corresponds to DEA fluxes while that to the right correspond to the residuals 

816.90 =S  a) 1.0,6.0 == γα  
0684.00 =T  b) 4.0,6.0 == γα  
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Figure 4.3. Forecasting of calcium fluxes in spring water at Brévilles. Fluxes of calcium are expressed 
in mg/s to facilitate comparison with measured fluxes at Brévilles. The y axis to the left of the figure 
corresponds to calcium fluxes while that to the right correspond to the residuals 

20860 =S  a) 1.0,6.0 == γα  
075.70 =T  b) 4.0,6.0 == γα  
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Figure 4.4. Forecasting of nitrate fluxes in spring water at Brévilles. Fluxes of nitrate are expressed in 
mg/s to facilitate comparison with measured fluxes at Brévilles. The y axis to the left of the figure 
corresponds to nitrate fluxes while that to the right correspond to the residuals 

10970 =S  a) 1.0,6.0 == γα  
283.50 =T  b) 4.0,6.0 == γα  
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4.3 Time series analysis using TEMPO  
 
4.3.1 Data processing and numerical analysis 
 
General concepts 
The processing of the data was undertaken using the TEMPO package [Pinault, 2001].  
TEMPO is a Windows-based tool which facilitates groundwater data analysis and enables 
the modelling of time series through iterative calibrations of combinations of transfer 
functions ('inverse modelling' approach).  Although the package has been extensively used to 
analyse and simulate groundwater flows, it is also suited to analysing water quality data.  The 
tool includes data pre-and post-processing features and a rainfall stochastic generator.   
 
The inverse model which was built within TEMPO to analyse the Brévilles data uses rainfall-
hydraulic head or rainfall-flux data to calculate unit hydrographs and impulse responses of 
fluxes. Fluxes were defined as the product of hydraulic heads (in relation to a reference level) 
and chemical concentrations. In order to keep the dimension of the pressure head expressed 
in meters, the calculation of fluxes was carried out with concentration values divided by their 
mean value (unit standardisation). 
 
The rainfall inputed in the model is defined as the weighted sum of observed precipitations at 
meteorological stations. The weighted sum is optimized from the cross-correlogram of rainfall 
and spring flow [Pinault et al., 2005]. It should be noted that the short term correlation 
between rainfall height and the spring flow at a 10-day time rate is used in the model and that 
the model does not rely on initial precipitation data.  Hence, the best linear combination of 
rainfall is not necessarily constructed from the meteorological stations closest to the study, 
but from the stations whose rainfall series are best correlated with the spring flow. 
For the Brévilles dataset, the best linear combination was obtained from the Chartres and 
Senlis meteorological stations (120 and 70 km of the Brévilles catchment, respectively): 
 

SenlisChartresi RRtR ×+×= 43.057.0)(   (6) 
 
The hydraulic head )Η( it∆ , measured at piezometers and expressed in relation to a 
reference level, was considered to be the result of rainwater infiltration: 

effRΓH ∗=∆ ./1 η   (1) 
Where:  
η  is a constant related to the effective porosity eω  of the aquifer: ( ))(max/ ie tΓ= ηω  

effR  the effective rainfall 

Γ  the normalized impulse response of the hydraulic head )Η( it∆  to effective rainfall,  
and ∗  represents the discrete convolution product. 
 
In the present application, the impulse response  was defined on the interval [Γ ]τ,0  so that: 





=
≤≤−∗−−=

elsewhere0)Γ(
0if)/)2ln(.exp()/))((2ln(exp(.)Γ( 2

i

iiii

t
tLtDTtAt τ

 (2) 

Where: 
T  represents the delay of the transfer process after a given impulse to be transferred 
D  represents the duration of the transfer 
L  characterizes the dispersion process 
And,  is the normalization constant A
 
Equations (2) are the expression of a general dispersive transfer model represented by the 
Gaussian  for transfer and the exponential law exp(  for 2)/))((2ln(exp( DTti −− )/)2ln(. Lti−
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dispersion.  The succession of these two phenomena is the convolution product of both laws 
[Pinault et al., 2005].   
 
 
Through averaging of the two parts of equation (1), the following constraint for water mass 
conservation can be obtained:  

R./R./1∆H ηγη == eff  (3) 
Where:  
γ  is the proportion of rainwater lost by evapotranspiration, i.e. the mean contribution of 
rainfall to effective rainfall. 
 
The effective rainfall R  is calculated from the rainfall  and the effective rainfall 

threshold  such that:  

)( ieff t )R( it
)Ω( it





<
≥−

=
)Ω()R(if0
)Ω()R(if)Ω()R(

)(R
ii

iiii
ieff tt

tttt
t  (4) 

 
Ω  can be interpreted here as the available soil-storage deficit is related to both rainfall and 
potential evapotranspiration: 

]C**[ st
,, ++= ΩΩ RΓPETΓΩ RPET  (5) 

where  PET is the potential evapotranspiration 
 R is the rainfall 
 Cst is a constant 
and, Γ  and  are impulse responses of  to  and PET,Ω R,ΩΓ Ω PET R , respectively.   
 
These impulse responses  and  are represented by trapezoids with four degrees 

of freedom, with  being positive and Γ  being negative, i.e. the rainfall results in a 

decrease in Ω  whereas the potential evapotranspiration causes an increase in  
[Pinault et al., 2001 a].  

PET,ΩΓ R,ΩΓ

PET,ΩΓ
)i

R,Ω

(t )Ω( it

 
The modelling consists in optimising the impulse responses , , , and the 

constant  through an iterative process so as to get the best fit between predicted and 
observed hydraulic heads. 

Γ PET,ΩΓ R,ΩΓ
stC

 
The approach described above for hydraulic heads is universal and was applied to mass 
transfers and spring flow in the present work. For applications involving mass transfers, 
relationships (4) and (5) refer to the effective input flux, i.e. the effective rainfall is no longer 
considered as a water resource but as a flux when rainwater dissolves ions in the soils and in 
the vadose zone that is considered as the input of the model. Processing of spring flow was 
performed exactly in the same way except for the flow Q  which replaces the piezometric 
level variations , as shown in (7) where  is the catchment area: 

)( it
)Η( it∆ S

effS RΓQ ∗= .   (7) 
 
 
 
Identification of individual contributions to water and chemical fluxes at the spring and in 
piezometers 
This inverse approach may be extended so as to express the output in relation with several 
inputs Q  ... Q : 1 p

[ ] εQΓQΓRΓQ +∗++∗+∗= pppeffS .... 111 λλλ L   (8) 
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in order to separate the output  into Q 1+p  components effRS ∗Γ..λ , 111.. QS ∗Γλ ,...whose 

contribution is given by the corresponding weighting factors QRS eff..λ / , Q/1QS .. 1λ ,... 

F  is the l  norm of the discrete function 2 { }L,1FF = , i.e. ∑= iFF 2 . 
 
The separation is all the more reliable as the pairs of cross-correlograms obtained from the 
inputs have their absolute value lower than 1 for the lags  so that i mim ≤≤−  where m  is 
the length of the impulse responses mkk >=Γ 0 . In effect, the constraints applied on the 
positive weighting factors whose sum is 1 give the inverse problem a sense in a wide scope 
of applications without the requirement of any regularization technique. 
 
