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Abstract: This paper aims at investigating the nonlinear dynamics of an F-16 aircraft,
based upon sine-sweep data collected during a ground vibration test campaign. Various
analysis techniques, including the mere visual inspection of the time series, the wavelet
transform and the restoring force surface method, are utilised and reveal that the F-16
wing-to-payload mounting interfaces exhibit both softening and hardening nonlinearities.

1 INTRODUCTION

Aircraft structures are known to be prone to nonlinear phenomena, especially today
as they become lighter and hence more flexible. A specific challenge encountered with
fighter aircraft, besides aeroelastic nonlinearity [1], is the modelling of the wing-to-payload
mounting interfaces. Indeed, for large amplitudes of vibration, they may trigger complex
nonlinear mechanisms such as friction or gaps. This usually translates into a decrease
of certain resonance frequencies for increasing force levels that cannot be observed for
linear structures [2]|. In this context, the present work intends to investigate the nonlinear
dynamics of an F-16 aircraft, based upon experimental data collected during a ground
vibration test (GVT) campaign.

The objective of this paper is specifically to exploit high-level sine-sweep data and demon-
strate that they can provide useful insight towards accurately modelling nonlinear be-
haviour. Various analysis techniques, including the mere visual inspection of the time
series, the wavelet transform and the restoring force surface method, will be utilised to
bring different perspectives to the F-16 dynamics, which will be shown to exhibit both
softening and hardening nonlinearities.



2 F-16 INSTRUMENTATION AND FREQUENCY RESPONSE FUNCTION-
BASED ANALYSIS

Experimental data addressed in this study were recorded on a full-scale F-16 aircraft (Fig-
ure 1 (a)) on the occasion of the LMS Ground Vibration Testing Master Class [3] held in
September 2012 at the Saffraanberg military basis in Belgium. During the test campaign,
the aircraft was equipped with two dummy payloads mounted at wing tips (Figure 1 (b))
and one dummy store connected through a pylon to the left wing (Figure 1 (c)). The
structure was suspended in free-free conditions using bungee chords and air suspension
systems, and two shakers were attached underneath the two wings so that both wing
bending and torsion modes could be excited (Figure 1 (d)). The aircraft was extensively
instrumented by means of 45 uniaxial and 40 triaxial accelerometers, thus yielding 165
measured degrees of freedom. In particular, triaxial sensors were positioned on both sides
of the wing-to-payload and wing-to-store connections, as these latter are known to be
potential sources of nonlinearity (Figure 1 (e)). The connections between the wings and
the flaps and between the vertical tail and the rudder were similarly instrumented, even
if the control surfaces were held fixed throughout the tests.

Figure 2 charts the stabilisation diagram calculated by the PolyMAX method [4] using
random data measured at low level, i.e. considering a root-mean-squared (RMS) force
amplitude of 8 N. This diagram leads to the identification of 3 rigid-body modes located
below 4 Hz and 5 flexible modes, whose estimated frequencies and damping ratios are
listed in Table 1. The first rigid-body mode, which involves a roll movement of the struc-
ture, together with the deformed shapes of the flexible modes are depicted in Figures 3 (a
— f), respectively. A frequency response function (FRF) measured on the right wing lead-
ing edge is also plotted in Figure 2 and shows very good agreement with the columns of
stabilised poles.

Besides providing the basis for most frequency-domain modal parameter estimation tech-
niques, such as the PolyMAX method, FRFs can also be exploited for detecting nonlin-
earity. Indeed, if the system under test is linear, they are required to be independent
of the force amplitude spectrum. The comparison of FRFs for different input levels is
therefore a reliable indicator of the presence of nonlinear behaviour in specific frequency
bands [5]. This comparison, often referred to as the homogeneity test, is arguably one of
the most popular detection tools [6], by virtue of the fact that almost all the commercial
spectrum analysers allow the straightforward display of FRF plots. This analysis is herein
achieved in Figures 4 (a — b) for FRFs measured on the right wing leading edge and the
aircraft nose, respectively, and for input levels of 8, 32 and 54 N RMS. In the two graphs,
the rigid-body modes show no dependence upon the input level, whereas all the flexible
modes are found to be affected by substantial softening distortions, which are the clear
evidence of the activation of nonlinearity.

