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ABSTRACT: An energy-based isotropic elastoplastic model coupled to damage is
implemented in the finite element code LAGAMINE developed for more than fifteen
years in the MSM department. In this model, based on the local approach of ductile
fracture, effective stresses associated to damage variables are introduced. The
damage law allows a continuous description of crack appearance. After a brief
description of the model, its identification and its validation for an aluminum alloy
are presented. Finally, the research of a global rupture criterion associated to this
model is introduced.
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INTRODUCTION

I
N MANY METAL forming processes such as forging, extrusion, rolling,
deep drawing or cutting, the material undergoes large irreversible

deformations, which could lead to the onset of cracks. To improve these
industrial processes and limit the appearance of defects, engineers often use
numerical simulations. These can help them in a better understanding of
the process and allow parametrical studies. The prediction of fracture in
structure loading processes is also of great importance. This interest of the
industry in numerical methods has considerably increased the amount of
research in developing constitutive models and rupture criteria.
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As described by Zhu et al. (1992a), there are two common ways to predict
rupture in the field of continuum mechanics. The first method consists in
using classical constitutive laws coupled with the computation of rupture
criteria. This is easily implemented in any numerical code but not general as
it is difficult to find a single rupture criterion for all types of rupture (mode I
of fracture mechanics for tensile tests and modes II and III for shear tests).
The second approach is a continuum damage theory producing damage
coupled constitutive laws. It is more attractive as it allows prediction of
different rupture types and localization of the rupture zone. If non local
approaches are used, the crack growth can be followed. Nowadays,
continuum theories are a field where a tremendous amount of research
work is available. Gurson (1977), Tvergaard (1982), Lemaı̂tre and Chaboche
(1985) and Perzyna (1986) proposed elasto-visco-plastic and elastoplastic
continuum theories for isotropic damage sensitive materials. New exten-
sions, which cover anisotropic cases, are also available (Benzerga et al.,
1997; Habraken et al., 1998).
Two types of constitutive relations are found in literature to model

the coupled phenomena of elasto-plasticity and material damage,
either microscopic (void growth and coalescence) or macroscopic (phenom-
enological). The first approach, for instance Gurson’s model (Gurson,
1977), requires microscopic experimental studies to define the model’s
parameters and a transition from non-homogeneous microscopic material to
macroscopic material, which is not always obvious. The second approach,
discussed here, is based on phenomenological observations and
thermodynamic considerations. It is motivated by microscopic considera-
tions but not deduced from them. This approach can be found in works of
Chaboche (1978), Lemaı̂tre (1985b), Rousselier (1987), Ju (1989), Saanouni
et al. (1994), Murakami et al. (1998) and Voyiadjis and Deliktas (2000), it
only requires simple macroscopic experiments.
The goal of the presented research is the validation of an isotropic

elastoplastic model coupled to damage, Zhu’s model (Zhu et al., 1992b),
and the determination of a rupture criterion coupled to this model. The
used damage theory is an adaptation of the local approach of ductile fracture,
which is a prediction method based on local stress and strain fields at every
point of a structure. The damage law has to allow the localization of the
initiation site as well as the propagation direction of the cracks. Themodel has
been established employing the formulation of the irreversible thermody-
namics and effective state variables linked to damage variables.
To check the validity of the model, we use a set of results collected from

experiments on an annealed aluminum–copper alloy (2024) manufactured for
aeronautic industry and available in the form of tubes (Figure 1). The first
stage of the study consists in the identification of the model for this material
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before beginning the validation stage by numerical simulations of several
experiments chosen in such a way that a wide range of mechanical states are
covered.

MODEL DESCRIPTION

The fracture prediction method is a coupled theory where damage is
included in the constitutive laws. It is based on local stress, strain and
damage fields at every point of the structure. We consider we have detected
a crack when critical fracture conditions are achieved in a representative
volume element. In this way, we can use a finite element formulation to
analyze fracture processes.

Damage Characterization

Damage can be defined as a collection of permanent microstructural
changes modifying thermomechanical properties (e.g., stiffness, strength,
anisotropy, etc.) and brought in a material by a set of irreversible physical

Figure 1. Description of the tube.
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microcraking processes resulting from the application of thermomechanical
loading (Taljera, 1985). For the isotropic law, two scalar damage variables
are introduced in the model (Ladavéze, 1984), by which not only the elastic
modulus but also the Poisson’s ratio can vary with the damage growth: d,
the deviatoric one and �, the volumetric one (see relation (1)). They
represent the local material degradation, which reflects the various types of
damage at the micro-scale level due to nucleation, growth and coalescence
of voids, micro-cracks and other microscopic defects. Contrary to Gurson’s
approach, damage is not strictly connected to void volume fraction even if
this is the revealing phenomenon in ductile fracture, the damage variables d
and � are not quantitatively linked to void volume fraction. Experimentally,
it has been shown that the ratio �¼ �/d is close to a constant in tensile state
for different materials (Gattoufi, 1984).
The additive decomposition of the total strain rate tensor _"", symmetric

part of the velocity gradient, into elastic _""e and plastic _""p components is
used. With the hypothesis of elastic energy equivalence (Cordebois and
Sidoriff, 1979; Cordebois, 1983), the damaged material state can be replaced
by a fictitious undamaged material state which is characterized by effective
stresses and strains (overlined variables) and through which damage
variables are introduced in the model:

���0 ¼
�0

1� d
���m ¼

�m
1� �

ð1Þ

�""0 e ¼ ð1� dÞ"0 e �""m ¼ ð1� �Þ"m ð2Þ

where �m is the mean value of the stress tensor, �0 its deviator, " 0e the elastic
strain tensor deviator and "m the mean value of the strain tensor. Equations
(1) and (2) imply the equality of the complementary elastic energy. The
damage variables are given by (3):

D ¼ 1�

ffiffiffiffiffiffi
E

Eo

s
d ¼ 1�

ffiffiffiffiffiffi
G

Go

s
� ¼ 1�

ffiffiffiffiffi
�

�o

r
ð3Þ

where �EE is the Young’s modulus, �GG the shear modulus, ��� the bulk modulus
for damaged state, E0, G0 and �0 the constant values for undamaged state.
The model presented here uses only the two variables d and �; D is the
classical damage variable. These three variables are linked by relation (5)
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obtained substituting the relations between the elastic moduli (4) into
relations (3):

G0 ¼
E0

2ð1þ �0Þ
�0 ¼

E0

3ð1� 2�0Þ

�GG ¼
�EE

2ð1þ ���Þ
��� ¼

�EE

3ð1� 2 ���Þ

ð4Þ

� ¼ 1� ð1�DÞð1� dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3G0 � E0

3G0ð1� dÞ2 � E0ð1�DÞ
2

s
ð5Þ

with �0 and ��� the Poisson’s coefficient for undamaged and damage state,
respectively. Finally, combining the previous relations, we can write the two
classical elastic parameters �EE and ��� as functions of the two independent
damage variables d and �.

Thermodynamic Approach

Thermodynamics of irreversible phenomena gives the necessary basic
principles to develop a model based on a continuous evolution of
damage. The existence of the damage potential and the related damage
evolution surface is postulated a priori in the framework of this approach.
Murakami and Hayakawa (Hayakawa and Murakami, 1998; Murakami et
al., 1998) experimentally validate the existence of the damage surface, the
assumption of the associated flow rule and the normality law of damage
evolution, i.e., the existence of the damage potential.
Table 1 summarizes the independent variables of the present model and

their associated thermodynamic forces.
The Helmhotz specific free energy � is taken as thermodynamic potential:

� ð"e,T , d, �,	,
Þ ¼ Weð"e,T , d, �Þ þ�pð	,TÞ þ�dð
,TÞ ð6Þ

Table 1. State variables and associated thermodynamic forces.

State Variables Associated Thermodynamic Forces

Elastic strain "e Cauchy stress �
Accumulated plastic
energy variable 	

Plastic hardening threshold R

Damage variables d, � Damage energy released rates Yd, Y�
Overall damage 
 Damage strengthening threshold B
Temperature T Entropy S
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where �p is the free energy due to plastic hardening, �d the free energy
due to damage hardening and We is the elastic strain energy, which can
be divided into deviatoric strain energy W 0

e and volumetric dilatation
energy Wm:

We ¼ W 0
e þWm ð7Þ

in which:

W 0
e ¼

1

2
�0 : "0 e ¼ G0ð1� dÞ2ð"0 e : "

0
eÞ ¼

�0 : �0

4G0ð1� dÞ2
ð8Þ

Wm ¼
3

2
�m"m ¼

9�0ð1� �Þ
2

2
"2m ¼

�2m
2�0ð1� �Þ

2
ð9Þ

The complementary energy � is obtained from Legendre transformation
with respect to strain:

��ð�,T , d, �,	,
Þ ¼ � : "e � � ð"e,T , d, �,	,
Þ ð10Þ

Following the standard thermodynamic procedure, the associated thermo-
dynamic forces are given by derivation of (6) with respect to the state
variables:

�0 ¼
�@ 

@"0 e
¼ 2G0ð1� dÞ2"0 e �m ¼

�@ 

@"m
¼ 3�0ð1� �Þ

2"m

R ¼
�@ 

@	
¼
@�pð	,TÞ

@	
B ¼

�@ 

@

¼
@�dð
,TÞ

@


Yd ¼
�@ 

@d
¼ �

�0 : �0

2G0ð1� dÞ3
¼ �

2W 0
e

1� d
Y� ¼

�@ 

@�
¼ �

�2m
�0ð1� �Þ

3
¼ �

2Wm

1� �

ð11Þ

In the present model, the Clausius–Duhem inequality can be written:

� : _""p � R _		� Yd
_dd � Y� _��� B _

�

1

T
gradT � q � 0 ð12Þ

where q is the heat flux. Within the assumption of uncoupling between
mechanical and thermal dissipations and of the independence of energy
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dissipation between plastic flow and damage processes, (12) can be
separated into three parts:

� : _""p � R _		 � 0 ð13Þ

�Yd
_dd � Y� _��� B _

 � 0 ð14Þ

�
1

T
gradT � q � 0 ð15Þ

This suggests that there exists a plastic dissipative potential Fp and a damage
dissipative potential Fd, which are independent. Such a choice is justified by
the physics: the dissipation associated with the plastic deformation in
polycrystalline materials is mainly produced by dislocation motion under
the applied stress while the damage dissipation is governed by the release of
internal energy due to the development of microscopic cavities (Hayakawa
and Murakami, 1998). Introducing the Lagrange multipliers _

p and _

�, the
dissipation power � can be written:

� ¼ � : _""p � R _		� Yd
_dd � Y� _��� B _

�

1

T
gradT � q� _

pFp � _

�F� ð16Þ

Now, the thermodynamic problem reduces in finding the extremum of the
function �:

@�

@�
¼ 0 ) _""p ¼ _

p

@Fp

@�

@�

@R
¼ 0 ) _		 ¼ � _

p

@Fp

@R

@�

@Yd
¼ 0 ) _dd ¼ � _

d

@Fd

@Yd

@�

@Y�
¼ 0 ) _�� ¼ � _

d

@Fp

@Y�

@�

@B
¼ 0 ) _

 ¼ � _

d

@Fd

@B

ð17Þ

Plasticity and Damage Evolution

Damage evolution is represented in this model by a decrease of the elastic
modulus as proposed by Lemaı̂tre (1985b), which is different from a
porosity concept. According to effective stress and strain definition in a
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fictitious undamaged material (see relation (1)), we can apply a classical
plasticity model where no volumetric inelastic strain appears even when
damage progresses. The plastic yield surface (18) is obtained using a von-
Mises plasticity criterion based on energy:

Fp ¼
ffiffiffiffiffiffiffi
W 0

e

p
� R0 � Rð	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 0 : � 0

4G0ð1� dÞ2

s
� R0 � Rð	Þ ¼

���eqffiffiffiffiffiffiffiffi
6G0

p � R0 � Rð	Þ

ð18Þ

where (RþR0) is the yield stress, R the plastic hardening term depending
on the internal variable linked to plasticity 	, R0 the initial yield stress.
As explained further, volumetric strain induces damage evolution which
modifies the effective stress.
In the current literature, three kinds of damage evolution criteria

are adopted: strain-based criteria (Benallal et al., 1988; Lemaı̂tre, 1985a),
stress-based criteria (Chow and Wang, 1987, 1988) and energy-based
criteria (Cordebois, 1983; Ladevéze, 1984), which are the most natural
ones. Ladevèze proposes the energy-based expression (19) for the case
with two damage variables (Ladevéze, 1984). The damage evolution surface
where deviatoric and volumetric deformation energies appear is thus
given by:

Fd ¼ �Yd � h�iY� � B0 � Bð
Þ ¼
2W 0

e

1� d
þ �h i

2Wm

1� �
� B0 � Bð
Þ ð19Þ

where B is the damage strengthening depending on the internal variable 

linked to the micro-voids state and added to the initial threshold value B0,
W 0

e and Wm are the deviatoric and volumetric energies, respectively.
The approach proposed here uses the effective stress concept. Hence,

there is no direct use of the hydrostatic stress in the plastic potential like
in Gurson’s type approach, as it does not appear in the undamaged
expression of the plastic potential. Nevertheless, the effect of the hydrostatic
stress is taken into account in the damage potential. So, in the coupled
approach, where we impose that the stresses and internal variables are
returned back to plastic and damage surface simultaneously, the volume
variation due to void growth has an influence on both plastic and damage
behavior.
�h i is defined by �/d in tensile state and 0 in compression state since

the volumetric damage parameter � is not affected by compression. This
means, � cannot decrease in compression state, it just does not increase
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anymore. In tensile state, �h i is considered as a constant in the model
implemented here.
According to relations (17) the plastic (20) and the damage (21) evolution

behaviors are given by a normality law:

_""p ¼ _

p
@Fp

@�
¼

_

p�
0

2ð1� dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ð� 0 : � 0Þ

p
_		 ¼ � _

p

@Fp

@R
¼ _

p

ð20Þ

_�� ¼ � _

d
@Fd

@Y�
¼ h�i _

d

_dd ¼ � _

d
@Fd

@Yd
¼ _

d

_

 ¼ � _

d
@Fd

@B
¼ _

d

ð21Þ

The volumetric damage � increases in tensile state but not in compression
state.
The isotropic (22) plastic hardening rule is expressed as follows:

_RR ¼
dR

d	
_		 ¼

dR

d	
_

p ð22Þ

The kinematic hardening model, used for cyclic loading in general, is
implemented in the original version of the constitutive law. For clarity’s
sake, we do not present the equations relative to this part of the model, as
they are not exploited here.
Relation (20) provides the link between _		 and the rate of equivalent

plastic strain by relation (23). This is a direct consequence from the choice of
an energy-based von-Mises criterion (18) instead of the classical form of
von-Mises yield criterion.