This method is applied for separating the calcium flux measured at the spring. The calcium 
may be used as a tracer for mass transfer from the groundwater to the spring, the dissolution 
of carbonates occurring at the catchment scale. The calcium flux measured at piezometers 
may be used as inputs of a transfer model the output of which is the calcium flux at the 
spring. Nevertheless, the signatures of the calcium fluxes at piezometers are correlated and 
only two piezometers can be used as inputs (Figure 4.5). The contributions of calcium fluxes 
from piezometers PZ2 and PZ6 to the calcium flux at the spring may be separated since the 
behaviours of PZ2 and PZ6 fluxes are clearly differentiated for the observation period, the 
PZ2 flux remaining almost steady after 2002 whereas the PZ6 flux decreases slowly (Figure 
4.5). So, the calcium flux at the spring can be separated into three components related to 
rainfall, i.e. runoff and two components groundwater from both hillside of the catchment.  
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Figure 4.5: Calcium fluxes observed in the PZ2 and PZ6 piezometers 
 
Flux separation is shown in Figure 4.6. Impulse responses are relatively short (Figure 4.6b). 
The mean transit times (the mean lags) are 33 days for runoff, 73 days for PZ2 and 44 days 
for PZ6. As for the two piezometers, the transit time reflects the distance of the piezometer to 
the spring. The contribution of every component is 4.5% for runoff, 54% for PZ2 and 41.5% 
for PZ6. The model reproduces accurately the long term variations of the calcium flux 
measured at the spring (Figure 4.6a), which means that the two piezometers PZ2 and PZ6 
are exhaustive for representing mass transfer from groundwater to the spring. The catchment 
may be split therefore into two sub-catchments whose areas are proportional to the 
contribution of both piezometers. The ratio of PZ2 and PZ6 contributions is 1.3, which 
corresponds closely to the ratio of both hillsides (Figure 4.7). Thus the components of the 
calcium flux at the spring are representative of mass transfer from runoff and from 
groundwater discharge issuing both hillsides (Figure 4.6d). 
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Figure 4.6. Separation of Ca flux at the spring. The raw data are aggregated to create a continuous 
10-day sampling period. – a) Comparison between the observed and the computed calcium flux – b) 
The impulse responses – c) The input flux threshold used to calculate the input flux from rainfall – d) 
The separation of the Ca flux at the spring into 3 components related to runoff and groundwater 
discharge. 
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Figure 4.7.  Location of the various monitoring devices on the Brévilles catchment 
 
Expressing concentrations in the vadose zone 
Another aspect of inverse modeling of mass transfer concerns the reconstruction of 
concentration )( itβ∆  of dissolved species at the input of the model. This method is applied for 
separating the calcium, nitrate, atrazine and deethylatrazine fluxes measured at piezometers 
and at the spring, the inputs of the models being the corresponding fluxes through the soils 
and the unsaturated zone. For pressure head variations the output flux  can therefore 

be written as a piezometric level of groundwater whose constant concentration is 

)F( it

∆ : µ
( ) ( )∆µ/)()(R)(/1µ/)µ(H)F( iieffifluxiii tttttt βη ∆⋅∗Γ⋅=∆∆⋅∆=   (9) 
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where  is the concentration measured at piezometers, and  is again a normalized 

impulse response. In this way, the following relationship holds 

)µ( it∆ fluxΓ

effR/1 ⋅= ηH =∆F  according to 

(3). The term ∆µ/)( itβ∆  is a calculated function of time, which represents the relative 
variations of the concentration at the input of the model, i.e. in the vadose zone.  
 
To solve equation (9) relative to mass transfer, a model is required for the concentration in 
the vadose zone )( itβ∆

nn ,
, which may be represented by its trigonometric series whose Fourier 

coefficients are Nc ,0ˆ = , due to their pseudo-periodic behaviour from year to year;  is 
the number of years in the observation period. Thus, the resolution of equation (9) amounts 
to the estimation of the set of functions ( . 

N

)ˆ,cΓ flux

 
Data processing of series related to the piezometer PZ8 are presented in Figure 4.8. The 
model referring to  shown in Figure 4.8a is computed from (1). The impulse response 

 is represented in Figure 4.8b. The observed and computed fluxes of calcium, nitrate, 
atrazine and deethylatrazine calculated from (9) are shown in Figure 4.8c, e, g, i. The 
corresponding computed concentrations in the vadose zone 

)Η( it∆
Γ

)( itβ∆  are represented in Figure 
4.8d, f, h, j. For every flux, the model fairly reproduces the long term variations of observed 
values. The impulse responses  relative to fluxes are not represented since there are 
very similar to the impulse response of the piezometric level to effective rainfall shown in 
Figure 4.8b. 

fluxΓ

 
As for the spring fluxes ,  they are the product of the spring flow Q  by the relative 
concentration of the corresponding dissolved specie in spring water: 

)(F it )( it

( ) ( )∆µ/)()(R)(µ/)µ(Q)F( iieffifluxiii tttSttt β∆⋅∗Γ⋅=∆∆⋅=   (10) 
 
The method is used for processing pressure head variations of the piezometer PZ8 as well 
as the fluxes of calcium, nitrate, atrazine and DEA (deethylatrazine) observed at the same 
location. (Figure 4.8). The impulse responses relative to the pressure head variations and to 
the fluxes being very similar, only that referring to pressure head variations is represented 
(Figure 4.8b). For every flux, the model fairly reproduces the long term variations of observed 
values. The computed concentrations )( itβ∆  in water in the vadose zone are represented in 
Figure 4.8d, f, h, j. The same processing is applied to the data referring to the spring (Figure 
4.9). 
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Figure 4.8. Processing of pressure head and fluxes of piezometer PZ8. A 10-day sampling rate is used 
(the observation period is symbolized by arrows on the time axis) – a) Comparison between the 
observed and the computed piezometric level – b) The impulse response – c) Comparison of the 
observed and the computed calcium flux – d) The computed calcium concentration in the vadose zone 
e) Comparison of the observed and the computed nitrate flux – f) The computed nitrate concentration 
in the vadose zone – g) Comparison of the observed and the computed atrazine flux – h) The 
computed atrazine concentration in the vadose zone – i) Comparison of the observed and the 
computed deethylatrazine flux – j) The computed deethylatrazine concentration in the vadose zone. 
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Figure 4.9. Processing of pressure head and fluxes of the spring. A 10-day sampling rate is used. – a) 
Comparison between the observed and the computed flow – b) The impulse response – c) 
Comparison of the observed and the computed calcium flux – d) The computed calcium concentration 
in the vadose zone at the catchment scale – e) Comparison of the observed and the computed nitrate 
flux – f) The computed nitrate concentration in the vadose zone at the catchment scale – g) 
Comparison of the observed and the computed atrazine flux – h) The computed atrazine concentration 
in the vadose zone at the catchment scale – i) Comparison of the observed and the computed 
deethylatrazine flux – j) The computed deethylatrazine concentration in the vadose zone at the 
catchment scale. 
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4.3.2 Results 
 
