

Foreseeing nitrate concentration in groundwater: A review of available modelling approaches

Philippe ORBAN, Serge BROUYERE

Hydrogeology Group – University of Liège - Belgium

General context & Objectives

Context:

- Increasing deterioration of groundwater quality due to nitrate diffuse pollution
- Need for groundwater management to implement policy
- Statistical tools are generally poorly adapted to prediction
- Need to link changes in land use and groundwater quality trends

Objectives:

 Develop and apply modelling application for groundwater quality trend assessment and prediction at the regional scale

Challenges

Foreseeing nitrate concentration in groundwater : A review of available modelling approaches - Ph. Orban Isonitrate conference—10/11 December 2009-Paris-UNESCO

Challenges

Parameterization/ Calibration of groundwater flow and transport at regional scale

- Conceptual model / objective function
 - Model complexity ←→ model objectives
 - Data requirements ←→ data availability
- Groundwater quantity
 - Groundwater levels: usually available
 - Base flow / GW fluxes: case specific
- Groundwater quality
 - Contaminant transport: usually site-scale, few information at regional

Available modelling approaches

	Advantages	<u>Disadvantages</u>
Black box models	Easily usedFew parameters	Results not spatially distributedLower predictive capability
Distributed black-box models	Easily usedFew parametersResults spatially distributed	Lower predictive capability
<u>Distributed</u> physically	 Results spatially distributed 	 Large amount of parameters required
based models	 Good predictive capability 	

Foreseeing nitrate concentration in groundwater: A review of available modelling approaches - Ph. Orban Isonitrate conference–10/11 December 2009-Paris-UNESCO

The Hybrid Finite Element Mixing Cell approach

Physically-based, spatially-distributed, variably saturated subsurface model

- Control volume finite element code SUFT3D (University of Liège)
- For large-scale applications
 - Flexible discretization / meshing approach
 - Mathematical models of various complexities for flow and transport (Hybrid Finite Element Mixing Cell

approach)

		TRANSPORT		
		Simple Reservoir (Linear)	Distributed Mixing Model	Advection- dispersion
FLOW	Simple Reservoir (Linear)	OK	impossible	impossible
	Distributed Reservoir (Linear)	ОК	OK	impossible
	Flow in porous media	OK	OK	OK

The Geer basin case study

Groundwater quantity: 30 millions m³/year of drinking water to supply approx. 600,000 people in the region of

Liège

Groundwater quality: Intensive agriculture (65% of the basin) nitrate concentrations approach or are even above the drinking

water threshold of 50mg/L NO₃

Foreseeing nitrate concentration in groundwater: A review of available modelling approaches - Ph. Orban Isonitrate conference—10/11 December 2009-Paris-UNESCO

The Geer basin case study

Foreseeing nitrate concentration in groundwater. A review of available modelling approaches - Pn. Orban Isonitrate conference–10/11 December 2009-Paris-UNESCO

The Geer basin case study

Spatial distribution of tritium contents

• N : TU =~ 1, old water

• S: TU =~ 10, young water

• E : TU =~ 5, mixing between old/young

Spatial distribution of nitrate contents

N: NO3 = ~0 mg/L

S : NO3 = ~30 - 90 mg/L

E : NO3 = ~20 - 25 mg/L

\ review of available modelling approaches - Ph. Orban

Isonitrate conference-10/11 December 2009-Paris-UNESCO

- Limits of the model similar to the limits of the hydrological basir
- 5 layers (2 loess, 3 chalk)
- Heterogeneity of the chalk

Groundwater flow

→ Finite element solution of groundwater flow equation in equivalent porous media

Solute transport

- → Dual-porosity concept
- → Distributed mixing cells

Foreseeing nitrate concentration in groundwate

Isonitrate conference—10/11 December 2009-Fans-UNESCO

Calibration of the groundwater flow model in steady-state on 2 contrasted datasets (high and low groundwater levels)

- Calibration of the solute transport model:
 - Groundwater flow in steady-state
 - Solute transport in transient conditions (period 1950-2008)
- Use of two datasets
 - Tritium data:
 - Input function is well known (Groningen measurement station)
 - Peak in the input function
 - Nitrate data
 - Input function difficult to estimate

Calibration with ³H data measured in 2004

Linear fit (R² = 0.9122)

RMSE = 1.16 TU

12

14

RMSE = 1.16 TU

2

0

2

4

0

0

2

4

6

8

10

12

14

16

Observed Tritium Unit

Mean observed velocity across the unsaturated zone=~ 1m/y

Isonitrate conference–10/11 December 2009-Paris-UNESCO

Conclusions & Perspectives

- The HFEMC method is a new flexible modelling tool for large-scale groundwater modelling capable of dealing with real cases, interesting to implement the EU WFD
- Combination of specific data (nitrate trend and environmental tracer data) and HFEMC shows promising results for regional scale groundwater quality modelling
- More advanced NO3 scenarios based on crop / soil modelling (SVAT models)
- Combined scenarios: Climate change, NO3 and changes in land use

Acknowledgement

- FP6 AquaTerra EC and partners
- Walloon Region, Groundwater division
- Fonds National de la Recherche Scientifique of Belgium
- Aquapôle University of Liège
- Belgian Science Policy PAI Timothy

THANK YOU FOR YOUR ATTENTION!