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Abstract

This paper presents an incremental secant mean–field homogenization (MFH)
procedure for composites made of elasto–plastic constituents. In this formula-
tion, the residual stress and strain states reached in the elasto–plastic phases
upon a fictitious elastic unloading are considered as starting point to apply
the secant method. The mean stress fields in the phases are then computed
using secant tensors, which are naturally isotropic and enable to define the
Linear–Comparison–Composite. The method, which remains simple in its
formulation, is valid for general non–monotonic and non–proportional load-
ing. It is applied on various problems involving elastic, elasto–plastic and
perfectly–plastic phases, to demonstrate its accuracy compared to other ex-
isting MFH methods.

Keywords: Mean–Field Homogenization, Composites, Elasto-plasticity,
Incremental–secant

1. Introduction

The direct numerical simulation of composite structures at fine scales be-
ing too expensive, emphasize was put during the last decades on the devel-
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opment of simplified homogenization methods. The latter are either (semi–)
analytical or numerical and predict the macro or meso-scopic response of
heterogeneous materials from their micro-structure and constituents proper-
ties at reduced computational cost while maintaining an acceptable degree of
accuracy. Kanouté et al. (2009); Geers et al. (2010) presented an overview of
the different homogenization methods. Among those methods, the mean-field
homogenization (MFH) approach is an efficient semi-analytical framework for
the modeling of multi–phase composites. MFH methods were first developed
for linear elastic composite materials by extending the Eshelby (1957) single
inclusion solution to multiple inclusions interacting in an average way in the
composite. Most common extensions of the Eshelby solution are the Mori–
Tanaka (M–T) scheme developed by Mori and Tanaka (1973) and Benveniste
(1987) and the self–consistent scheme pioneered by Kröner (1958) and Hill
(1965b).

MFH schemes were also extended to the non–linear range to account for
non–linear behaviors, such as (visco–)plasticity or non–linear visco–elasticity,
exhibited by the composite’s constituents. Most of these extensions revolved
around the definition of a so-called linear comparison composite (LCC) (Tal-
bot and Willis, 1985, 1987; Ponte Castañeda, 1991, 1992; Talbot and Willis,
1992; Molinari et al., 2004), which is a virtual composite whose constituents
linear behaviors match the linearized behavior of the real constituents for a
given strain state. Such a LCC is used in the incremental formulation, pro-
posed by Hill (1965a), which considers linearized relations between the stress
and strain increments of the different constituents around their current strain
states. Thus the former homogenization techniques for linear responses can
still be used on the strain increments to predict the behaviors of highly non–
linear composites. Such an approach was applied to predict the meso–scale
response of elasto–plastic composites by Pettermann et al. (1999); Doghri
and Ouaar (2003); Doghri and Tinel (2005); Pierard and Doghri (2006b), in

which case the behavior of the composite is written as ∆σ̄σσ = C̄CC
tg

: ∆ε̄εε, where
∆ε̄εε, ∆σ̄σσ and C̄CC

tg
are respectively macro–strain and stress increments, and

a tangent operator. This incremental–tangent method can lead to too–stiff
results unless some isotropic projections of the tangent operator are consid-
ered during the M–T process, as shown by Doghri and Ouaar (2003); Pierard
and Doghri (2006b). Another MFH approach is the so-called affine method,
which was first proposed by Molinari et al. (1987, 2004) for visco–plastic ma-
terials, and which considers the total strain field instead of strain increments
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during the homogenization process. This approach was extended to elasto–
plastic materials by Zaoui and Masson (2002); Masson et al. (2000). For the
affine method, the behavior of the composite is expressed as σ̄σσ = C̄CC : ε̄εε + τττ ,
where τττ is the polarization stress and where C̄CC can be different from the
tangent moduli. Chaboche et al. (2005) showed that this method can lead
to too stiff results when an anisotropic tangent operator is considered in
the homogenization process. Different and often accurate affine methods
for visco–plastic composites were proposed by Pierard and Doghri (2006a);
Mercier and Molinari (2009); Doghri et al. (2010). The LCC can also be
defined from a secant operator, as initially proposed by Berveiller and Zaoui
(1978) for elasto–plastic materials. In this secant method the operator is the
secant joining the origin to the current strain/stress state, and the response
of the composite reads σ̄σσ = C̄CC

sec
: ε̄εε, which limits the method to monotonic

and proportional loading paths. Recently, Wu et al. (2012) –the authors–
have proposed a non-local incremental–tangent MFH scheme accounting for
damage. In that formulation, the incremental MFH approach is extended
to account for the damage behavior happening in the matrix-material at the
micro–scale. In order to avoid the strain/damage localization caused by the
matrix material softening, a gradient-enhanced formulation (Peerlings et al.,
2001; Engelen and Baaijens, 2003) was adopted during the homogenization
process. In this formulation, the non-local accumulated plastic strain of the
matrix is defined and depends on the local accumulated plastic strain and
on its derivatives through the resolution of a new boundary value problem
following the developments of Peerlings et al. (1996); Geers (1997); Peerlings
et al. (1998).

Most MFH methods only consider first–moment–statistical values of the
micro–strain and stress fields during the homogenization process. This can
lead to poor predictions in the elasto–plastic case, as shown by Moulinec
and Suquet (2003). This motivated to consider second–moment–statistical
values (Ponte Castañeda, 1996) during the homogenization process. Such
methods have been proposed for the secant formulations by Suquet (1995);
Ponte Castañeda (2002a,b) and for the incremental–tangent formulation by
Doghri et al. (2011). Suquet (1995) actually showed that the variational
forms pioneered by Ponte Castañeda (1992) correspond to a second–order
secant formulation, which was called modified secant. Recently, incremental
variational formulations, which also correspond to a second–moment esti-
mation, were proposed for visco–elastic composites by Lahellec and Suquet
(2007a,b), for thermoelastic composites by Lahellec et al. (2011), for elasto–
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(visco–)plastic composites by Brassart et al. (2011, 2012), and for elasto–
visco–plastic composites with isotropic and kinematic hardening by Lahellec
and Suquet (2013). The method proposed by Brassart et al. (2011, 2012)
can also be seen as a secant method based on the elastic trial strain, instead
of the total strain as in the original secant formulation, which allows the case
of non–monotonic and non–radial loading conditions to be simulated.

Note that there exist other homogenization methods, which consider non-
linear effects, such as the transformation field analysis proposed by Dvorak
(1992); Dvorak et al. (1994), which is a MFH scheme for elasto–plastic com-
posites where a relaxation stress is defined due to the irreversible behav-
ior in the matrix, leading to treat the interaction between the phases in

a purely elastic way: σ̄σσ = C̄CC
el

: (ε̄εε− ε̄εεres). Homogenization methods not
based on mean-field were also developed such as the method of cells pro-
posed by Lissenden and Arnold (1997); Aboudi et al. (2003), the unit cell
finite element (FE)–based computations as performed by Wieckowski (2000);
Segurado et al. (2002); Ji and Wang (2003); Carrere et al. (2004), or again
the multiscale FE2 method pioneered by Kouznetsova et al. (2002, 2004) as
a non-exhaustive list.

Although multiscale homogenization methods in general, and MFH sche-
mes in particular, often exhibit an acceptable, sometimes even high, level of
accuracy to capture the non–linear behavior of composites (Pierard et al.,
2007b), some limitations, assumptions or complexity in the formulation re-
main in the existing methods. For example, as previously said, to remain
accurate in the non-linear range, the incremental–tangent method requires
the tangent-operator to be made isotropic during the M-T process, as dis-
cussed by Doghri and Ouaar (2003); Pierard and Doghri (2006b). Another
limit of the incremental–tangent method appears when damage is considered.
As explained by Wu et al. (2012), during the softening stage of the matrix,
the fibers should see an elastic unloading due to the damaging process in
the matrix, which cannot be modeled using the incremental approach. As a
result, when compared to the direct numerical simulations of a representative
volume element (RVE), the method remains accurate for low fiber ratios or
low damage values only. In the variational approach proposed by Brassart
et al. (2012), the plastic strain field at the beginning of each time interval
is supposed to be uniform within the RVE, threatening the accuracy of the
method in some cases, as when UD composites made of elastic fibers are
loaded in the longitudinal direction.

4



It is intended in this paper to propose what we believe is a new MFH ap-
proach for elasto–plastic materials. In this approach, at a given strain/stress
state of the composite material, an unloading step is applied on the compos-
ite material level and the residual stresses are evaluated in both phases. The
mean stress fields in the phases are computed using isotropic secant tensors,
which can in turn be used to define the LCC. Contrarily to the incremental–
tangent approach, there is no need to made isotropic the tensor used in the
Eshelby term, as it is intrinsically so. In this formulation, the residual strains
in the different phases, and thus the plastic residual strains, are piece-wise
continuous, removing a major assumption in the variational approach pro-
posed by Brassart et al. (2012). Another advantage of the method is expected
when damage induced strain softening will be considered in a future work.
Indeed, upon strain softening of the matrix, the fibers will be unloaded by
the formulation, which should in turn improve the accuracy of the method
for high volume fractions of fibers.