Functioning of the Brévilles catchment 
The computed concentrations of dissolved species in the vadose zone typically disclose 
strong variations for all species. These variations at the input of the models are due to both 
concentration variations in water in the vadose zone or to water content. The calcium flux 
through the vadose zone is tightly related to effective rainfall since calcium dissolution of 
calcareous formations mainly occurs for wet periods, if not it is only slightly transported 
towards the groundwater. The other dissolved species are also strongly influenced by the 
precipitation amount for migrating from the vadose zone to the groundwater and from the 
groundwater to the spring. To isolate the input concentrations from variations related to the 
climatic conditions and to put in a prominence the anthropogenic contributions to transfers, 
the concentrations of nitrate, atrazine and DEA in the vadose zone were divided by the 
relative calcium concentration. Indeed, the calcium source that comes from the dissolution of 
carbonates is evenly distributed onto the catchment and its concentration calculated in Figure 
4.8d and Figure 4.9d is entirely controlled by climatic conditions. Thus: 

]/[Ca]Ca[][NO][NO 3Ca3 ×=   (11) 

]/[Ca]Ca[[atrazine][atrazine]Ca ×=  (12) 

]/[Ca]Ca[[DEA][DEA]Ca ×=  (13) 
 
The long duration of transfers allows the reconstruction of concentrations in the vadose zone 
prior to the observation period; the mean transit time of fluxes through the vadose zone is 
close to 1150 days for every piezometer, which enables to reconstruct the fluxes since the 
early 1990. The larger the concentration reconstruction the lower its contribution to 
groundwater transfers within the observation period that starts at the beginning of 2001. The 
standardization of fluxes according to (11-13) enables expressing the concentrations in 
stationary conditions. 
 
Concentrations defined in (11-13) are represented for every piezometer and for the spring in 
Figure 4.10 for nitrate, Figure 4.11 for atrazine and Figure 4.12 for DEA. These reconstructed 
series of concentrations can be compared to information on land use and atrazine inputs to 
the system for the year 1994 to 1999 using maps produced as part of the TREND2 
deliverable T2.2. 
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Figure 4.10. Reconstructed nitrate concentration in the vadose zone according to (10) 
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Figure 4.11. Reconstructed atrazine concentrations in the vadose zone according to (11) 
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Figure 4.12. Reconstructed deethylatrazine concentration in the vadose zone according to (12) 
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Nitrate concentration in the vadose zone calculated from the nitrate flux observed at the 
spring is nearly constant, close to 60 mg/L, for the years during which the transfer through 
the unsaturated zone is effective (Figure 4.10h). Since the spring water is representative of 
the groundwater quality at the catchment scale, the nitrate in the vadose zone effectively 
behaves as if it was being issued from a stock that is restored each year. Nitrate 
concentrations disclose smooth variations at piezometers, except for piezometers PZ3 and 
PZ4 which both show a low contamination. The piezometer PZ3 is located downstream of a 
grove close to the upper limit of the catchment. As for piezometer PZ4, its peculiar behaviour 
suggests that it is not in relation with the main aquifer, which has been confirmed by recent 
tracer studies. 
 
Atrazine concentration in the vadose zone reconstructed from fluxes observed at 
piezometers (Figure 4.11) relates sprayings and upstream contamination both being testified 
by land use although it should be noted that the concentration ranges are extremely variable 
from one piezometer to the other. Spraying of a plot upright a piezometer was found to 
produce a concentration peak that may generally be clearly identified (Figure 4.11a, b, c, f). 
Upstream contamination occurs when a piezometer intercepts the atrazine plume which was 
issued from a sprayed plot located upstream of that piezometer (Figure 4.11a, c, d, e, f, g). 
The responses of the piezometers PZ5 and PZ8 which are located 20 meters away are of 
particular interest. Both piezometers were highly contaminated in 1997 and 1998. The 
upstream contamination for 1997 could be confirmed by the land use at the time. This allows 
contamination to be identified.  It can be inferred that the sprayed field close to the upper limit 
of the catchment is upstream of both piezometers and the plume followed the valley 
downwards to the spring. The mean mass transfer time through the vadose zone being about 
twenty times higher than that from piezometers to the spring, the location of piezometers has 
no influence on the delayed response of groundwater to agricultural practices. In 1998, the 
field located upright to the piezometer PZ5 was sprayed and concentration peaks can be 
clearly identified at piezometer PZ5 due to the migration of atrazine through the vadose zone 
and at piezometer PZ8 that intercepted the atrazine plume, being located downstream of the 
field. It is interesting to note that Figure 4.11 shows the release of atrazine after 1999 while 
the compound was no longer being used on this catchment. It appears that two types of 
atrazine should be considered: a mobile atrazine that follows water migration in the vadose 
zone and an atrazine that is retained in the pores of soil and subsoil material, the mobility of 
which strongly depends on the water flux through the unsaturated zone. The release of 
atrazine mainly occurred in 2001, which was a particularly wet year. The reconstructed 
atrazine concentration in the vadose zone from the flux observed at the spring (Figure 4.11) 
integrates the whole catchment. The series clearly allows the identification of successive 
years of application and also of the significant release of bound atrazine in 2001. Overall, 
climatic conditions appear to play an important role in the determination of atrazine transport 
to groundwater. 
 
Trend extrapolation of atrazine concentrations at the spring 
The forecast of atrazine concentrations at the spring requires two transfer functions to be 
used in order to simulate spring flow and the atrazine flux (atrazine concentrations are 
calculated as the ratio between the atrazine flux in spring water and the spring flow). The 
transfer model for the atrazine flux accounts for both the mobile atrazine which results from a 
recent application and that being slowly released in response to significant rainfall events. 
The input related to the mobile atrazine is simply the mass of atrazine sprayed every year on 
the catchment weighted by the effective rainfall (Figure 4.13c). The input related to the 
atrazine which is being slowly released is represented by the effective rainfall, which 
assumes there is a stock of atrazine in the soils and in the unsaturated zone, i.e. only rainfall 
can explain the atrazine releases from the vadose zone to the groundwater. The release of 
atrazine is a non-linear process since it occurs during wet years only.  
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Figure 4.13. The inputs of the transfer model of the atrazine flux to the spring. A 60-day sampling rate 
is used – a) effective rainfall – b) The mass of atrazine sprayed every year on the catchment – c) The 
mass of atrazine sprayed every year on the catchment weighted by the effective rainfall. 
 
The atrazine stock undergoes biodegradation processes and the atrazine mass  
available since the beginning of the forecast period is weighted so that: 

)(tm

).exp()( 0 tmtm λ−=   (14) 
where  is the initial stock; t  is the elapsed time since the beginning of forecast and 0m

λ/)2/1 =T 2ln(  is the half-life of atrazine in the system. The mass balance does not take into 
account the export of atrazine to the spring because it is lower than 1 % every year, which 
can be neglected. 
 