However, although it proves convenient for nonlinearity detection, the homogeneity test
does convey no information about the nature of the nonlinearity sources, other than the
global softening or hardening behaviour of the resonance peaks. One notes that the odd
or even nature of the nonlinearities can also be revealed as described in [7], but the
procedure requires advanced random excitation signals, which are generally not available
during a typical GVT campaign. In this context, the use of sine-sweep data is a relevant
alternative that is investigated in the next section.



(b) Dummy payload mounted at the right wing tip. (¢) Dummy store connected
to the left wing.

N < ‘, .
(d) Shaker attached under- (e) Potential nonlinear connection instrumented on
neath the left wing. both sides.

Figure 1: Full-scale F-16 aircraft tested during the LMS GVT Master Class.
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Figure 2: Stabilisation diagram computed using the PolyMAX method for model orders
up to 40, and FRF measured on the right wing leading edge.

Mode Frequency (Hz) Damping ratio (%)
1 4.82 0.74
2 6.18 0.98
3 6.95 0.72
4 7.78 1.25
) 8.85 1.37

Table 1: Frequencies and damping ratios of the flexible modes up to 10 Hz estimated
using the PolyMAX method.



(a) First rigid-body mode at 2.50 Hz: roll movement. (b) First mode at 4.82 Hz: wing bending.

(c) Second mode at 6.18 Hz: antisymmetric payload rotation. (d) Third mode at 6.95 Hz: symmetric wing torsion.
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(e) Fourth mode at 7.78 Hz: antisymmetric wing torsion. (f) Fifth mode at 8.85 Hz: antisymmetric wing torsion and
vertical tail bending.

Figure 3: First rigid-body mode and deformed shapes of the flexible modes up to 10 Hz
estimated using the PolyMAX method.
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Figure 4: FRFs measured on (a) the right wing leading edge and on (b) the aircraft nose
for 3 excitation levels. Black: 8 N RMS; blue: 32 N RMS; orange: 54 N RMS.



3 EXPLOITATION OF SINE-SWEEP DATA FOR NONLINEARITY
CHARACTERISATION

The objective of this section is demonstrate that high-level sine-sweep data can provide
useful insight towards accurately modelling the nonlinearities detected using the homo-
geneity test. To this end, measurements collected during an increasing and linear 54-/N-
sweep of the interval from 2.1 to 15.1 Hz are considered. For the sake of conciseness, we
will restrict our scope to the analysis of the first wing bending mode of the structure lo-
cated around 4.8 H z, as it was found to involve significant nonlinear effects in Figures 4 (a
—b), but also large displacements at the payload mounts and hence good signal-to-noise
ratios.

3.1 Visual inspection of the raw time series

A distinct property of nonlinear systems is their ability to generate harmonic components,
which can be exploited to gain knowledge into the nonlinear mechanisms involved. In this
regard, sine-sweep excitations are particularly convenient because, if linear, the structure
is known to generate a pure sine wave in output. Harmonic distortions can sometimes
be such that a mere visual inspection of the raw time series is sufficient to reveal non-
linear behaviour. For that purpose, the accelerations measured on the dummy payload
mounted to the right wing and on the dummy store are plotted versus sweep frequency in
Figures 5 (a — b), respectively. The connections between the left wing and the payload,
the wings and the flaps, and the vertical tail and the rudder are not studied herein because
they exhibit much less marked nonlinear behaviours.

The two resonance envelopes corresponding to the first wing bending mode at 4.8 Hz in
Figures 5 (a — b) show no clear evidence of nonlinearity. However, a close-up analysis
in 4.6 — 5.4 Hz, as achieved in Figures 5 (¢ — d), reveals the presence of harmonics in
the vicinity of resonance. These harmonics are better highlighted in Figures 5 (e — f),
where a few cycles only are studied. Sudden dips can be observed in the oscillations in
Figure 5 (e) for large accelerations, which are the symptom of a non-smooth decrease of
stiffness in the system. By contrast, the presence of shocks in Figure 5 (f) is an indication
of a non-smooth but hardening nonlinearity.