The paper is organized as follows. In Section 2, the key principles of MFH
for non-linear behaviors are briefly recalled. Section 3 presents the proposed
incremental–secant MFH for non–linear composites. In this formulation, the
residual strain in a phase appears in the form of a residual stress, obtained
after the unloading of the composite. It is shown in Section 4 that the
method predicts accurate results compared to direct numerical simulations
for a broad range of elastic and elasto–plastic composite materials.

2. Generalities on MFH

In this section, the prerequisites to the development of the new incremental–
secant multiscale MFH are summarized. In particular, the principle of the
MFH method for two-phase composites is recalled.

Macro

ε ε∆

C σ

X
ω

X

Figure 1: Multiscale method.
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In the multiscale approach illustrated in Fig. 1, at each macro-point
XXX, the macro-strain ε̄̄ε̄ε is known, and the macro-stress σ̄̄σ̄σ is sought from a
micro-scale boundary value problem (BVP), or vice-versa. At the micro-
level, the macro-point is viewed as the center of a RVE of domain xxx ∈ ω
and boundary ∂ω. Considering adequate boundary conditions (BCs) on the
RVE, the Hill-Mandell condition, expressing the equality between energies at
both scales, transforms the relation between macro-strains ε̄̄ε̄ε and stresses σ̄̄σ̄σ
into the relation between average strains 〈εεε〉 and stresses 〈σσσ〉 over the RVE,
with 〈f(xxx)〉 = 1

Vω

∫
ω
f(xxx)dV .

Considering a two–phase composite material with the phases volume ra-
tios v0 + vI = 1 (subscript 0 refers to the matrix and I to the inclusions), the
macro-strains ε̄̄ε̄ε and stresses σ̄̄σ̄σ can be written in terms of the average values
in the matrix subdomain ω0 and in the inclusions subdomain ωI as

ε̄̄ε̄ε = v0〈εεε〉ω0 + vI〈εεε〉ωI
, and (1)

σ̄̄σ̄σ = v0〈σσσ〉ω0 + vI〈σσσ〉ωI
, (2)

for both linear and non-linear frameworks.
For simplicity, in the following developments, the notations 〈•〉ωi

will
be replaced by •i. Considering the so-called linear comparison composite,
which is defined in the case of non-linear composites, the relation between
the average incremental strains in the two phases depends on the chosen
expressions of the virtual elastic operators C̄̄C̄CLCC

0 of the matrix phase and
C̄̄C̄CLCC

I of the inclusions phase I, leading to

∆εεεI = BBBε(I, C̄̄C̄CLCC
0 , C̄̄C̄CLCC

I ) : ∆εεε0 . (3)

This equation describes the relation between the strain increment averages
per phase through the strain concentration tensor BBBε, which expression de-
pends on the assumptions made on the micro-mechanics. In this paper, we
consider the Mori and Tanaka (1973) (M-T) model because it provides good
predictions for two-phase composite materials for which the matrix can be
clearly identified as discussed by Segurado and Llorca (2002). In this case,
the strain concentration tensor reads

BBBε = {III +SSS : [(C̄̄C̄CLCC
0 )−1 : C̄̄C̄CLCC

I − III]}−1 , (4)

where the Eshelby (1957) tensor SSS(I, C̄CC
LCC
0 ) depends on the geometry of the

inclusions phase and on the virtual elastic operator C̄̄C̄CLCC
0 . The expressions
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of the tensors C̄̄C̄CLCC
0 and C̄̄C̄CLCC

I depend on the chosen MFH process. In lin-
ear elasticity, these operators correspond to the elastic material moduli CCCel

0

and CCCel
I . In the classical incremental MFH method for non-linear materials,

they correspond to the so–called comparison tangent operators C̄̄C̄Calg
0 and C̄̄C̄Calg

I ,
which are uniform per phase, by design.

Note that when considering the incremental–tangent formulation, the Es-

helby tensorSSS(I, C̄CC
iso
0 ) required to compute the Mori-Tanaka strain concentra-

tion tensor (4) is evaluated from an isotropic part C̄CC
iso
0 of C̄CC

LCC
0 , to improve

prediction results. More details can be found in the work of Pierard and
Doghri (2006b).

3. New proposal: Incremental–secant MFH

In this section, the new incremental–secant mean–field homogenization
(MFH) scheme is developed for elasto–plastic composites. First, the secant
formulation that will be considered to define the LCC is explained. Then,
the MFH process is described in details.

3.1. Incremental–secant moduli for rate–independent models
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(a) Residual–secant
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Figure 2: Definition of the incremental–secant formulation. (a) Definition of the residual
strain and stress and of the residual secant operator. (b) Definition of the zero–secant
operator.

The secant formulation that will be used in the MFH framework devel-
oped herein is introduced in this section. The equations derived herein can
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be related to the each phase of the composite. Considering a time interval
[tn, tn+1], with the total strain tensor εεεn at time tn and the strain increment
∆εεεn+1 resulting from the applied loading (for example from a finite element
resolution) yields the strain tensor

εεεn+1 = εεεn + ∆εεεn+1 , (5)

at time tn+1, see Fig. 2(a). One can assume at time tn a residual strain tensor
εεεres
n that corresponds to an elastic unloading from the stress state σσσn to a

stress state σσσres
n . Considering a heterogeneous material, this definition of the

residual stress is related to each material phase but also to the homogenized
material. During the homogenization process, the residual stress for the
homogenized material will be null, but this will not be necessarily the case
in the different phases. The same definitions also apply at time tn+1.

The secant linearization of the elasto–plastic material is thus carried out
in the time interval [tn, tn+1] with the strain increment ∆εεεr

n+1, such that

εεεn+1 = εεεres
n + ∆εεεr

n+1 . (6)

The main idea developed in this paper is to define a LCC, subjected to
a strain increment ∆εεεr

n+1, from which the stress tensor is computed. As
illustrated in Fig. 2, two methods will be considered in this work: the
residual–incremental–secant method, which evaluates the stress tensor from
the residual stress arising upon virtual unloading, and the zero–incremental–
secant method, which evaluates the stress tensor from a zero–stress state.
Both methods are now presented.

3.1.1. Residual–incremental–secant approach

Following Fig. 2(a), the new stress tensor could be defined from the stress
increment ∆σσσr

n+1, such that

σσσn+1 = σσσres
n + ∆σσσr

n+1 , (7)

where
∆σσσr

n+1 = CCCSr : ∆εεεr
n+1 . (8)

In this last equation CCCSr is the residual–incremental–secant operator of the
elasto–plastic material.

During the elastic regime, the elastic tensor CCCel can be used in the ho-
mogenization procedure. During elasto–plastic flow, the stress tensor σσσn+1 is
computed from the unloaded state in the following way:
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tr
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(b) Approximation

Figure 3: Plastic corrections in the stress space (a) Radial return mapping (b) Approxi-
mation (14).

• Evaluate the trial stress tensor from an elastic response:

σσσtr
n+1 = σσσn +CCCel : ∆εεεn+1 = σσσn +CCCel :

(
∆εεεr

n+1 + εεεres
n − εεεn

)
= σσσres

n +CCCel : ∆εεεr
n+1 . (9)

• If the trial stress tensor respects the von Mises criterion

f tr
(
σtr
n+1, pn

)
=
(
σtr
n+1

)eq − σY −R (pn) ≤ 0 , (10)

then the trial stress (9) is the solution and CCCSr = CCCel. In Eq. (10), σY
is the initial yield stress, R(p) is the isotropic hardening law in terms
of the accumulated plastic strain p, and the superscript “eq” refers to
the equivalent von Mises effective stress.