The shortness of the observation period in comparison with the transfer times at the 
catchment scale does not allow non-linearities to be taken into account. Moreover, neither 
the percentage  of mobile atrazine in the vadose zone, nor the half life of atrazine can be 
estimated as this would require an observation period of at least 4 times the mean mass 
transfer time from the vadose zone to the spring, i.e. ca. 12 years. So, both the weighting 
factor  and the half life T  of atrazine are subsequently used as uncertain parameters in 
the transfer models.  

w

w 2/1

 
Different scenarios were considered using different half-lifes for atrazine (5, 25 and 100 
years), different release rates (release of bound atrazine or not) and different weighting 
factors for the proportion of mobile atrazine in the vadose zone ( %30=w

R

 and ) to 
try to account for uncertainties in the modelling. Models represented in Figure 4.14a and 14b 
(i.e. for different values of ) were found to be very similar as the estimation of  is an ill-
posed problem from a numerical point of view. The two components of the atrazine flux are 
represented in Figure 4.14c, d based on equation (8). Here the input flux  represents the 

%60=w

ww

eff
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released atrazine flux through the vadose zone and Q  is the mass of atrazine sprayed every 
year weighted by the effective rainfall to represent the mobile atrazine flux through the 
vadose zone. Atrazine release at the spring is therefore effectively approximated by a linear 
transfer model.  

1

 
Predicted concentrations for atrazine at the spring for the various scenarios considered are 
presented in Figure 4.15. Synthetic rainfall data were generated within TEMPO on the basis 
of the rainfall characteristics for previous years.  The release of atrazine was found to occur 
for wet years, which is consistent with earlier observations made for the year 2001. The 
upper limit of predicted atrazine concentrations corresponds to wet years for which the return 
period is 10 years. The lower limit decreases to zero because the atrazine is assumed to be 
strongly bound to soil and subsoil material and no release is assumed to occur. The actual 
future values for atrazine concentrations in the Brévilles spring will be somewhere within 
those two limits depending on the precipitation amount and the actual release and 
degradation rates. The higher the percentage  of mobile atrazine, the steeper the decrease 
of atrazine concentration in 2005 and 2006 when the mobile atrazine flux issuing from rainfall 
prior to 1999 is transferred to the spring. The overall duration of the spring contamination is 
strongly determined by hypotheses made on the half-life of atrazine. 

w
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Figure 4.14. Separation of the atrazine flux at the spring into two fluxes representing mobile atrazine 
and the atrazine release. A 60-day sampling rate is used – a and b) comparison of the atrazine flux 
and the model (30% mobile atrazine in a and 60% mobile atrazine in b) – c and d) the atrazine fluxes 
(30% mobile atrazine in a and 60% mobile atrazine in b) 
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Figure 4.15. Predicted atrazine concentrations in the spring (the forecast period is symbolized by 
arrows on the time axis). A 60-day sampling rate is used. The upper limit of the expected atrazine 

concentration corresponds to wet conditions defined from rainfall height whose return period  is 10-
years, i.e. 115 mm per 60 days. The lower limit corresponds to dry years during which no release 

occurs;  is the percentage of mobile atrazine and T  is the half life of atrazine. 
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4.3.3 Conclusions and perspectives 
We demonstrated the use of a transfer function approach to reconstruct and predict time 
series of nitrate and pesticides in the Brévilles spring.  Time series of pesticide 
concentrations at the spring and in a number of piezometers on the catchment were used to 
infer characteristics of transfer functions using an inverse modelling procedure and 
information on rainfall at the site.  Pesticide inputs which were reconstructed through the 
methodology were found to be in agreement with detailed knowledge of pesticide 
applications on maize fields in the catchment. 
 
The question of whether the limited period for which pesticide concentrations data were 
available (4 years) would support a robust deployment of the methodology was asked at the 
start at the study. The fact that the pesticide inputs to the system prior to the observation 
period were successfully reconstructed demonstrated that the methodology can be deployed 
even with short time series.  A current limitation of the approach is that it is not possible to 
differentiate between pesticide inputs resulting from a direct application of pesticides to a 
field and those resulting from the release of an existing stock of pesticides in the soil and/or 
subsoil in response to significant rainfall events.  This limitation is however of little relevance 
in the case of Brévilles where the pesticide under study had not been used since 1999, or 
more generally speaking, in the case of nitrate where there is usually very small annual 
variations in nitrate loadings at a few meters below the soil surface. 
 
The calibrated transfer functions were used to make predictions on the future variations of 
pesticide concentrations at the Brévilles spring using synthetically-produced rainfall series.  
Although we tried to account for imperfect knowledge in a number of processes through the 
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use of different scenarios, the predictions for atrazine concentrations remain clearly uncertain 
given that there are uncertainties on i) the future rainfall; ii) the proportion of atrazine which is 
being released from existing stocks in the soil/subsoil; iii) degradation rates for the 
compound.  The uncertainty in the predictions could be reduced by acquiring longer time 
series of pesticide concentrations and/or generating field or laboratory information on the 
degradation of atrazine in groundwater systems.   
 
The methodology presented above is general in essence, does not require detailed 
information on the physico-chemical properties of the system under study and can therefore 
be applied to all kinds of pollutants and surface water / groundwater systems.  Hence, while 
the conclusions of the present study are provisional, the TEMPO package has proven a 
useful tool for analysing, understanding and predicting trends in water quality data. 
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4.4 Time series analysis using possibilistic regression  
 
4.4.1 Introduction to possibilistic («fuzzy») regression  
 
Introduction 
The main objective of the TREND2 Work Package is to provide methods for i) identifying 
trends in water quality time series; and, ii) extrapolating such trends into the future for the 
purpose of early warning with respect to water quality. There is a variety of approaches that 
can be applied to this general objective. A basic criterion that will guide the choice of the 
methodology is the level of knowledge concerning the behaviour of the system at hand (in 
our case the soil-water system). In the ideal case, investigators will dispose of a mechanistic 
model that reproduces available information. By mechanistic we mean a model that accounts 
for physical and chemical phenomena such as the physical structure of the system (and 
heterogeneity thereof), flow of water in the sub-surface, transport and fate of potentially 
harmful substances. In the event that such a model should be available, the general 
procedure consists in calibrating the model with respect to available information on water 
quality and then extrapolating model calculations in order to calculate concentrations 
expected in the future. Unfortunately, in real situations, the availability of such a mechanistic 
model will rather be the exception than the rule. Therefore, methods are needed that are 
suited to “poorer” levels of knowledge of the system’s behaviour. If a significant number of 
water quality data are available, and if the available time window is characteristic of the 
system’s behaviour, then this data can be used to “learn” about the system’s behaviour 
(without a mechanistic model) and therefore project this behaviour into the future. 
 
The previous chapter presents the application of signal analysis methods to data modelling 
(using generic transfer functions), trend identification and trend extrapolation. In this section 
we propose an exploratory investigation of another method: possibilistic regression using 
neural networks. The proposed method makes use of neural network (NN) analysis to “learn” 
a “model” of the input-output relationship, but in addition it calculates the amount of 
imprecision about this trend. It is expected to be of particular interest in a risk–based 
framework by providing an upper bound on expected groundwater concentrations. 
 
Basic notions in possibility theory 
While probability distributions are mathematical tools that allow a description of random 
variability, possibility distributions (also called fuzzy sets or fuzzy numbers) are mathematical 
tools that describe information that is incomplete or imprecise (Zadeh, 1978; Dubois & Prade, 
1988).  
 