_		 ¼
ffiffiffiffiffiffi
6G

p
ð1� dÞ _""peq with _""peq ¼

2
3
_""pij _""

p
ij

� �1=2
ð23Þ

Thanks to elastic energy equivalence choice, the formulation of the yield
function in damage state is equivalent to that in virgin state. So, we can
evaluate the plastic deformation rate in virgin state by the plastic flow rule:

_""p ¼ _

p
@Fp

@�
¼

_

p� 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ð� 0 : � 0Þ

p ð24Þ
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_		 ¼ _

p ¼
ffiffiffiffiffiffiffiffi
6G0

p
_""
p

eq ð25Þ

Thus, the relation between plastic deformation in damage and virgin state is:

_""
p

eq ¼ ð1� dÞ _"" p
eq ð26Þ

Damage hardening rule is given by:

_BB ¼
dB

d

_

 ¼

dB

d

_

d ð27Þ

Finally, plastic (28) and damage (29) loading/unloading rules are
expressed in the Kuhn–Tucker form by:

Fp 
 0, _

p � 0, _

pFp ¼ 0 ð28Þ

Fd 
 0, _

d � 0, _

dFd ¼ 0 ð29Þ

If Fp<0 then _

p ¼ 0 and the process is elastic-damage. For loading, _

p > 0
and Fp¼ 0. If Fd<0, the damage criterion is not satisfied and _

d ¼ 0 implies
_dd ¼ _�� ¼ 0 and no further damage takes place. If _

d > 0 further damage is
taking place and Fd¼ 0. Therefore, the damage evolution surface separates
the damage domain from the undamaged domain.
The Lagrange multipliers are determined by requiring plastic consistency

condition _FFp ¼ 0 and damage consistency condition _FFd ¼ 0, simultaneously.
A rather lengthy derivation gives:

_

p ¼
A1

C
ð _""0 : � 0Þ þ

B1

C
ð _""m�mÞ

_

d ¼
A2

C
ð _""0 : � 0Þ þ

B2

C
ð _""m�mÞ

_�� 0 ¼ 2Gð1� dÞ2 _""0 þ
A3

C
ð _""0 : � 0Þ þ

B3

C
ð _""m�mÞ

� �
� 0 þ�� 0 � � 0�

_��m ¼ 3�ð1� �Þ2 _""m þ
A4

C
ð _""0 : � 0Þ þ

B4

C
ð _""m�mÞ

� �
�m

ð30Þ
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where, as we work in a large strain assumption the last two terms of the
third relation are the contribution of Jaumann stress rate and � is the
material spin vector. The coefficients Ai, Bi and C are given by:

C ¼ 2þ �h ið Þ 1þ
2 �h i2 �h iWm

ð1� �Þ2

� �
þ
2 �h iW 0

e 2� �h ið Þ

ð1� dÞ2

A1 ¼ �h i 1þ
2 �h i2 �h iWm

ð1� �Þ2
�

2 �h iW 0
e

ð1� dÞ2

� �	 ffiffiffiffiffiffiffi
W 0

e

p

B1 ¼ �
12 �h i �h i �h i

ffiffiffiffiffiffiffi
W 0

e

p
ð1� dÞð1� �Þ

A2 ¼
4 �h i

1� d
B2 ¼

6 �h i �h i 2þ �h ið Þ

1� �

A3 ¼ � �h i 1þ
2 �h i2 �h iWm

ð1� �Þ2
�

2 �h iW 0
e

ð1� dÞ2


 �
þ
16 �h iW 0

e

ð1� dÞ2

� �	
ð2W 0

eÞ

B3 ¼ �
6 �h i �h i 4� �h ið Þ

ð1� dÞð1� �Þ

A4 ¼ �
8 �h i �h i

ð1� dÞð1� �Þ
B4 ¼ �

12 �h i2 �h i 2þ �h ið Þ

ð1� �Þ2

with

�h i ¼
0 under unloading and neutral state
1

dR=d	 under loading state for plastic evolution

(

�h i ¼
0 under unloading and neutral state
1

dB=d
 under loading state for damage evolution

(

The plastic and damage hardening laws are not given analytically as it can
be done in other approaches (Saanouni et al., 1994). In practice, two
reference curves, R versus 	 and B versus 
, are stocked as data for the
computation (see next chapter).
Comparing the second and third relations in Equation (21), we have the

equality between _

 and _dd. Hereafter, we will keep only the variable d in all
the equations.

Numerical Implementation

This damage elastoplastic constitutive law has been implemented in the
implicit static version of the finite element code LAGAMINE. A global
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step-by-step integration of the equilibrium equations is carried out to solve
the whole response of the structure. The Newton–Raphson iterative
technique is used with convergence criteria on out of balance forces and
displacements. More details about the techniques used to resolve nonlinear
finite element problems can be found in Charlier’s thesis (Charlier, 1987).
The integration of the constitutive relation is performed locally at each

time step with a subincremental method to determine the stresses and other
states variables distributions inside the structure. The operator splitting
methodology is applied: we consider an additive decomposition of the
equations into the elastic and coupled plastic-damage parts. The elastic
predictor is corrected using the return mapping procedure: predictor stresses
and internal variables are returned to the plastic and damage surfaces (Zhu
et al., 1992b). The incremental compliance matrix is computed by a
perturbation technique. In order to improve the numerical accuracy and
stability, and to ensure convergence at large increments, an automatic
subincrementing technique is proposed. If the convergence with few
subincrements is not achieved, the integration is restarted with a new
improved number of subincrements.