• If the trial stress tensor does not respect the von Mises criterion, i.e.
f tr > 0, then apply the plastic correction

σσσn+1 = σσσtr
n+1 −CCCel : ∆εεεp , with ∆εεεp = ∆pNNNn+1 , (11)

where NNN is the plastic flow direction. In this paper, we assume

NNNn+1 =
3

2

(
CCCSr : ∆εεεr

n+1

)dev(
CCCSr : ∆εεεr

n+1

)eq , (12)
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which satisfies NNN : NNN = 3
2
. Because of Eqs. (7-8), this last equation

can be rewritten

NNNn+1 =
3

2

(σσσn+1 − σσσres
n )dev

(σσσn+1 − σσσres
n )eq . (13)

When (σσσres
n )dev = 0, this last equation corresponds toNNNn+1 =

(
∂f(σ, p)
∂σσσ

)
n+1

and we have the classical relation. When (σσσres
n )dev 6= 0, NNNn+1 is a first

order approximation of the normal to the yield surface in the stress
space, see Fig. 3. Indeed for infinitesimal strain increments ∆εεε → 0,
the reloading process CCCel : ∆εεεr

n+1 tends to the unloading increment
CCCel : ∆εεεunload, see Fig. 2(a), and thus NNNn+1 tends to the normal to the
yield surface.
At the trial state, using Eq. (9) allows Eq. (12) to be rewritten as

NNN tr
n+1 =

3

2

(
CCCel : ∆εεεr

n+1

)dev(
CCCel : ∆εεεr

n+1

)eq =
3

2

(
σσσtr
n+1 − σσσres

n

)dev(
σσσtr
n+1 − σσσres

n

)eq . (14)

Note that since CCCel is isotropic we have CCCel : (∆pNNNn+1) = 2µelNNNn+1∆p
and Eq. (11) becomes

(σσσn+1)dev =
(
σσσtr
n+1

)dev − 2µelNNNn+1∆p , (15)

which can be rewritten as

(σσσn+1 − σσσres
n )dev =

(
σσσtr
n+1 − σσσres

n

)dev − 2µelNNNn+1∆p , (16)

or, using the definitions (13) and (14), as[
(σσσn+1 − σσσres

n )eq + 3µel∆p
]︸ ︷︷ ︸

≥0

NNNn+1 =
(
σσσtr
n+1 − σσσres

n

)eq︸ ︷︷ ︸
≥0

NNN tr
n+1 . (17)

Since Eqs. (12) and (14) imply NNNn+1 : NNNn+1 = 3
2

= NNN tr
n+1 : NNN tr

n+1, then
Eq. (17) results in

(σσσn+1 − σσσres
n )eq + 3µel∆p =

(
σσσtr
n+1 − σσσres

n

)eq
and (18)

NNNn+1 = NNN tr
n+1 . (19)

The elasto–plastic scheme consists of solving the equations (18) and
f (σn+1, pn+1) = 0, with pn+1 = pn + ∆p, in terms of ∆p and σσσeq

n+1.
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• Knowing σσσn+1, compute the residual–incremental–secant operator of
the linear comparison material as follows. From Eqs. (7) and (11) one
has

∆σσσr
n+1 = CCCSr : ∆εεεr

n+1 = CCCel : ∆εεεr
n+1 − 2µel∆pNNNn+1 , (20)

which becomes after using (14) and (19),

∆σσσr
n+1 =

[
CCCel − 3µel∆p

IIIdev : CCCel(
CCCel : ∆εεεr

n+1

)eq

]
: ∆εεεr

n+1 = CCCSr : ∆εεεr
n+1 .

(21)

For J2–elasto–plastic material, since CCCel is isotropic, the residual–incre-
mental–secant operator of the linear comparison material CCCSr is also
isotropic. Moreover, asCCCel = 3κelIIIvol+2µelIIIdev, one can directly deduce

CCCSr = 3κrIIIvol + 2µr
sIII

dev , (22)

with

κr = κel , and (23)

µr
s = µel − 3µel2∆p(

CCCel : ∆εεεr
n+1

)eq = µel − 3µel2∆p

(σσσn+1 − σσσres
n )eq . (24)

Note that on the one hand since
(
CCCel : ∆εεεr

n+1

)eq
= 3µel

(
∆εεεr

n+1

)eq
,

this last result can be rewritten µr
s = µel

(
1− ∆p

(∆εεεrn+1)
eq

)
. On the

other hand, in the variational incremental MFH proposed by Brassart
et al. (2011), the shear modulus in one phase used to define the LCC

was found to be µr
s=µ

el

1− ∆p√〈
(εεεn+1−εεεpn)

eq2
〉
ωr

. Besides this second–

moment form, it appears that both formulations have similarities. In-
deed in case of unloading such that σσσres

n = 0 in the incremental–secant
approach, one has ∆εεεr

n+1 = εεεn+1 − εεεp
n.

• Practically the shear moduli of the virtual elastic material can be ob-
tained by decomposing the increments of the stress and strain tensors
into the hydrostatic and deviatoric parts:

∆σσσr = ∆σm111 + ∆sss and ∆εεεr = ∆εm111 + ∆eee , (25)
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where ∆σm = 1
3
tr(∆σσσr), ∆sss = ∆σσσr − ∆σm111, ∆εm = 1

3
tr(∆εεεr), and

where ∆eee = ∆εεεr−∆εm111, see Appendix A for the notations. Indeed, the
increments of the von Mises equivalent stress and strain are respectively
given by

∆σeq = (
3

2
∆sss : ∆sss)1/2 and ∆εeq = (

2

3
∆eee : ∆eee)1/2 , (26)

and one has directly1

3µr
s =

∆σeq

∆εeq
. (27)

• Evaluate the derivation of the operator (22) following Appendix B.1.

3.1.2. Zero–incremental–secant approach

Anticipating on the development of the new incremental–secant MFH,
and as it will be shown in Section 4.1, when defining the LCC, it can be
advantageous to modify the residual–incremental–secant approach, following
the suggestion in Fig. 2(b). The approach follows closely Section 3.1.1,
but with the omission of the residual stress, in which case the plastic flow
direction (13) is rigorously normal to the yield surface.

3.1.3. Summary of the incremental–secant formulations

The stress tensor of an elasto–plastic phase at time tn+1 is formulated
using the incremental secant operator of the isotropic–linear comparison ma-
terial as

σσσn+1 =

{
σσσres
n +CCCSr : ∆εεεr

n+1 for the residual–incremental–secant method;
CCCS0 : ∆εεεr

n+1 for the zero–incremental–secant method.
(28)

In the forthcoming Section 4.1, a more detailed discussion illustrated by
numerical examples will be given to justify the choice of the incremental–
secant operators to be considered in the matrix and in the inclusions phases.

3.2. MFH scheme

In this section, the new incremental–secant MFH is developed. Toward
this end, the secant forms (28) will be considered to define the LCC. Unless

1If ∆εeq = 0, the indefiniteness is solved by considering µr
s = µel
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the expressions need to be particularized to the residual–incremental–secant
or to the zero–incremental–secant forms, the isotropic linear comparison stiff-
ness

CCCS = 3κIIIvol + 2µsIII
dev , (29)

will substitute to either CCCSr or CCCS0. Similarly, µs holds for either µr
s or for µ0

s,
while κ = κ0 = κr = κel, where superscript 0 refers to the values of the zero–
incremental–secant approach. During the MFH the comparison operators
are constructed as uniform by design on each phase r and are thus denoted

C̄CC
S
r .

Considering a time interval [tn, tn+1], the known data are the macro-total
strain tensor at time tn, ε̄εεn, the strain increment ∆ε̄εεn+1, and the internal
variables at time tn. The latter include the internal variables, ηIn, of the
inclusions and, η0n, of the matrix constitutive models, but also the residual
variables computed from the elastic unloading step (i.e. σ̄σσres

n = 0): the
residual strains in the composite, ε̄εεres

n , in the inclusions phase, εεεI
res
n , in the

matrix phase, εεε0
res
n , and the residual stresses in the inclusions phase, σσσI

res
n ,

and in the matrix phase, σσσ0
res
n .

It needs to be clarified that, in the developed incremental–secant method,
the strain increment ∆ε̄εεn+1 applied to the RVE is obtained from the FE
resolution, while the strain increment ∆ε̄εεr

n+1 is used to define the LCC in the
MFH procedure. This is an assumption as one cannot prove the existence of
a displacement field increment compatible with ∆ε̄εεr

n+1.
Combining (5) and (6) for the homogenized material, one has

∆ε̄εεr
n+1 = ε̄εεn + ∆ε̄εεn+1 − ε̄εεres

n . (30)

The explicit evaluation of ε̄εεres
n is described in the details of the MFH process

reported here below.
The MFH process is stated by Eqs. (1) – (4). In this formalism, each

phase r will see a strain increment ∆ε̄εεr
rn+1 to be applied from the elastically–

unloaded state, and from which a stress state

σσσrn+1 = Fr
(
∆εεεr

rn+1; ηrn, εεεr
res
n , σσσr

res
n

)
, (31)

and an incremental–secant tensor

CCCS
r = Gr

(
∆εεεr

rn+1; ηrn, εεεr
res
n , σσσr

res
n

)
, (32)
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which follows Eq. (28), can be obtained from the constitutive model provided
in Section 3.1. The system of equations can thus be rewritten as

∆ε̄εεr
n+1 = v0∆εεεr

0n+1 + vI∆εεε
r
In+1 , (33)

σ̄σσn+1 = v0σσσ0n+1 + vIσσσIn+1 , (34)

with the relation between the strain increments reading

∆εεεr
In+1 = BBBε(I, C̄̄C̄CS

0, C̄̄C̄C
S
I ) : ∆εεεr

0n+1 . (35)

To complete these equations, the unloaded state is defined by

σ̄σσres = v0σσσ
res
0 n + vIσσσ

res
I n = 0 . (36)

To reach this virtual unloaded state, the composite material and each phase
are assumed to obey an elastic behavior. As the unloaded state is a virtual
state used to define the LCC, this assumption can always be made. This
elastic unloading is thus performed from the state at time tn by solving the
following system of equations:

ε̄εεn − ε̄εεres
n︸ ︷︷ ︸

∆ε̄εεunloadn

= v0 (εεε0n − εεεres
0 n)︸ ︷︷ ︸

∆εεεunload0 n

+vI (εεεIn − εεεres
I n)︸ ︷︷ ︸

∆εεεunloadI n

, (37)

0 = σ̄σσres
n = v0

(
σσσ0n −CCCel

0 : ∆εεεunload
0 n

)
+ vI

(
σσσIn −CCCel

I : ∆εεεunload
I n

)
,(38)

with the relation between the unloading strain increments reading

∆εεεunload
I n = BBBε(I,CCCel

0 ,CCC
el
I ) : ∆εεεunload

0 n . (39)

In this paper, a “First-order moment” method is considered, and the
MFH process is described as follows.