For a variable X that is imprecisely known, a possibility distribution representing this variable 
is characterized by its membership function (denoted µ) such that µ (x*) = 1 for some value x* 
of X. This function, the values of which lie between zero and one, describes the level of 
likelihood (possibility) that variable X may take a certain value x. The term “possibility” refers 
to the idea of lack of surprise; the more possible a value, the less surprising it is.  
 
A possibility distribution (or fuzzy number) can be thought of as a “refined interval”: a series 
of nested min-max intervals, each interval having its own level of likelihood. The interval of 
values judged most likely is called the “core” of the distribution, while the interval outside of 
which values are judged not possible is called the “support” of the distribution. The example 
in Figure 4.16 conveys the following information:  
The porosity of this soil is considered most likely to lie between 25 and 45%. This interval is 
assigned a possibility of unity. 
Values outside the range 15% - 50% are considered not possible.  
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Figure 4.16. Example of a possibility distribution for the porosity of a soil 
 
It is worth noting that this sort of incomplete information is quite typical of real-world 
situations. Possibility distributions are therefore useful in such situations where available 
information concerning a variable is incomplete or imprecise (situations of partial ignorance) 
and therefore the selection of a single probability distribution cannot be justified on the basis 
of available information.  
 
There is, however, a direct link between possibility theory and probability theory (see Dubois 
& Prade, 1992): a possibility distribution encodes a “family” of probability distributions. In the 
case of Figure 4.16, the corresponding family of probability distributions is depicted in Figure 
4.17: it is the family of all the probability distributions that lie between the upper probability 
bound represented by the distribution on the left (full line) and the lower probability bound 
represented by the distribution on the right (dashed line). This lower bound is symmetrical 
with respect to the right branch of the possibility distribution indicated as a dotted line. The 
distance between the upper and lower probability distributions is a consequence of 
imprecision in the available information. If there is no imprecision, the two distributions 
coincide into a single probability distribution and express pure random variability (classical 
probability theory). If there is no imprecision and also no random variability, then the variable 
is referred to as “crisp” (precise). 
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Figure 4.17. Left and right limits of the family of probability distributions encoded  
by the possibility distribution of Figure 4.16 
 
4.4.2 Possibilistic regression  
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Introduction 
There exists two different types of possibilistic (fuzzy) based extensions of regression 
methods in data analysis (Kacprzyk and Fedrizzi, 1992; Tanaka and Guo, 1999, Bandemer 
and Naether, 1992; Diamond and Tanaka, 1998). The first one deals with fuzzy (imprecise) 
output data, and possibly also fuzzy inputs, to be described by a fuzzy regression function. 
This type of method has been proposed for dealing with imprecise and qualitative data by 
several authors (Celmins, 1987; Diamond, 1988). It is based on linear fuzzy least squares 
fitting.  
 
The second type of approach is referred to as possibilistic regression and handles ordinary 
data. A linear model, proposed initially by Tanaka (1987) “learns” a fuzzy regression function 
from crisp (precise) inputs and crisp or interval outputs. In the first step, a linear regression 
function that produces an interval from crisp inputs is learned by solving a linear 
programming problem. Next, a fuzzy interval linear regression function is deduced. This 
function associates a fuzzy interval to a crisp input. This method has been extended to non 
linear fuzzy regression by Ishibuchi and Tanaka (1992) and Jenga et al. (2003). The 
advantage of the method is that it is very efficient in terms of computation time and it can 
handle noise to some extent.  
 
In the following, possibilistic regression was applied since it applies to crisp (precise) inputs 
and outputs. In the context of groundwater quality time series (concentration versus time), it 
is assumed therefore that both time and concentration can be measured with sufficient 
precision. 
 
Advantages and limitations 
The main benefits of possibilistic regression with respect to classical regression is that the 
former describes both the general tendency of the function (as classical regression does) but 
also the amount of imprecision around the general tendency. In particular, the non-linear 
extension of possibilistic regression based on neural networks (Ishibushi and Tanaka, 1992) 
is used in the experimentations proposed here. This method has several advantages. First, in 
contrast with standard possibilistic regression (Tanaka, 1987), it allows a more faithful 
representation of the data through the use of a non-linear function. Moreover, the method 
proposed by Tanaka (1987) was based on linear programming, which can become very 
costly when dealing with large amounts of data as is the case here. The neural networks 
approach is more efficient (Ishibuchi and Tanaka, 1992) in terms of computation time and the 
users can fix the trade-off between the computation time and the accuracy of the results. 
Finally, it is known that neural networks perform extrapolations that are statistically 
meaningful.  
 
Nevertheless, the method has some limitations too. The first one is a limitation of any 
learning method; namely, the data given in the inputs must be sufficiently informative with 
respect to describing the outputs. Also, information on relevant parameters must be available 
for extrapolation. Besides, neural networks have difficulties for learning some types of 
functions such as periodic ones. Neural networks are also very sensitive to outliers (marginal 
points of the output). In the applications considered herein, all the data, even that which 
departs from the general tendency, is taken into consideration. It is worth noting that an 
extension of the method, based on support vector machine (SVM ; Jenga et al., 2003), has 
been proposed for dealing with outliers. For reasons of time constraints, it was not possible 
to explore this alternative for the study presented here. 
 
Neural network based possibilistic regression 
Neural networks are a general “learning” scheme that generates a function from pairs of 
input-output data. The function “learned” can then be used for classification or extrapolation 
purposes. A neural network is made of several nodes, organized in layers and linked by 
weights (synapses). Each layer computes a sigmoid function of a weighted sum of outputs 
from the previous layer. Inputs of the first layer are the inputs of the function to be induced. 
For the “learning” scheme, a pair of input-output data is chosen randomly and the data output 
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is compared with the neural network output. Then, the neural network weights are adjusted 
following the discrepancy between the output data and the network output (Ishibuchi and 
Tanaka, 1992).  
 
It is worth noting that curve-fitting methods, based on polynomials, would not be appropriate 
for extrapolation: one could obtain a fit between a polynomial and the measured data, but this 
fit could not be used for extrapolation because it would not be statistically representative. on 
the contrary, it is known that neural networks provide a statistically representative regression. 
 
This learning step is repeated a large number of times, the latter being fixed by the user 
(typically from 10 million to 100 million iterations are performed). Note however that an 
excessive number of iterations can lead to “over-precise” learning and potentially to 
extrapolation anomalies. 
 
Let us consider a vector of the form < px  =(xp1, ... xpm), yp > where (xp1, ..., xpn) are the inputs 
and yp is the output. The aim of a neural network is to “learn” a function g that minimizes the 
discrepancy between measured and calculated output. So we build a neural network that will 
help us define a function g such that: 
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is minimal. 
 
This theoretical requires a neural network with only two layers. The first layer is the input unit, 
the second layer is the hidden unit. 
 