MODEL IDENTIFICATION

Identification consists in finding model parameters with the help
of experiments, theory analysis, curve fitting and finite element simulations.
As most of the material data are experimentally defined, only simulations
reduced to one finite element for homogeneous stress–strain states are
necessary for the identification step. Such simulations allow verifying the
adequacy between experimental and simulated stress–strain and damage–
strain curves. The validation phase presented in the next section compares
numerical results obtained with the model using data issued from the
identification process and experimental results of experiments, which were
not used for identification.
For all simulations, the following assumptions have been made: the

material is isotropic and non-viscous, hardening is isotropic and identifica-
tion is made at room temperature, we consider an isothermal loading.
Compression tests for three directions of loading proved the isotropy
of the material. They were realized on small cubes extracted from the
tube wall.
The principal data to be introduced in the model are the effective

equivalent stress–plastic strain curve ð ���eq � �""peqÞ and the damage strengthen-
ing threshold versus deviatoric damage curve (B–d) for a uniaxial test. To
compute these curves, we have to know the evolution of the uniaxial stress
and of the two damage variables d and � (3) versus strain. The curve (R–	)
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need not be given explicitly as it is computed from the curve ð ���eq � �""peqÞ by
the pre-processor thanks to:

R ¼
���eqffiffiffiffiffiffiffiffi
6G0

p and 	 ¼
ffiffiffiffiffiffiffiffi
6G0

p
�""peq ð31Þ

The plastic hardening law (R–	) has exactly the same form as the effective
stress–plastic strain curve (Figure 4) except the scale factor

ffiffiffiffiffiffiffiffi
6G0

p
which

comes from the choice of elastic energy equivalence hypothesis in the
previous chapters. Within this approach, the model is able to reproduce any
experimental plastic hardening.

The Tensile Tests

The Young’s and shear moduli are determined from the unloading slope
of cyclic loading/unloading quasi-static tensile tests on the whole tube.
According to the elasticity theory, the actual Young’s modulus is given by
the slope of the curve �1 versus "a and the shear modulus by the slope of the
curve �1 versus 2("a� "c) during the elastic unloading phase where "r, "a and
"c are radial, axial and circumferential deformations, respectively and where
�1 is the stress in the axial loading direction. To compute damage variables,
we consider that the phenomenon appearing at the beginning of the
plasticity (dotted line in Figure 2) is neglected so that these damage variables
increase monotonically from 0 (Figure 7a). Using extrapolated values of
Young’s and shear moduli E0 and G0 follows the classical macroscopic
damage theory as described by Lemaı̂tre and Chaboche (1985). It is assumed
that the evolution of the moduli at the beginning of the curve is due to
plasticity entrance and not damage.

Figure 2. Tensile state. (a) effective Young’s modulus; (b) effective shear modulus.
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The Compression Tests

The effective Young’s modulus was measured by loading/unloading
cycles on small cylinders. To improve the accuracy for the small plastic
strains, cyclic compression tests were performed on a ring (slice of the tube)
but those data were finally not retained for our model as the used E0

computed from the extrapolation of the Young’s modulus curve (Figure 3)
seems not compatible with this new set of experiments. This difference can
result from a size effect of the sample, from the different strain evaluation
for small cylinders and ring slice or from the accuracy of the two different
presses used to perform the experiments.
The measure of the shear modulus was not precisely realized for the

compression state because of practical problems linked to the sample
geometry and barreling. The determination of the damage variables thanks
to Equations (3) and (4) was thus not possible. Nevertheless, the assumption
of no volumetric damage in compression (�¼ 0) allows us to determine the
deviatoric damage variable from Equation (5):

d ¼ 1� ð1�DÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

3G0 � 3G0ð1�DÞ
2
þ E0ð1�DÞ

2

s
ð32Þ

Identification Method

The knowledge of (d–") curves computed as explained in the previous
subsection as well as the availability of (�–") experimental curves for the
tensile and compression states allow us to determine the useful data for the

Figure 3. Effective Young’s modulus (compression state).
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model. Indeed, as these curves depend on strain, new curves can be built
making links between values corresponding to the same ".
The equivalent effective stress (33), used to compute ð ���eq � �""peqÞ, is given

for a uniaxial test by:

�eq ¼
3

2
� 0

ij� 0
ij


 �1=2

¼
�1

1� d
ð33Þ

The equivalent effective strain can be computed, as explained in
(Castagne, 1998), integrating Equation (34):

_""
p

eq ¼ ð1� dð"peqÞÞ _""
p
eq ð34Þ

Finally, a unique curve is conserved taking the average between
compression and tensile cases (Figure 4).
The second curve to be introduced to characterize the material is the (B–d)

curve. Using Equation (19) equalized to zero, we obtain relation (35) for a
uniaxial test:

B0 þ BðdÞ ¼
1

3G0ð1� dÞ3
þ ð pÞ �h i

1

9�0ð1� �h idÞ3


 �
�21 ð35Þ

The damage threshold is given by (36):

B0 ¼
1

3G0
þ ð pÞ �h i

1

9�0


 �
�2d ð36Þ

with �d, the initial yield stress according to the hypothesis of simultaneous
plasticity and damage entrances (�d¼ 75MPa). A weight factor p has been
introduced in the model (see details in next chapter). Its value has already