• Initialize the strain increment in inclusions from the composite strain
increment ∆ε̄εεr

n+1 (30): ∆ε̄εεr
n+1 → ∆εεεr

In+1.

• Follow the iterations process (upper indices (i) for values at iteration i
of time tn+1 are omitted for simplicity):

1. Call the constitutive material functions (31-32) of the real inclu-
sions material with, as input, the strain tensor increment in the
inclusions phase ∆εεεr

In+1 and the internal variables ηIn, εεεI
res
n , σσσI

res
n

at time tn. The output is the updated stress σσσIn+1, the internal
variables at time tn+1, and the incremental–secant operator C̄̄C̄CS

I n+1

for the inclusions phase. In case there is no plastic flow, we use
C̄̄C̄CS

I n+1 = CCCel
I , which is always the case for elastic materials.
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2. Compute the average strain in the matrix phase:

∆εεεr
0n+1 = (∆ε̄εεr

n+1 − vI∆εεε
r
In+1)/v0 . (40)

3. Call the constitutive material functions (31-32) of the real matrix
material with, as input, the strain tensor increment in the matrix
phase ∆εεεr

0n+1 and the internal variables η0n, εεε0
res
n , σσσ0

res
n at time

tn. The output is the updated stress σσσ0n+1, the internal variables
at time tn+1, and the incremental–secant operator C̄̄C̄CS

0n+1 for the
matrix phase. In case there is no plastic flow, we use C̄̄C̄CS

0n+1 = CCCel
0 .

4. Predict the Eshelby tensor SSS(I, C̄̄C̄CS
0n+1) using the secant operator

of the matrix phase.

5. Applying a similar technique to the one detailed by Wu et al.
(2012), Eq. (35) corresponds to satisfying FFF = 0, where FFF is the
stress residual vector. For a time interval [tn, tn+1], where ∆ε̄εεr

n+1

is constant, compute the stress residual vector in inclusions as, see
Appendix C for details,

FFF = C̄̄C̄CS
0n+1 : [∆εεεr

In+1 −
1

v0

SSS−1 : (∆εεεr
In+1 −∆ε̄εεr

n+1)]

−C̄̄C̄CS
I n+1 : ∆εεεr

In+1 . (41)

6. Check if the residual |FFF | ≤ Tol. If so exit the loop.

7. Else, compute the Jacobian JJJ matrix at constant ∆ε̄εεr
n+1, such that

dFFF = JJJ : dεεεr
I
2, following the details given in Appendix C.

8. Correct the strain increment in inclusions

∆εεεr
In+1 ← ∆εεεr

In+1 + cccεεεI with cccεεεI = −JJJ−1 : FFF , (42)

then start a new iteration (go to step 1).

• After convergence, compute3

2Note that the derivative with respect to ∆εεεr
r has the same expression as the derivative

with respect to εεεr
3In this formalism, we do not need to evaluate explicitly the strain concentration tensor,

nor the macro-moduli, but they follow directly from BBBε = {III +SSS : [(C̄̄C̄CS
0n+1)−1 : C̄̄C̄CS

I n+1 −
III]}−1, and C̄̄C̄Cn+1 =

[
vIC̄̄C̄C

S
I n+1 : BBBε + v0C̄̄C̄C

S
0n+1] : [v1BBB

ε + v0III
]−1

, respectively.
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1. The homogenized stress

σ̄σσn+1 = v0σσσ0n+1 + vIσσσIn+1 , (43)

and the internal variables.

2. The “consistent”4 linearization of the homogenized stress from (6)
and (28)

δσ̄σσ = vIδσσσI + v0δσσσ0

= vI

∂
(
C̄CC

S
I : ∆εεεr

I

)
∂εεεI

: δεεεI + v0

∂
(
C̄CC

S
0 : ∆εεεr

0

)
∂εεε0

: δεεε0

=

[
vI

(
C̄CC

S
I +

∂C̄CC
S
I

∂εεεI

: ∆εεεr
I

)
:
∂εεεI

∂ε̄̄ε̄ε
+

v0

(
C̄CC

S
0 +

∂C̄CC
S
0

∂εεε0

: ∆εεεr
0

)
:
∂εεε0

∂ε̄̄ε̄ε

]
: δε̄̄ε̄ε .

(44)

This equation implies

C̄̄C̄Calg
n+1 = vI

(
C̄CC

S
I +

∂C̄CC
S
I

∂εεεI

: ∆εεεr
I

)
:
∂εεεI

∂ε̄εε
+v0

(
C̄CC

S
0 +

∂C̄CC
S
0

∂εεε0

: ∆εεεr
0

)
:
∂εεε0

∂ε̄εε
,

(45)
with ∂εεεI

∂ε̄εε
and ∂εεε0

∂ε̄εε
reported in Appendix C.

• An unloading step is thus applied here to fit the incremental–secant
process, and the obtained results will be kept as internal variables at
time interval tn+1. The system of Eqs. (37-39), expressed at time tn+1

instead of time tn, has thus to be solved. The needed residual variables
from unloading are the residual strains in the composite material ε̄εεres

n+1,
in the inclusions phase εεεres

I n+1 and in the matrix phase εεεres
0 n+1, as well

as the residual stresses in the fibers phase σσσres
I n+1 and in the matrix

phase σσσres
0 n+1, respectively.

4In this paper we will use the term “consistent” operator for the derivative of the stress
state with respect to the deformation increment C̄̄C̄Calg

n+1 = ∂σ̄σσn+1

∂∆εεεIn+1
.
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1. The residual strain ε̄εεres
n+1 (the strain at σ̄σσres

n+1 = 0) of the composite
material is calculated from an unloading step, which is assumed
to be a purely elastic process. The unloading operator of the
composite is

C̄̄C̄Cel
n+1 = [vICCC

el
I n+1 : BBBε + v0CCC

el
0 n+1] : [vIBBB

ε + v0III]−1 ,(46)

with BBBε = {III +SSS : [(CCCel
0 n+1)−1 : CCCel

I n+1 − III]}−1 . (47)

Note thatCCCel
0 n+1 is used in the Eshelby tensor of the elastic unload-

ing step. The residual strain of the composite can be calculated
by

ε̄εεres
n+1 = ε̄εεn+1 −∆ε̄εεunload

n+1

= ε̄εεn+1 − (C̄̄C̄Cel
n+1)−1 : σ̄σσn+1 . (48)

2. The residual strains in the fibers and in the matrix phases are
computed following the M-T method, which gives:

εεεres
I n+1 = εεεIn+1 −∆εεεunload

I n+1

= εεεIn+1 −BBBε : [vIBBB
ε + v0III]−1 : ∆ε̄εεunload

n+1 , (49)

εεεres
0 n+1 = εεε0n+1 −∆εεεunload

0 n+1

= εεε0n+1 − [vIBBB
ε + v0III]−1 : ∆ε̄εεunload

n+1 . (50)

3. The residual stresses in the fibers and matrix phases can be ob-
tained, respectively, from

σσσres
I n+1 = σσσIn+1 −CCCel

I n+1 : ∆εεεunload
I n+1 , (51)

σσσres
0 n+1 = σσσ0n+1 −CCCel

0 n+1 : ∆εεεunload
0 n+1 . (52)

From this detailed incremental–secant MFH process, it is clear that the
method can be implemented at the material law level of a FE code. Moreover
this homogenized material law calls successively the constitutive models of
both the inclusions and the matrix phases. The constitutive laws of these two
materials are the usual elasto–plastic models at two exceptions: the modifi-
cation of the return mapping direction and the computation, as an output of
the material model, of the secant tensor CCCS. For an elastic phase, no modifi-
cation is required. The incremental–secant MFH is thus simple to implement
and is computationally efficient as the phases constitutive material models
remain classical and independent from each–other. Note that considering a
second–moment method involves deeper modifications of the material models
of the different composite material phases.
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4. Comparison with direct finite element simulations, fast-Fourier
transforms methods or experimental results

In this section, the accuracy and the reliability of the proposed incremental–
secant method are verified through the comparison of the effective response of
several two-phase elasto–plastic composites. Reference results are provided
either by direct FE simulations on representative cells of the micro-structure,
or by experimental data found in the literature. All the MFH results pre-
sented have converged with the size of the strain increments.