The input unit is defined by n neurons O11, ..,O1n. The value of the neurons when a new data 
vector px  is introduced is: 
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The hidden layer contains n’ neurons (n’ is a parameter fixed by the user) O21, ... O2n. Each 
neuron of the input layers O1i is linked with each neuron of the hidden layer O1j by the 
synaptic weight wji. The value of the neurons when a new data vector px is introduced is: 
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The value of the function g defined by the neural network is given by the output neuron O 
which is linked with each neuron O2j of the hidden layer by a synaptic weight wj. The values 
of the function and the output neuron, when a new data vector px  is introduced are: 
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At each step of the learning process, a vector is randomly selected from the training data set. 
Then the error of g is back-propagated in the neural network. The values of the synaptic 
weights wji, wj and the values θj and θ are updated in order to minimize the error. 
 
Possibilistic regression with neural network 
The classical scheme of neural networks provides standard non-linear regression. The 
proposed approach, based on Ishibuchi and Tanaka (1992) learns three neural networks: 
one for the standard linear regression, one for the upper bound regression and another for 
the lower bound regression. The result can be interpreted as a possibility distribution taking 
the standard regression result as the core of the distribution while the upper and lower 
bounds define the support of the distribution. 
 
The upper-bound function is denoted as g*. For learning this function, we learn a neural 
network that minimizes the value: 
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where ωp is specified depending on whether yp is less or greater than g*( px ).  
 
More precisely, we use the following weighting scheme: 
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where ω is a small positive value in the open interval ]0, 1[. Thus more weight is given to 
calculated results that fall above the measured data than to the other results. 
 
If r is the number of learning steps of the algorithm, at step t we have: 
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This weight allows us to have a function that is just greater than the target function.  
 
In the same manner, the lower bound g* is computed by considering the minimization of:  
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We thus give more weight to calculated results that fall below the measured data. We thus 
obtain a lower bound regression. Note that if the same weight is given to all errors, we obtain 
the classical regression curve. 
 
For the data presented hereafter, 5 hidden neurons were used for the neural network. Tests 
were also performed with 4 hidden nodes and results were practically identical. Note that one 
drawback of the neural network approach is that there is no definite rule to define the optimal 
number of hidden nodes. 
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Results 
The method is applied to time series of atrazine, deethylatrazine and spring discharge data 
from the Brévilles case study. 
 
Results are presented in appendices and grouped according to the type of information that 
was used for the “learning” process. Four types of information were used:  
Time of measurement (week number). 
Measurement month number. 
Annual supply of atrazine in the fields (an arbitrary offset of 8 years was applied to account 
for the fact that there is a delay between the application of atrazine and its apparition in 
groundwater. 
Rainfall. 
These sources of information can be used individually or else combined. 
 
The first trials with the possibilistic regression method are performed with time information 
only (Appendix 4.1). For each output, results are presented for the learning data interval, the 
learning data interval plus one year, the learning data interval plus five years and the learning 
data interval plus twenty years.  
 
Results for atrazine are presented in Figure 4.18. The standard neural network-based 
regression appears in green while the boundary regressions appear in brown. We observe a 
general trend towards decreasing concentrations. In the long run (learning interval + 20 
years) concentrations level out. This levelling is largely influenced by the sigmoid function 
used in the neural network. If there is no more “learning data”, results are increasingly 
influenced by this function. 
The same results are presented in Figure 4.19 as possibility distributions; in red for the 
learning period and in grey for the extrapolated period. As mentioned previously the cores of 
these distributions are defined by the classical regression curve (in green in the previous 
figure) while the supports are defined by the boundary regression curves. The upper limits of 
the extrapolated supports can be interpreted in terms of probability as concentration values 
for which the probability of having higher values is zero. It should be noted, however, that this 
“certainty” of not exceeding the upper bound is only as good as the data: should a new 
measured concentration show a value higher than the extrapolated upper bound and all the 
curves would be modified. 
 
Figure 4.20 shows results for deethylatrazine. Here the extrapolation rapidly reaches a 
plateau. 
 
This is also the case in Figure 4.21 (spring discharge data) while one might have expected 
(“chi-by-eye”) a decreasing trend. Judging by the neural network computation, an 
extrapolated plateau appears more statistically representative. 
 
The second trial (Appendix 4.2), makes use of information on the measurement week and 
the measurement month number. As the latter information is correlated to climatic 
information, one might expect it to be useful in the “learning” process. Results in Figure 4.22 
show cyclic peaks in atrazine concentrations that correspond rather well with measured 
peaks. It would appear that the month number may “explain” part of the observed behaviour.  
 
Results for deethylatrazine in Figure 4.23 suggest problems in the extrapolation : the lower 
regression curve displays cyclic variations that do not appear in the other two regressions. 
The results for spring discharge are not very different from those of Appendix 4.1 where the 
month number was not used. 
 
The third trial (Appendix 4.3) makes use of time information (week number) and also of 
information on annual supply of atrazine. There is a notable influence on the extrapolated 
level of atrazine (Figure 4.25) with a “plateau” that is higher than in the case of Appendix 4.2. 
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Extrapolated values of deethylatrazine (Figure 4.26) show an increase and then level out, the 
latter being probably an effect of the sigmoid function used in the neural network scheme. 
Again no significant difference in extrapolated discharge rates is observed. 
 
In the fourth trial (Appendix 4.4), time information is combined with information on rainfall. For 
the extrapolation period, rainfall simulated with TEMPO was used. The influence on fits to the 
learning period and on the extrapolation periods (Figure 4.28 to Figure 4.30) is questionable. 
Abrupt peaks appear as there is no buffering of the rainfall data. 
 
The fifth trial (Appendix 4.5) uses three sources of information: time (week number), month 
number and annual supply of atrazine. The upper regression of atrazine follows the data 
quite well (Figure 4.31). The extrapolation of deethylatrazine is difficult. Note that as the 
classical regression is independent from the other two, it is possible that it may cross over as 
is the case in Figure 4.32. 
 
The last trial (Appendix 4.6) uses all available sources of information: time (week number), 
month number, annual supply of atrazine and month number. The results are questionable in 
particular due to the use of the rainfall information. 
 
4.4.3 Conclusions and perspectives 
This chapter presents the results of an exploratory investigation of an innovative 
methodology for time series trend analysis and extrapolation. This methodology is based on 
the use of a modified scheme of neural networks  from Ishibuchi and Tanaka (1992). The 
main advantage of this methodology with respect to classical non-linear regression using 
neural network schemes is that it provides an estimate of the imprecision on the regression. 
This imprecision is materialized by the distance between the upper and lower regressions. In 
a context of trend analysis of groundwater quality time series for the purpose of early 
warning, the upper bound could be used as a conservative indicator of potential threshold 
excess.  
 
This methodology is similar in philosophy to the TEMPO approach: the data themselves are 
used to “learn” (through optimisation) a relationship between inputs and outputs and this 
relationship is used for extrapolation. It differs therefore from the mechanistic approach 
where a model of pollutant migration and fate is used to predict concentrations. The TEMPO 
approach uses tools from the field of signal analysis while the approach presented here uses 
neural networks. It is felt that TEMPO allows for much more expert input and judgement than 
the neural network approach which is more “brute force”. Nevertheless, the results presented 
herein suggest that the approach holds promise in a risk management context and it will 
therefore be the topic of further investigation.  
 