Figure 4. Effective equivalent stress vs. effective equivalent plastic strain (numerical
data¼multilinear description).
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been taken into account in the identification phase as it modifies the (B–d)
curve in tensile state.
Here two different curves will be computed, one for the compression

test and another one for the tensile test. To model fracture in tensile state,
we introduce a limit value dcoales, which indicates voids coalescence. As soon
as this value is achieved, the slope of the (B–d) curve is multiplied by the
factor MP that increases the damage growth (Figure 5) and consequently
the stress reduction. Without this modification, the curve is assumed
to continue with the slope computed between the last two given points.
In compression state, no modification is introduced as no coalescence
appears.
The damage ratio �, also called tensile effect, is supposed to be a constant

for the model. Actually, it varies between 1.37 and 2.30 (Figure 6). The
constant value used in the simulations is 1.57.

Figure 5. (B–d) curve relative to tensile and compression states.

Figure 6. Tensile state: � vs. equivalent plastic strain.

16 SYLVIE CASTAGNE, ANNE MARIE HABRAKEN AND SERGE CESCOTTO

+ [9.9.2002–3:09pm] [1–26] [Page No. 16] FIRST PROOFS i:/Sage/Ijd/IJD-27280.3d (IJD) Paper: IJD-27280 Keyword



Material Data

Curves to be introduced in the data file were plotted in the previous
subsection. Figure 4 shows the numerical data corresponding to both tensile
and compression states. The two upper curves of Figure 5, one for the
compression state and the other one for the tensile state, are linearized to be
written in the data file. Table 2 contains the numerical values of the points
introduced in this file. The slope multiplier and the coalescence level will
also be taken into account in the model. They are given by two scalar
variables, which are not easily fitted as explained in the two following
sections. They will be corrected during the validation step to obtain a better
visualization of the rupture event.
Table 3 summarizes the final set of scalar data for the analyzed aluminum.

We remark that the actual Young’s modulus of the material is not used in

Table 2. Data curves.

ð ���eq � �""ewÞ (B–d) Traction (B–d) Compression

�""eq ���eq (MPa) D B (MPa) D B (MPa)

0.130�10�3 75 0 0.849�10�1 0 0.849�10�1

0.616�10�2 125.22 0.512�10�3 0.282 0.165�10�2 0.547
0.102�10�1 150.14 0.203�10�2 0.440 0.640�10�2 0.800
0.170�10�1 173.58 0.523�10�2 0.584 0.168�10�1 1.044
0.304�10�1 200.06 0.102�10�1 0.708 0.353�10�1 1.308
0.588�10�1 227.34 0.147�10�1 0.787 0.507�10�1 1.481
0.990�10�1 250.94 0.196�10�1 0.859 0.759�10�1 1.765
0.163 275.00 0.260�10�1 0.935 0.100 2.006
0.566 375.51 0.318�10�1 0.998 0.136 2.395
0.642 400.60 0.466�10�1 1.138 0.171 2.784
0.709 430.13 0.512�10�1 1.179 0.248 3.916

Table 3. Material data.

Symbol Description Value

E Material Young’s modulus (not used) 72,505 MPa
E0 Initial Young’s modulus 57,852 MPa
� Poisson ratio 0.31
� Damage ratio 1.57
dcoales Coalescence limit in tensile state 0.05
MP Slope multiplier of B(d) in tensile state 0.25
P Weight factor 0.1
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the simulations. Indeed, all the equations of the model are written using the
initial Young’s modulus E0 introduced previously (Figure 2).

Results of the Identification

After the model identification, deviatoric damage variable and equivalent
stress represented in Figure 7 for a simulation on one finite element are in
correlation with experimental results.
The rough slope modification for the damage variable in the tensile state

takes account of coalescence. In fact, our experiments are not accurate
enough to precisely analyze damage increase during coalescence events.
Up to now, we study only a single finite element and the damage evolution
after the point of coalescence aims to reproduce drastic decrease of stress
(see Figure 7b) in order to model the presence of rupture and the loss of
rigidity of elements representing the material points in the damaged zone.
On a global mesh, when the coalescence damage threshold is achieved,
the element is supposed to be as if it was taken away off the mesh. In fact,
the element is still present but its rigidity is very little, which should induce a
decrease of the global force curve progressively when more and more
elements are affected.
Theoretically, the final slope of curves describing macroscopic fracture

experiments should help to define the end of damage evolution defined by
the MP factor (Figure 5). However, when we try to enhance this effect,
numerical convergence problems appear, as we do not use a nonlocal
formulation.
Compression state also shows a stress decrease near the rupture state.

Figure 7. (a) Deviatoric damage variable; (b) equivalent stress.

18 SYLVIE CASTAGNE, ANNE MARIE HABRAKEN AND SERGE CESCOTTO

+ [9.9.2002–3:09pm] [1–26] [Page No. 18] FIRST PROOFS i:/Sage/Ijd/IJD-27280.3d (IJD) Paper: IJD-27280 Keyword



VALIDATION

Knowing the parameters to be used, three different experiments,
independent of the previous ones, are modeled. They aim to reproduce a
wide range of mechanical states. The finite elements used to model all the
proposed experiments are 4-nodes mixed elements for the 2D state (8-nodes
for 3D) with one integration point (Zhu and Cescotto, 1995).