First we study the difference of results obtained by considering the residual–
incremental–secant method or the zero–incremental–secant method for the
elasto–plastic matrix phase of composites reinforced by elastic inclusions.
Note that for elastic phases the incremental–secant operator is the elastic
operator, as the elastic phase has no need for a virtual elastic property to be
defined. It will be shown that considering the zero–incremental method in
the elasto–plastic phase improves the results accuracy. Then the method is
shown to predict results as accurate as other MFH methods, including the
incremental–tangent method and the variational method, on a wide variety
of composite materials made of an elasto–plastic matrix reinforced by elastic
inclusions. Finally the effect of the incremental–secant operator choice for
composites made of two elasto–plastic phases is studied.

4.1. Predictions based on the two different definitions of the incremental–
secant moduli –CCCSr and CCCS0– for composite materials made of an elasto–
plastic matrix reinforced by elastic inclusions

In section 3.1, we proposed two different definitions of the incremental–
secant moduli: CCCSr and CCCS0 that can be used to define the LCC. The effects
of the different definitions on the predictions are studied herein through a few
numerical examples, which are carried out on some composites with elastic
inclusions.

In this case, since the inclusions are made of elastic materials, this phase
has no need for a virtual elastic property to be defined. We will thus study
the effect of the operator choice for the matrix phase on several examples
to confirm that the zero–incremental–secant operator CCCS0

0 should be used for
the latter.

Metal Matrix Composites (MMCs) with elastic inclusions and elastic–perfectly–
plastic matrix. An elastic–perfectly–plastic behavior for the matrix phase is
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Figure 4: Results for composites with elastic inclusions and elastic–perfectly–plastic ma-
trix.

considered (R0(p) = 0) while the inclusions remain elastic. The other mate-
rial properties are

• Inclusions: EI = 400GPa, νI = 0.2;

• Matrix: E0 = 75GPa, ν0 = 0.3, σY 0 = 75MPa.

Inclusions are spherical with a volume fraction of vI = 15%. The predictions
with the two incremental–secant moduli for the matrix phase, together with
FE reference results provided by Brassart et al. (2011), are presented in Fig.
4, which shows that the zero–incremental–secant method should be used for
the matrix to agree with the FE results.
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Figure 5: Comparisons of the secant–incremental methods for Metal Matrix Composites
with elastic fibers embedded in an elasto–plastic matrix.
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MMCs with elastic inclusions and elasto–plastic matrix. The example con-
sists of an aluminum alloy matrix reinforced with continuous stiff alumina
fibers, whose material properties are (Doghri and Friebel, 2005)

• Inclusions: EI = 344.5GPa, νI = 0.26;

• Matrix: E0 = 68.9GPa, ν0 = 0.32, σY 0 = 94MPa, k0 = 578.25MPa and
m0 = 0.529.

The matrix material follows the hardening law

R(p) = kpm , (53)

where k and m are the hardening parameters. The volume fraction of the
continuous fibers is vI = 55%. The FE predictions were obtained by Jansson
(1992) on a unit cell assuming a periodic microstructure with a hexagonal
arrangement. The MFH results for the two incremental–secant moduli for
the matrix phase are presented in Fig. 5(a) for a transerve loading, and in
Fig. 5(b) for a longitudinal loading.

For the transverse loading, see Fig. 5(a), stiffer results are obtained
when using CCCSr

0 , while good predictions are obtained when using CCCS0
0 . Good

predictions are observed with both operators for the longitudinal loading, see
Fig. 5(b).

The reason why using the zero–incremental–secant formulation for the
elasto–plastic phase improves the results accuracy is the following. As only
the matrix phase exhibits a plastic flow, upon the virtual unloading the
residual stress in the matrix is negative (assuming the composite material was
under tension and vice versa), while the residual stress in the inclusions phase
is positive. Using the zero–incremental–secant operator, meaning neglecting
the residual stress, in the matrix induces thus more plasticity as the predictor
is higher, which counterbalances the over–stiff results predicted by a first–
moment method as the one proposed herein. We think that considering a
second–moment approach would solve this issue.

We will show in the next section that for problems with elastic inclusions,
using the zero–incremental–secant approachCCCS0

0 for the elasto–plastic matrix
phase leads to a good accuracy for different materials, inclusion geometries
and loading path.
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4.2. Predictions for elastic inclusions and with the zero–incremental–secant
operator CCCS0

0 for the elasto–plastic matrix

In this section, the considered composites consist in an elasto–plastic ma-
trix reinforced by ellipsoidal or continuous UD inclusions with linear elastic
behaviors. The inclusions remain elastic and the matrix phase obeys to the
zero–incremental–secant formulation. The predictions of the proposed model
are compared to references provided either by direct FE simulations on repre-
sentative cells of the micro-structure or by experimental data gathered from
literature.

4.2.1. Responses for short and UD fibers reinforced matrix

The method is here applied to composites with short and UD fibers. In
particular, the response in the phases is compared to reference results.

GFRP: Short glass fibers reinforced polyamide. In this case, the polyamide
matrix follows an exponential-linear hardening law:

R(p) = k1p+ k2(1− e−mp) , (54)

and the material properties are

• Inclusions: EI = 72GPa, νI = 0.22;

• Matrix: E0 = 2.1GPa, ν0 = 0.3, σY 0 = 29MPa, k10 = 139.0MPa,
k20 = 32.7MPa and m0 = 319.4.

The glass fibers volume fraction is vI = 15.7% and their aspect ratio is
α = 15. Aligned fibers are considered and the FE simulations were per-
formed by Doghri et al. (2011). These FE results are used as reference.
Fig. 6(a) shows the macroscopic predictions of the two MFH formulations
under longitudinal (along the fibers direction) uni-axial tension, and Fig.
6(b) shows the ones under transverse uni-axial tension. Results reported by
Doghri et al. (2011) using first–moment and second–moment incremental–
tangent methods are also reported for comparison purposes. On the one
hand, for a transverse loading all the MFH methods predict accurate results,
see Fig. 6(b). On the other hand, for a longitudinal loading, although the
second–moment incremental–tangent method predicts a response less stiff
than the first–moment schemes, the new scheme exhibits a better accuracy
when compared to the first–moment incremental–tangent method, see Fig.
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6(a). When analyzing the average von Mises stress predicted in the matrix
phase5, the predictions are really accurate for a transverse loading, see Fig.
6(d). For a loading aligned in the fibers direction, see Fig. 6(c), the newly
developed method is as accurate as the results obtained with the second–
moment incremental–tangent method. This behavior is confirmed by the
evolution of the average accumulated plastic strain in the matrix phase as
shown by Figs. 6(e) and 6(f).

Continuous UD-fibers reinforced elasto–plastic matrix. The accuracy of the
proposed incremental–secant method is assessed through the comparison
with direct FE simulations on periodical cells of a continuous UD fibers
reinforced elasto-plastic matrix. This consists of continuous elastic isotropic
fibers embedded in a matrix material, which follows a classical J2–elasto–
plastic behavior model. The material parameters, taken from (Wu et al.,
2012), are

• Inclusions: EI = 238GPa, νI = 0.26;

• Matrix: E0 = 2.89GPa, ν0 = 0.3, σY 0 = 35MPa, k0 = 73MPa, m0 = 60.

The matrix material behavior follows the hardening law

R(p) = k
(
1− e−mp

)
. (55)

The volume fraction of the continuous fibers is vI = 50%. The test consists
of a transverse loading of the composite, followed by a complete unloading
until reaching a zero-strain state. In the direction of the fibers, plane–strain
conditions are assumed, while plane–stress conditions are applied in the other
transverse direction.