4.4 Discrepancy between the CFC age of interstitial water and the mean 

transfer time calculated from impulse responses. 
The mean transfer time calculated from impulse responses is about 3 years for all 
piezometers, that that addresses to the migration of water or the mass transport (Ca, nitrate). 
This mean transfer time is referring to the mobile water that significantly contributes to the 
observed transfers. The age deduced from CFC or tritium analysis of interstitial water 
strongly depends on the age of water that is trapped in the small pores and do not contribute 
significantly to the mass transport. 
The discrepancy observed between both methods for water dating is relatively traditional in 
chalk formations. A dual porosity, interstitial porosity and fracture porosity characterize the 
chalk. This behavior is specific to the chalk, which shows both a very fine porosity network 
and a well-organized fracture network on a large scale. Water content in the interstitial 
porosity is always close to saturation due to both water migration downwards to the water 
table and the capillary fringe. After significant effective rainfall, an increase in capillary 
pressure leads to saturation of the conductive fractures, which occurs when the water 
content exceeds a certain threshold [Wellings, 1984, Peters and Klavetter, 1988, Price et al., 
2000, Mahmood-ul-Hassan. and Gregory, 2002, Haria et al., 2003]. Below this threshold, 
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water is only slightly mobile because it is trapped in the fine pores of the chalk. In such 
conditions, the velocity of water migration is commonly 50 cm/y and, consequently, the water 
flux through the unsaturated zone is relatively low.  
When water transfer occurs through the fractures, the mean transit time may be more than 
10 times lower. So, although the fracture porosity is generally a few percents whereas the 
matrix porosity may reach 30%, the water flux through the unsaturated zone is strongly 
enhanced. 
The unsaturated zone of the Brevilles catchment that consists of limestone with a dual 
porosity behaves like a chalk formation as for water migration. It is the reason why the mean 
transit time given by both methods is different. 
 
4.5 Summary and perspectives 
 
The water and pesticide data from the Brévilles catchment were used to evaluate three 
approaches to trend analysis. The first approach is based on statistical theory and attempts 
to analyse trends in pesticide concentrations based on concentrations data only.  The 
approach which was retained in the present work is know as the Holt's two parameter 
method which includes an exponential smoothing of the data.  The methodology does not 
account for the strong effects environmental factors might have on pesticide concentrations 
(e.g. the influence of rainfall in determining pesticide transfers). Also, the system was 
demonstrated to be ill-posed from a calibration point of view, which means that a wide variety 
of predictions can be made on the basis of the same dataset. The performance of 'classical' 
approaches to trend analysis are therefore unlikely to be of value to predict pesticide 
concentrations in the Brévilles spring and alternative approaches were therefore evaluated. 
 
Trends in pesticide concentrations were analysed using a methodology based on the iterative 
determination of transfer functions which draw a direct relationship between observed 
pesticide concentrations and other inputs such as an indication of groundwater recharge.  
The approach was evaluated through the back-derivation of temporal variations in pesticide 
inputs to the groundwater system using the time series analysis tool TEMPO.  The 
reconstructed pesticide inputs were found to match observed pesticide applications on the 
catchment and helped to understand the functioning of the groundwater system.  Different 
scenarios were considered with regard to potential influencing factors such as degradation 
rates of pesticides, the potential release of pesticides from soil and subsoil stocks. The 
scenarios were combined to stochastically generated weather data to result in predictions of 
pesticide concentrations in the Brévilles spring over the next 15 years.  It should be 
emphasised that given the uncertainties associated with key fate processes that are poorly 
known and uncertainty in future weather conditions, predictions made remain uncertain. Still, 
while the conclusions of the present study are provisional, the TEMPO package has proven a 
useful tool for analysing, understanding and predicting trends in water quality data. 
 
Methodological developments were also undertaken to investigate the potential usefulness of 
a methodology combining possibilistic regression and artificial neural networks. The main 
advantage of this methodology with respect to classical non-linear regression using neural 
network schemes is that it provides an estimate of the imprecision on the regression. 
Although TEMPO was found to be more flexible in integrating expert knowledge and 
judgement on the functioning of the system under study, the results obtained when applying 
the new methodology to the Brévilles data suggest that the possibility approach could be of 
interest in a risk management context where the upper bound could be used as a 
conservative indicator of potential threshold exceedances. 
 
The main advantage of the approaches based on transfer functions and possibilistic 
regression which were evaluated in the present study is that they require only information on 
measured data and rainfall inputs to yield results of potential interest.  These low data 
requirements are in sharp contrast with the deterministic approach which will be investigated 
as part of future work in the TREND2 work package.  The approaches are also generic in 
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their nature and can be easily applied to other environmental contaminants or other 
groundwater or surface water systems. 
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5. Discussion  

 
This discussion is meant to briefly summarise the characteristics of the various study areas, 
to highlight apparent differences between the study sites and to examine the consequences 
for the work on trend detection. 
 
5.1 Differences between study sites: pumping wells and springs versus 

observation wells 
 
Results of deliverables T2.3 and T2.4 strongly indicate that a consideration of travel times in 
the groundwater systems is essential for detection of trends and trend reversal. Quite 
different approaches have been followed in the TREND subcatchments case studies to deal 
with variations due to travel times. An important reason for these diverging approaches is the 
type of monitoring networks that were used for trend detection, in combination with different 
hydrogeological settings.  
 
Table 5.1 summarizes some main hydrogeological characteristics of the selected sub-basins. 
It shows that a wide range of hydrogeological situations was selected. This has major 
consequences for the type of wells used to collect monitoring data (see below). Moreover, a 
completely different age distribution and chemical reactivity is anticipated between the 
various types of aquifers. 
 
Table 5.1 Summary of hydrogeological characteristics of the selected sub-basins of T2.3 and T2.4 
Sub-basin Hydrogeological characteristics Unsaturated zone 
Dommel/Brabant Unconsolidated Plesitocence deposits; fine to medium 

coarse sands, loam 
Shallow (1-5 m) 

Wallony-Hesbaye Cretaceous chalk, fissured, dual porosity aquifer Thick 
Wallony-Pays de 
Herve 

Cretaceous chalk and sands, fissured Thick 

Wallony-Néblon Carboniferous limestone, folded karstified Thick 
Wallony-Meuse 
alluvial plain 

Unconsolidated deposits; gravels, sands and clays Shallow (1-5 m) 

Brévilles Lutecian limestone over Cuise sands, limestone 
fissured 

Thick  
(> 30 m sometimes) 

 
Quite different monitoring systems exist in the selected sub-basins (Table 5.2). The Brabant 
and Dommel sub-basins have nested observation wells at specific depths which are 
dedicated to groundwater quality monitoring. Monitoring data in the Wallonian catchment 
originate from the Wallonian nitrate survey network. Both pumping wells, springs and 
galleries are used for nitrate monitoring. Monitoring in the Brévilles catchment is done in 
piezometers and in the Brévilles spring itself, and is seven piezometers.  
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Table 5.2 Summary of monitoring systems in the selected sub-basins in deliverables T2.3 and T2.4 
Sub-basin Observation 

wells 
Pumping 
wells 

Others Typical 
screen 
lengths 

Typical 
monitoring
depths 
- SL 

NL Dommel X X b  2 m 10, 25 m 
NL Brabant X     
Wallony-Hesbaye X X Galleries 10-30 m 20-40 m a 

Wallony-Pays de 
Herve 

X X Galleries, 
springs 

10-30 m 20-40 m a 

Wallony-Néblon X  Galleries, 
springs 

10-30 m 20-40 m a 

Wallony-Meuse 
alluvial plain 

X X  5-15 m 5-15 m 

Brévilles X  Spring 10-20 m 14-42 m 
. SL = Surface Level, a = exact lengths and depths not yet known, b = not yet certain 
 
There are important differences between the monitoring systems used that are relevant for 
trend analysis. Probably the most important aspect is the difference in travel time 
(groundwater age) for samples which are taken from a pumping well, spring or gallery and for 
samples which are taken from monitoring screens which are not pumped.  
 