3.2 Time-frequency analysis using the wavelet transform

The Fourier transform (FT), which maps the time-domain signal z(t) onto its frequency-
domain representation X (w) as

X(w) = /_00 x(t) e ¥t dt | (1)

[ee]
is widely used in structural dynamics for various purposes. One of its main limitations
is that it is not suitable for the analysis of nonstationary signals. These signals see their
frequency content evolving with time and are characteristics of nonlinear systems.

An improvement of the classical FT is the short-time Fourier transform (STFT). The
signal to be analysed is multiplied by a window function w(t) which is nonzero for only a
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short period of time. The FT of the resulting signal is taken as the window is slid along
the time axis, resulting in a two-dimensional representation X (w, 7) of the signal

o0

X(w, 1) = / r(t)wt —71)e ¥ dt. (2)
The inherent problem of the STFT is that the window is not adjustable, and a wide (nar-
row) window thus gives good (poor) frequency resolution but poor (good) time resolution.

The fixed resolution of the STFT motivated the development of advanced time-frequency
analysis methodologies such as the wavelet transform (WT). Unlike the STFT, the WT
involves a windowing technique with variable-sized regions:

X, (a,b) = %/Z () (t;—b> dt (3)

where variable b locates the observation window in the time domain, and variable a
contracts or expands the window. It has the advantage that small time intervals are
considered for high-frequency components, whereas the size of the interval is increased for
lower-frequency components, thereby yielding better time and frequency resolutions than
the STF'T. This makes the WT one of the more versatile tools for interpreting harmonic
components generated by nonlinear systems [8]. The Morlet mother wavelet, which is a
Gaussian-windowed complex sinusoid 1 (t) = e /2 =%t g considered herein.

The wavelet amplitudes of the accelerations of Figures 5 (a — b) are displayed in loga-
rithmic scaling in Figures 6 (a — b), respectively. The presence of multiple odd and even
harmonics around 5 Hz in Figure 6 (a) is a confirmation of the non-smooth nature of the
wing-to-payload nonlinearity. One also remarks the particularly significant amplitudes
of the seventh and eighth harmonics, which are likely to underlie interactions between
nonlinear modes of vibration [9]. Figure 6 (b) indicates that the nonlinearity in the wing-
to-store pylon is also non-smooth. The wavelet amplitude additionally reveals that this
latter greatly impacts the symmetric wing torsion mode around 7 Hz. One finally notes
that the higher acceleration levels reached in Figure 5 (a) result in a better signal-to-noise
ratio in Figure 6 (a).

3.3 Restoring force surface method

The restoring force surface (RFS) method [10] relies on Newton’s second law of motion,
written for a single-degree-of-freedom system as

m i+ f(x, &) =p (4)

where m is the mass, & the acceleration and p the external force and where f encompasses
all the restoring forces in the system, being of elastic or dissipative nature. This equation
recast into

fla,d) = p—mi (5)

gives a direct access to the restoring force surface defined by the triplets (z;, @;, f;), where
1 refers to the i-th sampled instant. Moreover, cross sections of this restoring force surface
along the axes where either the velocity or the displacement is equal to zero yield stiffness



and damping curves and allow the characterisation of the elastic and dissipative forces,
respectively. Applied to more complex systems, as in the case of the F-16, the RFS
method only provides qualitative information, but can still be exploited for visualising
nonlinear effects by representing the inertia force of one nonlinear component versus the
relative displacement or velocity across this component.