Figure 7(a) compares the macro–stress evolution obtained with the new
incremental–secant MFH and the incremental–tangent MFH to the FE re-
sults. During the loading part, the incremental–secant method avoids the
over–stiff prediction exhibited by the incremental–tangent method. This is
confirmed when analyzing the evolution of the average stress in the inclusions
phase, see Fig. 7(b), and in the matrix phase, see Fig. 7(c). However, during

5For the second–moment method, both the average of the equivalent von Mises stress,
and the von Mises stress computed from the average stress tensor in the matrix are re-
ported.
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Figure 6: Results for the short glass fibers reinforced polyamide test for (a, c, e) a longi-
tudinal traction and for (b, d, f) a transverse traction. (a-b) Composite response, (c-d)
evolution of the average of the von Mises stress in the matrix phase, (e-f) evolution of the
accumulated plastic strain in the matrix phase.

the unloading part, the stress is slightly lower than the one predicted by the
FE simulation and by the incremental–tangent method. This last method
exhibits less error as it starts from a higher stress at the unloading point,
so this compensates for the error due to an over–stiff response. Figure 7(d)
compares the average value of the effective equivalent von Mises stress in the
matrix and Fig. 7(e) illustrates the accumulated plastic strain evolution in
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Figure 7: Results for continuous-elastic fibers embedded in an elasto–plastic matrix under
transverse tension–compression.

the matrix. Both incremental methods are found to give similar results.

4.2.2. Metal Matrix Composites (MMCs)

Now, the proposed incremental–secant procedure is applied on various
Metal Matrix Composites (MMCs), which are made of an elasto–plastic ma-
trix reinforced by elastic inclusions. The matrix behavior follows the power-
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law hardening (53).

MMC #1: an aluminum alloy reinforced with stiff ceramic particles I. The
properties of the considered material are

• Inclusions: EI = 400GPa, νI = 0.2;

• Matrix: E0 = 75GPa, ν0 = 0.3, σY 0 = 75MPa, k0 = 416MPa and
m0 = 0.3895.

Inclusions are spherical with a volume fraction of vI = 30%. The macro-
scopic prediction obtained with the incremental–secant and the first order
incremental–tangent formulations are presented in Fig. 8(a) together with
FE predictions obtained on a random arrangement of 30 inclusions reported
by Segurado et al. (2002).

MMC #2: an aluminum alloy reinforced with stiff ceramic particles II. The
same material system as in case MMC#1 is considered here again, except
for the hardening law. The initial yield stress σY 0 is set equal to zero for the
computation and the hardening exponents m0 = 0.05 and m0 = 0.4 of the
matrix material are considered successively. The inclusions are aligned ellip-
soids with an aspect ratio α = 3 and the volume fraction of the inclusions is
vI = 25%. These material properties correspond to the composites studied by
Pierard et al. (2007a), who provided the FE results on unit cells containing
30 inclusions. A uni-axial tension is carried out in the longitudinal direction
of the ellipsoidal inclusions. The results of the two MFH formulations to-
gether with the FE results provided by Pierard et al. (2007a) are presented
in Fig. 8(b) for m0 = 0.05, and in Fig. 8(c) for m0 = 0.4, respectively.

MMC #3: an aluminum alloy reinforced with SiC whiskers. The properties
of the considered material are

• Inclusions: EI = 450GPa, νI = 0.17;

• Matrix: E0 = 68.89GPa, ν0 = 0.33, σY 0 = 277.3MPa, k0 = 592.2MPa
and m0 = 0.52.

The elastic properties of the whiskers were reported by Christman et al.
(1989a) and the properties of the matrix were fitted by Doghri and Friebel
(2005) on the experimental data reported by Christman et al. (1989b). The
volume fraction of the inclusions is vI = 13.2%. The whiskers are assumed
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to be cylindrical with the length–diameter ratio l/d of 5. For the MFH
computations, the aspect ratio α of the equivalent ellipsoid is obtained by
multiplying l/d with a factor of 1.25, as proposed by Li and Ponte Castañeda
(1994) and Doghri and Friebel (2005).

The experimental data for a uni-axial tension applied along the longitudi-
nal direction of the whiskers are reported by Christman et al. (1989a,b), and
the stress-strain curves are presented in Fig. 8(d) together with the MFH
results. This figure also represents the curve-fitting of the matrix material
considered.

MMC #4: a two-phase steel made of ellipsoidal martensitic inclusions em-
bedded in a ferritic matrix. The properties of the two phases are

• Inclusions: EI = 200GPa, νI = 0.3;

• Matrix: E0 = 220GPa, ν0 = 0.3, σY 0 = 300MPa, k0 = 1130MPa and
m0 = 0.31.

The volume fraction of the inclusions is vI = 25%. The inclusions are succes-
sively considered as spherical, α = 1, and as ellipsoidal with α = 3 and the
results are reported in Fig.8(e) and in Fig.8(f) respectively. These figures
show the comparison of the two MFH predictions with the FE results, which
reference results were obtained by Brassart et al. (2010) on multiparticle
cells.

Fig. 8 shows that the proposed MFH method predicts responses slightly
more compliant than with the incremental–tangent method. However the
accuracy can be said to be of the same order.

4.2.3. Effect of the triaxiality

In this section, more general loading conditions are applied to test the
reliability of the proposed method. We applied a pure shear loading, a biaxial
loading and a plane strain tension/compression successively on a MMC to
investigate the effect of triaxiality on the accuracy of the predictions. The
considered composite is a SiC-particles reinforced aluminum matrix (MMC
#5). The elasto-plastic metal matrix follows the power-law hardening (53)
and the material properties are

• Inclusions: EI = 400GPa, νI = 0.2;

• Matrix: E0 = 75GPa, ν0 = 0.3, σY 0 = 75MPa, k0 = 400MPa and
m0 = 0.4 or m0 = 0.05.
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Figure 8: Results for the various metal matrix composites tests.

The volume fraction of the spherical inclusions is vI = 15%. The predictions
of the incremental secant formulation are presented in Fig. 9. The reference
macro–responses are direct finite element results presented by Brassart et al.
(2012), which are obtained on periodic cells containing 35 randomly dispersed
inclusions. The mean field homogenization predictions obtained by the first–
moment incremental–tangent method and by the variational method are also
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Figure 9: Results for MMC #5 under different loading conditions.
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presented in Fig. 9 for comparison.
For this problem, three different loading conditions are successively ap-

plied. First, shear loading, with σ̄12 = σ̄21 = σ and the other components
of the stress tensor σ̄σσ being zero, is considered. Then, a biaxial loading is
obtained by setting σ̄11 = σ̄22 = σ and σ̄33 = 0. Finally, in the case of plane
strain tension/compression, the only non–zero components of ε̄εε are ε̄11 and
ε̄22, with ε̄22 computed to satisfy σ̄22 = 0. Moreover ε̄33 is set to zero, and
σ̄33 can be measured.

These different loading conditions correspond to different triaxiality states.
Indeed, as the macroscopic triaxiality ratio is defined by T = tr(σ̄σσ)/3σ̄eq, one
can directly find that shear and biaxial loading conditions correspond to tri-
axiality ratios of 0 and 2/3 respectively. The uniaxial tension, which has
been applied a lot in the previous examples, has a triaxiality ratio of 1/3.
For plane strain tension/compression, the triaxiality ratio is approximately
1 in the plastic regime.

In Fig, 9, the predictions of the proposed method shows an accuracy
comparable to the other MFH approaches, for the different triaxiality states.
Moreover, the effect of the strain increment size on the results predicted
by the new incremental–secant method has been studied in Figs. 9(e) and
9(f) for the last test with the hardening exponent m0 = 0.4. It can be
seen that the results have already converged for a macro–strain increment of
∆ε̄ = 0.0001.

4.2.4. Non–monotonic, non–proportional loading path

Eventually the behavior of the incremental–secant MFH is tested with a
non–monotonic, non–proportional loading path. This example was proposed
by Lahellec and Suquet (2013) and consists of elastic spherical inclusions
embedded in an elastic–perfectly–plastic matrix, with the following material
properties

• Inclusions: κel
I = 20GPa, µel

I = 6GPa;

• Matrix: κel
0 = 10GPa, µel

0 = 3GPa, σY 0 = 100MPa.

The volume fraction of the spherical inclusions is vI = 17%. The external
boundary conditions correspond to constraining simultaneously all the strain
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Figure 10: Results for a non–monotonic, non–proportional loading path. (a) Applied strain
components history (b) Comparisons of the predicted stress components (c) Comparison
of the predicted stress components history.

components following

ε̄εε (t) = ε̄33 (t)

[
eee3 ⊗ eee3 −

1

2
(eee1 ⊗ eee1 + eee2 ⊗ eee2)

]
+

ε̄13 (t) (eee1 ⊗ eee3 + eee3 ⊗ eee1 + eee2 ⊗ eee3 + eee3 ⊗ eee2) , (56)

where the non–monotonic, non–proportional evolution of the two constraints
with respect to a fictitious time is illustrated in Fig. 10(a).

This problem was solved using a Fast Fourier Transforms (FFT)-based
numerical method and the variational MFH by Lahellec and Suquet (2013),
and the resulting tensile and shear response components are reported in
Fig. 10. The new incremental–secant and the incremental–tangent MFH
schemes are then applied. The results are illustrated in Figs. 10(b), 10(c) and
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10(d). It can be seen that in this test the incremental–secant formulation has
an accuracy comparable to the variational method, while the incremental–
tangent method is unable to capture the change of loading direction.