For pumping wells, springs and galleries the groundwater sample reflects a mixture of travel 
times which could best be described using the complete travel time frequency distribution. 
Young and very old groundwater are mixed because of the converging flow field. The 
average travel time, or characteristic time, is often counted in decades (see Figure 5.1) 
 

.  
Figure 5.1: Pumping wells typically attract groundwater with a mixture of travel times; young water with 
short flow paths and old water with long flow paths. Consequently, the resulting concenration time 
series in pumping wells are both influenced by recent antropogenical contamination (gray color in the 
graphs) aand the simultaneous attraction of old, uncontaminated water (white color in the graphs) 
 
The presented results of the Brévilles and Wallonian cases mainly deal with these kind of 
monitoring types. Transfer times in the thick unsaturated zone of the Brévilles and Wallonian 
subcatchments appeared to be considerable and need to be integrated in the trend analysis 
concept. Both the Brévilles spring and the Wallonian catchment show concentration 
fluctuations with time, due to reaction of the fast part of the groundwater system to 
climatological variations. 
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Samples from multi-level or single-level observation wells have more or less fixed travel time 
from the earth surface to the screen. Deeper screens generally exhibit older water than 
shallow screens, due to the slow vertical groundwater flow component. When short screens 
are applied, only limited mixing is anticipated. Observation wells with large screen length take 
an intermediate position relative to short screened wells and pumping wells.  
 

Figure 5.2 Observation wells typically have a narrow range of travel time associated, especially when 
applied in granular aquifers. In a simple hydrogeological setting as above, a simple pattern of 
increasing groundwater age with depth is observed (see also Broers 2004) 
 
The Dutch Meuse case is based on this kind of monitoring systems and a general increase of 
groundwater age with depth was observed using tritium-helium, CFC and SF6 dating. Here, 
variations in groundwater age still impedes trend analysis. Age scaling effectively removes 
these kind of variations, and trend reversal could be demonstrated. Age dating appeared to 
be crucial to establish this objective. 
 
Overall, we might conclude that differente monitoring types need different approaches for 
trend analysis. The deliverables T2.3 and T2.4 focused on statistical methods for trend 
detection. Future deliverables of the TREND 2 work package will also concentrate on 
deterministic and modelling approaches.  
 
5.2 Specific results 
 
5.2.1 Meuse (NL) 
In the Dutch Meuse basin, groundwater age dating has proven to be very helpful when 
researching trends in groundwater quality. The trend reversal and subsequent downward 
trend have been observed in conservative chemical indicators (oxidation capacity and sum of 
cations) and are consistent with the estimateds of historical input of solutes which was 
extensively described in Deliverable T2.2. 
Using the groundwater ages and the extrapolated time trends to predict future groundwater 
quality shows that shallow groundwater quality will improve, but deeper water quality may 
deteriorate as a result of the peak reaching these depths. Regional improvements of 
groundwater quality will be very slow because of the variation in groundwater ages. 
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5.2.2 Meuse (BE) 
For the Walloon part of the Meuse basin, a consistent and rigorous approach has been 
proposed and applied for trend detection and quantification in groundwater quality (nitrate) 
datasets, based on statistical techniques that is robust and able to discriminate between 
“clear” and “weak” trends. This is related to the two-step procedure: first trend detection, then 
trend quantification. 

The statistical analysis has provided point-by-point estimations of nitrate trends, in the 
form of a slope expressed in mg NO3/year (increase or decrease). This result might be 
enough and appropriate to estimate the short term evolution of groundwater quality in the 
selected basins (few years), particularly for those groundwater bodies overlain by a thick 
unsaturated zone that lead to important buffer effects in the evolution of nitrate 
concentrations in the aquifers (Geer basin, Pays de Herve). 

The major disadvantage of using a “pure” statistical trend analysis is thus that it is not 
able to consider variations in land use and functional relations between land use and 
groundwater quality. For long term evaluation of nitrate trends, more advanced techniques 
are thus required, such as transfer functions or mechanistic modelling relating land use and 
groundwater quality. From a spatial point of view, advances are also still needed in order to 
produce reliable global estimates of groundwater quality indicators at the scale of the 
groundwater body, as requested by the EU Water Directive. 
 
5.2.3 Brévilles (F) 
The water and pesticide data from the Brévilles catchment were used to evaluate three 
approaches to trend analysis. The first approach is based on statistical theory and attempts 
to analyse trends in pesticide concentrations based on concentrations data only. The 
methodology does not account for the strong effects environmental factors might have on 
pesticide concentrations and was demonstrated to be ill-posed from a calibration point of 
view. The performance of 'classical' approaches to trend analysis are therefore unlikely to be 
of value to predict pesticide concentrations in the Brévilles spring and alternative approaches 
were therefore evaluated. 
 Trends in pesticide concentrations were also analysed using a methodology based on 
the iterative determination of transfer functions which draw a direct relationship between 
observed pesticide concentrations and other inputs such as an indication of groundwater 
recharge. While the conclusions of the present study are provisional, the TEMPO package 
has proven a useful tool for analysing, understanding and predicting trends in water quality 
data. 
 Thirdly, a methodology combining possibilistic regression and artificial neural 
networks was developed. The main advantage of this methodology with respect to classical 
non-linear regression using neural network schemes is that it provides an estimate of the 
imprecision on the regression. Applying the new methodology to the Brévilles data suggest 
that the possibility approach could be of interest in a risk management context where the 
upper bound could be used as a conservative indicator of potential threshold exceedances. 
 
The main advantage of the approaches based on transfer functions and possibilistic 
regression which were evaluated in the present study is that they require only information on 
measured data and rainfall inputs to yield results of potential interest.  
 
In the complex Brévilles catchment, the unsaturated zone and fractured behaviour 
complicate the interpretation of modern age dating techniques. The study of environmental 
tracers shows a dual velocity system, where water is able to infiltrate at high rates through 
cracks and fractures, and through the porous medium at low rates. CFC ages point to 
relatively old water and slow transport (deliverable T2.3), whereas transfer times derived 
from time series analysis (this Deliverabele) point to relatively fast transport. Which of the two 
transport rates is most important for trend analysis and trend understanding is subject for 
future research. 
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