The Notch Tests

Let us consider tensile tests realized on notched cylindrical bars (Figure 8).
The relative displacement is measured on a 25mm basis. Three different
meshes are tested in order to analyze the mesh sensitivity of the results.
The experiment has been reproduced several times with very close
results, which explains why only one experimental curve is presented in
Figure 9(a).
In the first simulations, very local strong damage increases with loss of

convergence happened. A kinematic scalar indicator based on an idea
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Figure 9. Model without dcoales neither MP; (a) force–displacement; (b) deviatoric damage
for a 1.35 mm relative displacement.

Figure 8. Notch test: sample description.

Application of a Damage Model to an Aluminum Alloy 19

+ [9.9.2002–3:09pm] [1–26] [Page No. 19] FIRST PROOFS i:/Sage/Ijd/IJD-27280.3d (IJD) Paper: IJD-27280 Keyword



proposed by Vilotte and used in (Pierry, 1997) proved the appearance
of bifurcations. These localization phenomena were pointed out long
before the rupture event. We used a viscous regularization method to
improve the numerical stability and we suppressed the slope modification
(MP) taking voids coalescence into account but this did not solve the
problem.
An analysis of the damage map shows that this one increases more

in zones where triaxiality (ratio between the mean stress and the equivalent
stress) is very high. Compared to the experiment, its evolution is
too important as it predicts high local damage value long before rupture.
This effect is enhanced when the slope of the (B–d) curve is reduced.
To limit the damage growth and allow a better convergence of the
simulation, we introduce in the initial model a weight factor p limiting
the influence of the hydrostatic energy term Wm, which involves
triaxiality effects (37). This is equivalent to a modification of the damage
surface shape (19).

Fd ¼
2W 0

e

1� d
þ p �h i

2Wm

1� �
� B0 � BðdÞ ð37Þ

The weight factor obtained is p¼ 0.1. It gives a correct evolution of
damage and keeps the difference of behavior between tensile and
compression states. Graphs of Figure 7 were in fact drawn taking into
account this factor. Indeed, the identification has been done with the final
model.
The curve representing the force on Figure 9(a) is lower than the one

obtained by the experiment although rupture by coalescence in tensile state
has been removed from the model for those cases.
As already studied by lots of authors and for instance by Needleman and

Tvergaard (1984), Figure 9(b) shows that damage increases more in some
elements localized at the middle of the specimen, where triaxiality is very
high and can achieve 1.6 in our example. Introducing in the model a dcoales
would allow a more important increase of the damage variable, it would
induce greater convergence problems in our local approach.

The Tensile Test of Perforated Specimen

The second experiment is a tensile test on a curved bar with a hole
inside (Figure 10). The hole is not exactly in the center in such a way that
we can predict on which side of the hole fracture will begin and focus
a camera on that side. However, only a half of the bar is modeled
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by symmetry. The relative displacement is measured on a 10mm base
between two points localized on each side of the symmetry axis, in the
vicinity of the hole.
The first simulation in Figure 11(a) does not include the reduction of

the (B–d) slope when coalescence of voids happens. Otherwise the
final simulation has been realized with dcoales¼ 0.12 and MP¼ 0.25. We can
observe that with the second simulation, a weak decrease of the force appears
at the moment corresponding to the experimental rupture. Figure 11(b)
shows that the damage is maximum near the hole but its value remains low
compared to the values obtained with the notch tests. Indeed, the maximum
triaxiality here is 0.5 while it is 1.6 for the notch tests.

Figure 10. Tensile test of perforated specimen: geometry.
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Figure 11. (a) Force vs. relative displacement; (b) final simulation: deviatoric damage for a
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The Shear Test of Perforated Tube

The last experiments were realized on specimens issued from the extremity
of the tube and machined to obtain a zone where shear is important when
the sample is compressed (Figure 12). The charge is applied using a punch
which introduces shear and pressure stresses. The sample is placed on
the lubricated plate of the press. Using symmetry, only one quarter of the
specimen is modeled.
In Figure 13(a), the first simulation corresponds to a case with no

coalescence, the second simulation has been realized with dcoales¼ 0.15 and
MP¼ 0.5 and the last one with the same parameters as the second
simulation for the perforated specimen. For this last simulation, a reduction
of the force can be observed at an imposed displacement of 7.7mm followed
by oscillations. Figure 13(b) shows that damage begins near the hole as
checked by the experiment. Triaxiality reaches 0.6, which implies damage
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Figure 13. (a) Force vs. vertical displacement of the tool; (b) simulation 3, deviatoric
displacement for a 9.1 mm displacement of the tool.

Figure 12. Shear test: geometry and loading.

22 SYLVIE CASTAGNE, ANNE MARIE HABRAKEN AND SERGE CESCOTTO

+ [9.9.2002–3:09pm] [1–26] [Page No. 22] FIRST PROOFS i:/Sage/Ijd/IJD-27280.3d (IJD) Paper: IJD-27280 Keyword



values lower than in the notch tests and similar to those observed during the
perforated specimen tensile test.