4.3. Elasto–plastic inclusions reinforced elasto–plastic matrix

We have shown that, for composites made of elasto–plastic matrix re-
inforced by elastic inclusions, considering the zero–incremental–secant ap-
proach in the matrix phase instead of the residual–incremental–secant ap-
proach improves the accuracy of the results as it counterbalances the over–
stiff prediction inherent to a first–moment method.

In this section the case of elasto–plastic inclusions reinforced elasto–
plastic matrix composites is considered. For a composite made of two elasto–
plastic phases, four cases according to the combinations of the different
incremental–secant moduli for the inclusions and matrix phases are succes-
sively considered:

1. CCCSr
I and CCCSr

0 ,

2. CCCS0
I and CCCS0

0 ,

3. CCCSr
I and CCCS0

0 , and

4. CCCS0
I and CCCSr

0 .
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Figure 11: Results for the elasto–plastic inclusions - elasto–plastic matrix tests.
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Metal Matrix Composites (MMCs) with power–law hardening in both phases.
In this example studied by Brassart et al. (2011), both matrix and inclusions
phases obey an elasto–plastic behavior with a power–law hardening (53).
The material properties for the inclusions and matrix are

• Inclusions: EI = 400GPa, νI = 0.2, σY I = 75MPa, kI = 1.0GPa,
mI = 0.4 or mI = 0.05;

• Matrix: E0 = 75GPa, ν0 = 0.3, σY 0 = 75MPa, k0 = 400MPa and
m0 = 0.4 or m0 = 0.05.

Inclusions are spherical with a volume fraction of vI = 15%. Uni-axial tension
tests are performed, and the macroscopic responses are predicted for the four
different incremental–secant moduli cases with the newly proposed MFH
formulation. The reference results are obtained from the FE simulations
reported in section 6.2 of (Brassart et al., 2011) for periodic composites.

First, in the case of comparable hardening for the matrix and inclusions
materials, m0 = mI = 0.05 in Fig. 11(a) and m0 = mI = 0.4 in Fig.11(b),
the residual stresses remain small in both phases and satisfactory results are
obtained for the four combinations although for m0 = mI = 0.05, see Fig.
11(a), using the residual–incremental–secant operator in both matrix and
inclusions phases overestimates the results slightly more than for the other
combinations.

Second, in the case of a more severe hardening in the inclusions phase,
m0 = 0.4 and mI = 0.05 in Fig. 11(a), the overestimation of the predictions
when considering the residual–incremental–secant operator in both matrix
and inclusions phases becomes unacceptable. The three other combinations
give good predictions.

Third, in the case of a more severe hardening in the matrix phase, m0 =
0.05 and mI = 0.4 in Fig. 11(b), only the solution obtained when using the
residual–incremental–secant method in both phases captures the FE solution
with a high accuracy.

In fact, the choice of the incremental–secant moduli to be considered
corresponds to an assumption behind the proposed MFH formulation when
defining the LCC. The residual–incremental–secant method should always
be considered for the inclusions phase. Concerning the elasto-plastic matrix
phase, the choice of keeping or not the residual stresses is governed by the
relative positions of the stress and residual stress tensors with respect to the
stress space origin (zero–stress state):
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Figure 12: Configuration in an elastic matrix with the zero–incremental–secant formula-
tion.

• The origin lies between the stress and residual stress tensors. When
considering a 1D problem in tension, this means that the stress is
positive and the residual stress is negative. In that case, the zero–
incremental–secant operator CCCS0 should be used in the matrix phase,
for the same reason as for elastic inclusions. This is typically the case
for composite materials made of two elasto–plastic phases for which
the inclusions phase is stiffer than the matrix phase during the plastic
flow, which is a common case for composite materials.

• Both stress and residual stress tensors lie on the same side with respect
to the origin. When consider a 1D problem in tension, this means
that both the stress and the residual stress are positive. In that case
the residual–incremental–secant method should be considered for the
matrix phase as using the zero–incremental–secant method would lead
to softer prediction. Indeed as illustrated in Fig. 12 for the limiting
case of a pure elastic response, the reloading path does not follow the
unloading one if the residual stress is omitted, resulting in a lower
stress value. This is typically a configuration of compliant elasto–plastic
inclusions combined with a stiffer matrix response during the plastic
flow.

We will now assert this analysis on more examples.

MMCs with low inclusions phase hardening. In the first additional example,
elastic–perfectly–plastic behaviors for the inclusions and matrix phases are
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Figure 13: Results for composites with elastic–perfectly–plastic inclusions with a low
hardening embedded in an elasto–plastic matrix. (a) Effect of the incremental–secant
operators, ∆ε̄ = 0.00001. (b) Residual–incremental–secant operators, effect of the strain
increment size ∆ε̄.

considered (RI(p) = R0(p) = 0). The other material properties are the same
as for the previous example

• Inclusions: EI = 400GPa, νI = 0.2, σY I = 75MPa;

• Matrix: E0 = 75GPa, ν0 = 0.3, σY 0 = 75MPa.

Inclusions are spherical with a volume fraction of vI = 15%. The predictions
with the four combinations of the incremental–secant moduli together with
FE reference results, which are found in (Brassart et al., 2011), are presented
in Fig. 13(a), which shows that only the prediction obtained by using CCCSr

in both phases agrees with the FE results. Moreover, when considering the
residual–incremental–secant operators, the results are found to be quasi–
independent of the macro–strain increment size, see Fig. 13(b).

Another example of composite material made of two elastoplastic phases
with a low hardening inclusion phase was studied by Doghri and Friebel
(2005). In this case, the spherical austenite inclusions are more compliant
than the ferrite matrix, see Fig. 14. The material properties of both phases,
which follow the power-law hardening (53), are
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Figure 14: Results for composites with elasto-plastic inclusions with a low hardening
embedded in an elasto–plastic matrix.

• Inclusions: EI = 179.35GPa, νI = 0.3, σY I = 202MPa, kI = 688MPa
and mI = 0.55;

• Matrix: E0 = 196.85GPa, ν0 = 0.3, σY 0 = 600MPa, k0 = 650MPa and
m0 = 0.06.

The inclusions volume fraction of vI = 35%. One more time, the solution
obtained by using CCCSr in both phases agrees with the FE results provided by
Doghri and Friebel (2005), see Fig. 14.

From the examples above, we can say that good estimations can be ob-
tained by using CCCSr

I and CCCSr
0 in the proposed MFH formulation when both

phases are elasto–plastic materials and if, during the plastic flow, the inclu-
sions response is not stiffer than the matrix phase. In other cases, such a
combination is too stiff and the zero–incremental–secant operator CCCS0

0 should
be considered in the matrix phase. However as previously said, it is believed
that formulating the framework by considering second–moment–statistical
values will allows considering the residual stress in both phases in any cases.

5. Conclusions

In this work, a new incremental–secant MFH process for composites made
of elasto–plastic constituents was proposed. In this approach, an unloading
of the composite material is virtually performed to estimate the residual
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strains in each phase, before applying a secant approach on the strain incre-
ments, which differ in each phase. In order to define the LCC, two secant
operators were defined. The first one, the residual–incremental–secant op-
erator, is defined from the phase residual stress. The second operator, the
zero–incremental–secant operator, is defined from a stress-free state in the
phase.

The method was then applied on several problems and was compared to
other existing MFH methods and to direct FE simulations. These examples
showed that for composites with inclusions hardening law exhibiting a stiff-
ness lower than or of the same order as the one of the matrix material, using
the residual–incremental–secant operator for both phases leads to accurate
predictions. However, for composites whose elasto–plastic inclusions phase
is much stiffer during the plastic flow than the elasto-plastic matrix mate-
rial response and for elastic inclusions embedded in an elasto–plastic matrix,
the zero–incremental–secant operator should be used in the matrix phase to
avoid over–stiff predictions. As discussed in the paper, the rigorous criterion
is actually based on the relative positions of the stress and residual stress ten-
sors of the matrix phase with respect to the stress space origin. In case they
lie on different sides of the stress space origin, the zero–incremental–secant
operator should be used in the matrix phase.

With this restriction on the choice of the matrix operator, the method has
been shown to predict the macro-stress with an accuracy level similar to, or
better than, the one of the first order incremental–tangent MFH method. In
particular, for short glass fibers reinforced polyamide, the new incremental–
secant method has a degree of accuracy higher than the one reached with the
first order incremental–tangent method. The incremental–secant method can
also capture the solution under non–monotonic non–proportional loading,
contrarily to the incremental–tangent approach.

The advantages of the method lie in the simple formulation and imple-
mentation. Moreover, as the LCC is defined from secant operators which
are naturally isotropic, the method does not require ad–hoc isotropisation of
these operators when computing the Eshelby or concentration tensors needed
in the MFH.