The force-displacement curve of the right-wing-to-payload connection is drawn in Fig-
ure 7 (a) for sweep frequencies between 4.6 and 5.4 Hz. A sudden loss of stiffness is
observed beyond a relative displacement of about 2.7 mm, which can be confidently at-
tributed to the opening of the connection for sufficiently high forcing amplitudes. This
also explains the softening behaviour of the resonance peaks observed in Figures 4 (a —b)
and the acceleration dips visible in Figure 5 (a). The force-displacement curve computed
across the left-wing-to-store connection is depicted in Figure 7 (b) and shows a completely
different behaviour. Indeed, a severe increase of stiffness is observed which corresponds to
impacts onto a displacement-limiting component in the mounting interface, and is in line
with the observations made based upon Figures 5 (f) and 6 (b). The associated clearances
are found to be symmetric and can be estimated at 0.065 mm. This hardening behaviour
is however not visible in the FRFs plotted in Figures 4 (a — b), as it is dominated by the
softening effect evidenced in Figure 7 (a) which involves larger restoring force values.

4 CONCLUSION

The objective of this paper was to address the characterisation of the structural nonlin-
earities of a full-scale F-16 aircraft equipped with two dummy payloads and one dummy
store. For that purpose, robust methods, namely the mere visual inspection of the time
series, the wavelet transform and the restoring force surface method, were applied to
experimental data recorded during a typical GVT campaign. Specifically, high-level sine-
sweep data were proved to be particularly well suited to acquire a precise understanding
of the nonlinear mechanisms involved. The mounting interface between the right wing
tip and a dummy payload was thus found to loosen at high excitation amplitude and to
trigger the decrease of the resonance frequencies of the structure. Moreover, the existence
of a clearance within the pylon between the dummy store and the left wing was also
evidenced, and was shown to translate into impacts in the aircraft response.
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Figure 5: Accelerations measured on the dummy payload mounted to the right wing (left
column) and on the dummy store (right column) for 3 sweep frequency intervals. (a —b)
2-10Hz (c—d)46-54 Hz; (e—1f)51-52 Hz.

10



| !
.II | II'I OJI"

W |.|,||.&?. |

[l s
a19

Instantaneous frequency (Hz)

2 3 éll 5 6 7 8 9 10
Sweep frequency (Hz)
(a)

10 0 T

J“ 1";,""9""'“ H I'Q y;'ll W."'" '“.“q”m”‘ TRy . ;0" ?,.;ngl, i ..m'lm"h”
90 w l u\ ' "u "| ﬂ@ . Il | 4 ‘djﬁ'w" || " !‘ WI 'll i ’. b"l I"“'l

'u ul,. 'l'|"'| 'Iﬁ| |||, ‘ ol ‘ .‘ i '|
80\ ':.|||"'|' »IHH'I’l 1‘ u”"\ ‘" %bpﬂ 'UI S ”' ‘ ‘HU‘\'“ Q', “ I |

"I ""lu'.i‘nl \."f ‘y' I "M'J

70 *' !‘ "u " lh A .' ; _“‘,,
| I d’ o ‘.'“\ s |‘\|"|' 'u.
"n “M.'“".I .|".|| I1| ,l OI ‘||" "|'.|.‘i|,D"l 't it o n'm'lg' v , ‘J. ‘_;v'\MI\“.
60p: P In'l o.,' .l“-'-" |“m".' ','|'|;."-"|' P (A e T Iu‘“'l'll" 'o'n"‘“ 1, " Y
bl“l' (0 .', 0y . ':"," ||'|.t'|l|‘|'“ '.::;'.;;)' i . : - ." : Hh' |4 . \, 1,|,

1S10] I T

40

Instantaneous frequency (Hz)

sof; s

20
10
— 1 1 1 —_— E——
2 3 4 5 6 7 8 9 10
Sweep frequency (Hz)
(b)

Figure 6: Wavelet transform amplitudes (in logarithmic scaling) of the accelerations mea-
sured on (a) the dummy payload mounted to the right wing and on (b) the dummy store.
Colour map goes from blue to red, which correspond to low (-300 dB) amplitude and high
(0 dB) amplitude regions, respectively.
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Figure 7: Force-displacement curves across (a) the right-wing-to-payload connection and
(b) left-wing-to-store connection computed using the RFS method.
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