DAMAGE AND RUPTURE CRITERION

It can be observed that there is no volumetric inelastic strain in our model,
even when damage progresses. This is in contradiction with models such as
those of Gurson (1977) or Rousselier (1987) in which hypothesis relating to
the growth of cavities are necessary. In our formulation, which is developed
within the framework of effective stress and energy equivalence hypothesis,
we use a classical energy-based plastic potential where no hydrostatic stress
appears. This explains why we do not have to describe explicitly the
evolution of the volumetric inelastic strain.
The preceding experiment simulations show the dependence of damage

level on triaxiality. The instant of rupture does not simply correspond to the
achievement of a threshold value of the damage variable but must be linked
to different factors.
The initial Zhu’s model already contains the effect of triaxiality on

damage through the volumetric energy term. However, the notch tests
clearly show that damage increase is too high to model experience reality.
The modification proposed here consists in limiting the triaxiality effect in
order to slow down damage increase. The coalescence damage level used in
our model is a constant for the material. As it has been modified according
to validation tests, it proves that it should be a function of the material stress
and strain state as proposed by Thomason’s criterion (Thomason, 1982) or
of the triaxiality state as suggested by Brocks et al. (1995). Nevertheless,
even with the present constant, the coalescence damage level is achieved
earlier in a simulation in which triaxiality is high as this one increases
the damage variable growth, even if the phenomenon is reduced with the
modified model. The prediction of rupture from a slope variation of the
global force displacement curve is not always possible; a too localized
fracture cannot be detected on this curve. On the other hand, the
coalescence limit dcoales allows the detection of the micro-crack event and
its following, but its constant value should become a function of material
state.
Different solutions have been proposed to avoid difficulties arising

from softening behaviors (Lemaı̂tre, 2000). The convergence problems could
be reduced using gradient or nonlocal methods. Contrary to the viscous
regularization method, which was not sufficient here to reduce the
convergence loss in our problem, these types of methods are not introduced
in our model yet. Indeed, they are useful to limit convergence loss around
the site of rupture initiation but they require the introduction of an internal
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length. For metals, this length scale is very weak (of the order of the distance
between precipitates or inclusions). To keep a physical sense, we should
use meshes thinner than those presented here before, which also means
longer computational time. A first solution to improve the convergence
of our model is to link the subincrement size and the damage variable.
That way, we could have a more efficient integration scheme in the
critical zone.
As we could not determine a constant threshold value of the damage

variable dcoales indicating that a macroscopic rupture has happened in the
specimen, we have searched for a rupture criterion coupling damage and
triaxiality, comparing simulated and experimental results. Nevertheless, the
tests available are not numerous and accurate enough to establish this
maximum value of the damage as a function of triaxiality. To get more data,
we should realize new experiments on bars with various notch radiuses,
which corresponds to different triaxiality values.
It is interesting to note that the difficulty in defining a threshold value on

our damage variable, as it seems to depend on triaxiality, is not surprising.
In fact Gurson’s type models face an identical problem. The general study
of Benzerga et al. (1999) presents curves of the critical porosity fcr depending
on triaxiality T. According to the initial porosity value, fcr is quite constant
or increases with low (� 0.5 ) to mean values of T (0.8–1.2), then decreases
for mean to high T values (>1.5 ). This result from Benzerga helps to
understand why, according their studied cases, authors like Needleman and
Tvergaard (1984), Koplik and Needleman (1988), Brocks et al. (1995) and
Brethenoux et al. (1997) have found various influences of T on critical
porosity. The formulation proposed in this paper is quite different from that
of Benzerga. However, both represent damage process and can be
compared.

CONCLUSIONS

The initial Zhu’s model does not apply to the studied aluminum alloy
because the damage increases too rapidly in the zones where triaxiality is
high. A modification of the law that induces a less important damage
increase seems to be closer from the experiment. In some cases, it allows the
resolution of the convergence problems classically linked to softening
models. However, the convergence is still difficult and the implementation
of a length scale in the model as suggested by de Borst et al. (1999) should
improve the stability and the convergence and allow our approach to really
follow the crack evolution.
Cracks initiation sites are correctly predicted by this model, as well as

their propagation directions. For shapes and solicitations that correspond to
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a low triaxiality, if the damage zone is not too localized, the modified model
allows us to predict the sample rupture analyzing the drop in the force–
displacement curve.
Additional experimental results are necessary for the establishment of a

rupture criterion function of the material state. When known, this criterion
will allow us to predict the crack evolution according to damage and
triaxiality, for instance.
Finally, we should investigate the opportunity to use a nonconstant

damage ratio � instead of introducing the reduction parameter p in Equation
(37). Indeed, Figure 6 shows the evolution of �, which is not actually a
constant for our material. Most of all, if we analyze the effect of the
parameter p in the second term of Equation (37), we remark that it
influences the value of � in a nonlinear way.

REFERENCES

Benallal, A., Billardon, R. and Doghri, I. (1988). Communications in Applied Numerical
Methods, 4: 731–740.

Benzerga, A., Besson, J. and Pineau, A. (1997). In: Proceedings of 3éme Colloque National En
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L’endommagement à un Aluminium, Student final work to get Physician Engineer
Degree, Université de Liége.
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Gattoufi, B. (1984). Effets de la Prédéformation Due au Filage Sur le Comportement
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