In the near future, the method will be extended to the damaged case.
When considering a composite whose matrix phase exhibits a damaging pro-
cess, the inclusions phase can be unloaded during the softening stage of the
matrix. The incremental–secant approach will allow this complex behavior to
be captured, ensuring a more accurate prediction of the scheme as compared

36



to the incremental–tangent method.
Finally, based on the good accuracy obtained by this first–moment method,

the method opens perspective for its extension to a second–moment form.

Appendix A. Tensorial operations and notations

• Dots and colons are used to indicate tensor products contracted over
one and two indices respectively:

uuu · vvv = uivi, (aaa · uuu)i = aijuj ;

(aaa · bbb)ij = aikbkj, aaa : bbb = aijbji ;

(CCC : aaa)ij = Cijklalk, (CCC : DDD)ijkl = CijmnDnmkl . (A.1)

• Dyadic products are designated by ⊗:

(uuu⊗ vvv)ij = uivj, (aaa⊗ bbb)ijkl = aijbkl . (A.2)

• Symbols 111 and III designate the second- and fourth–order symmetric
identity tensors respectively:

111ij = δij, III ijkl =
1

2
(δikδjl + δilδjk) , (A.3)

where δij = 1 if i = j, δij = 0 if i 6= j.

• The spherical and deviatoric operators are IIIvol and IIIdev respectively:

IIIvol ≡ 1

3
111⊗ 111, IIIdev = III − IIIvol , (A.4)

so that for symmetric tensors aij = aji we have:

IIIvol : aaa =
1

3
amm111 , IIIdev : aaa = aaa− 1

3
amm111 = dev(aaa) . (A.5)

IIIvol and IIIdev, and can be written as follows
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Appendix B. Derivation of the closed-form expressions for the
incremental–secant method

Appendix B.1. Residual–incremental–secant operator CCCSr

The evaluation of ∂CCCSr

∂εεε
, which will be used in the MFH scheme, follows

from

∂CCCSr

∂εεε
=

∂

∂∆εεεr
(3κrIIIvol + 2µr

sIII
dev) :

∂∆εεεr

∂εεε
= 2IIIdev ⊗ ∂µr

s

∂∆εεεr
. (B.1)

Using ∂∆σσσeq

∂∆σσσr = 3
2

∆sss
∆σσσeq , ∂∆sss

∂∆σσσr = IIIdev, ∂∆εεεeq

∂∆εεεr
= 2

3
∆eee

∆εεεeq
and Eq. (27), this last

relation becomes

∂CCCSr

∂εεε
= 2IIIdev ⊗

[
1

6µr
s (∆εeq)2 ∆sss : CCCalg − 2

3
µr
s

∆eee

(∆εeq)2

]
, (B.2)

where CCCalg is the derivative of the stress increment with respect to the strain
increment, which is obtained from the constitutive law of the material. Due to
the modification of the return mapping algorithm, this expression is sligthly
changed compared to the usual one and reads

CCCalg = CCCel −
(
2µel

)2

h
NNN ⊗NNN −

(
2µel

)2
∆p(

σσσtr
n+1 − σσσres

n

)eq

(
3

2
IIIdev −NNN ⊗NNN

)
, (B.3)

with h = 1
3
NNN :

(
3
2

(σσσn+1)dev

(σσσn+1)eq

)−1
∂R
∂p

+ 3µel.

Appendix B.2. Zero–incremental–secant operator CCCS0

The evaluation of ∂CCCS0

∂εεε
is obtained using ∂σσσeq

∂σσσ
= 3

2
sss
σσσeq , ∂sss

∂σσσ
= IIIdev, ∂∆εεεeq

∂∆εεεr
=

2
3

∆eee
∆εεεeq

,

3µ0
s =

σeq

∆εeq
. (B.4)

and κ0 = κel. This operator is readily obtained by

∂CCCS0

∂εεε
= 2IIIdev ⊗

[
1

6µ0
s (∆εeq)2sss : CCCalg − 2

3
µ0
s

∆eee

(∆εeq)2

]
. (B.5)

For this zero–incremental–secant approach, the direction of the normal cor-
responds strictly to the radial return mapping assumption, and the classical
expression of CCCalg is recovered:

CCCalg = CCCel − (2µel)2

h0

NNN ⊗NNN − (2µel)2∆p(
σσσtr
n+1

)eq

(
3

2
IIIdev −NNN ⊗NNN

)
, (B.6)

with h0 = 3µel + dR
dp
> 0.
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Appendix C. Residual stress vector

The equation to be satisfied at the end of the MFH procedure is Eq. (35).
Multiplying Eq. (33) by BBBε(III, C̄̄C̄CS

0, C̄̄C̄C
S
I ) and using (35) lead to

v0∆εεεr
In+1 + vIBBB

ε(III, C̄̄C̄CS
0, C̄̄C̄C

S
I ) : ∆εεεr

In+1 = BBBε(III, C̄̄C̄CS
0, C̄̄C̄C

S
I ) : ∆ε̄εεr

n+1 . (C.1)

With the M-T assumption the strain concentration tensor follows from (4),
and Eq. (C.1) reads

∆εεεr
In+1 + v0SSS : [(C̄̄C̄CS

0)−1 : C̄̄C̄CS
I − III] : ∆εεεr

In+1 = ∆ε̄εεr
n+1 , (C.2)

or again FFF = 0 with

FFF = C̄̄C̄CS
0 : [∆εεεr

In+1 −
1

v0

SSS−1 : (∆εεεr
In+1 −∆ε̄εεr

n+1)]− C̄̄C̄CS
I : ∆εεεr

In+1 . (C.3)

In order to satisfy FFF = 0, Eq. (C.3) is linearized as

dFFF =
∂FFF

∂εεεI

: d∆εεεr
I +

∂FFF

∂εεε0

: d∆εεεr
0 +

∂FFF

∂ε̄εε
: d∆ε̄εεr . (C.4)

When solving FFF = 0 at constant ∆ε̄εεr, as v0∆εεεr
0n+1 + vI∆εεε

r
In+1 is also

constant, the iteration process relies on dFFF = JJJ : dεεεI with

JJJ =
∂FFF

∂εεεI

+
∂FFF

∂εεε0

:
∂εεε0

∂εεεI

= C̄̄C̄CS
0n+1 :

[
III −SSS−1

]
− C̄̄C̄CS

I n+1 −
∂C̄̄C̄CS

I n+1

∂εεεI

: ∆εεεr
In+1 −

vI

v0

∂C̄̄C̄CS
0n+1

∂εεε0

:

[
∆εεεr

In+1 −SSS
−1 :

(
∆εεεr

In+1 −∆ε̄εεr
n+1

)
v0

]
−

vI

v2
0

C̄̄C̄CS
0n+1 ⊗ (∆εεεr

In+1 −∆ε̄εεr
n+1) :: (SSS−1 ⊗SSS−1) ::

∂SSS

∂εεε0

−
vI

v0

C̄̄C̄CS
0n+1 : SSS−1 , (C.5)

where ∂C̄̄C̄CS
r

∂εεεr
results from either (B.2) or (B.5). The derivative of the Eshelby

tensor is reported in Appendix D.
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Once FFF = 0 is satisfied, the effect on the strain increment in each phase
of a variation d∆ε̄εεr can directly be obtained by constraining dFFF = 0, and
Eq. (C.4) leads to6

0 =
∂FFF

∂εεεI

: d∆εεεr
I +

∂FFF

∂εεε0

: d∆εεεr
0 +

∂FFF

∂ε̄εε
: d∆ε̄εεr , (C.6)

or again

∂εεεI

∂ε̄εε
= −JJJ−1 :

∂FFF

∂ε̄εε
. (C.7)

As under these circumstances dε̄εεr = v0dεεεr
0 + vIdεεε

r
I, this last equation is com-

pleted by

∂εεε0

∂ε̄εε
=

1

v0

(III − v1
∂εεεI

∂ε̄εε
) . (C.8)

Appendix D. Eshelby Tensor and it is derivative

The derivative of Eshelby tensor can be written as

∂SSS

∂∆εεεr
=

∂SSS

∂ν
⊗ (

∂ν

∂κ

∂κ

∂∆εεεr
+

∂ν

∂µs

∂µs
∂∆εεεr

) . (D.1)

One directly has

∂κ

∂∆εεεr
= 0 , (D.2)

and therefore,

∂SSS

∂∆εεεr
=

∂SSS

∂ν
⊗ ∂ν

∂µs

∂µs
∂∆εεεr

(D.3)
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Segurado, J., Llorca, J., González, C., 2002. On the accuracy of mean-
field approaches to simulate the plastic deformation of composites. Scripta
Materialia 46, 525 – 529.

Suquet, P., 1995. Overall properties of nonlinear composites: A modified
secant moduli theory and its link with ponte castañeda’s nonlinear vari-
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