## Analysis of PSII antenna size heterogeneity of Chlamydomonas reinhardtii during state transitions

Thomas de Marchin<sup>1</sup>, Bart Ghysels<sup>1</sup>, Samuel Nicolay<sup>2</sup> and Fabrice Franck<sup>1</sup>

<sup>1</sup>Laboratory of bioenergetics (F.Franck), ULg

<sup>2</sup>Department of mathematics, ULg

18/06/13



- State transition :
  - migration of LHCII pigment-proteins between PSII and PSI
  - up to 80% in *Chlamydomonas reinhardtii* (Delosme et al. 1996)
- Different types of PSII with different antenna sizes : PSII antenna size heterogeneity (Melis and Homann (1975))

Fluorescence rise from  $F_O$  to  $F_M$  corresponding to the reduction of  $Q_A$  in the reaction center of PSII.



- DCMU addition  $\rightarrow$  the photochemical phase
- DCMU fluorescence rise induction kinetic is not a first order kinetic  $\rightarrow$  PSII $\alpha$  and PSII $\beta$

## • Lavergne et al.(2004) :

|                                  | $PSII\alpha$ | PSIIβ         |
|----------------------------------|--------------|---------------|
| Proportion                       | +            | -             |
| Antenna                          | 210-250 Chl  | pprox 100 Chl |
| Region of the thylakoïd membrane | appressed    | non appressed |
| Multimer?                        | dimer        | monomer       |
| Connectivity (p)                 | pprox 0,7    | 0             |
| Shape of fluorescence rise       | sigmoidal    | exponential   |

• Connectivity (p) : quantifies the probability of energy transfer between closed PSII to an open PSII (Joliot and Joliot, 1964)

• Lavergne et al.(2004) :

|                                  | $PSII\alpha$  | PSIIβ         |
|----------------------------------|---------------|---------------|
| Proportion                       | +             | -             |
| Antenna                          | 210-250 Chl   | pprox 100 Chl |
| Region of the thylakoïd membrane | appressed     | non appressed |
| Multimer?                        | dimer         | monomer       |
| Connectivity (p)                 | $\approx$ 0,7 | 0             |
| Shape of fluorescence rise       | sigmoidal     | exponential   |

- Connectivity (p) : quantifies the probability of energy transfer between closed PSII to an open PSII (Joliot and Joliot, 1964)
- Purpose of this work : determination of PSII antenna size heterogeneity in state I and in state II
- Method of Melis and Homann (complementary area over the DCMU-FR) is very approximative due to approximations in the  $F_M$  level
- Non linear regression algorithm with equations derived from Lazár et al.(2001) :
  - better  $F_M$  determination
  - p determination
  - simultaneous fitting of several curves

 $rF_V(t) = \sum_{i=1}^3 \frac{(1-p_i)\operatorname{PSII}_i^{closed}(t)}{1-p_i\operatorname{PSII}_i^{closed}(t)} \qquad \qquad \operatorname{PSII}_i^{closed}(t) = \operatorname{PSII}_{i,0}^{open}(1-e^{(-k_it)})$ 

The Akaike's information criterion (AIC) : comparison of different models by introducing a penalty for the number of parameters used.  $AIC = 2k = 2\log(1)$ 

| model                                                                  | AIC    |
|------------------------------------------------------------------------|--------|
| 1: connectivity allowed only for $PSIIlpha$                            | -14599 |
| 2: connectivity allowed for PSII $\alpha$ and PSII $\beta$             |        |
| 3: connectivity allowed for PSII $lpha$ , PSII $eta$ and PSII $\gamma$ | -17007 |

- AIC<sub>model2</sub> < AIC<sub>model3</sub> < AIC<sub>model1</sub>  $\rightarrow$  model 2 describes the experimental data better than models 1 and 3
- connectivity for  $\mathsf{PSII}\beta \neq 0$ , in contrast with a majority of studies (except the work of Lavergne and Trissl (1995) and Lazár et al.(2001))

Experiment :

- $\bullet~$  Darkness 1 hour  $\rightarrow$  Oxydation of plastoquinones  $\rightarrow$  Algae close to state I
- $\bullet$  Arrest of mitochondrial respiration  $\to$  Reduction of plastoquinones  $\to$  Transition to state II



When PQ pool is highly reduced (state 2)  $\rightarrow$  many PSII centers have a  $Q_B^-$  bound and the addition of DCMU leads to  $Q_A$  reduction before the illumination.

PQ pool had to be rapidly oxidized before the addition of DCMU  $\rightarrow$  development of a method with  $N_2$  bubbling



- $\bullet\,$  to monitor the redox state of  $Q_A$  without the influence of state transitions  $\to\,$  mutant stt7
- $\bullet$  Complete reoxydation of PQH\_2 by O\_2 in 2 minutes
- ullet In 2 minutes, back transition to state 1 is not significant in the wt ightarrow ideal delay





- the conversion of  $\mathsf{PSII}\alpha$  to  $\mathsf{PSII}\beta$ during transition from state 2 to state 1 parallels the decrease of the low T fluorescence ratio.
- state transitions can be described as changes in the proportions of two PSII populations with constant properties



- In addition to this description of heterogeneity by functional analysis of the fluorescence rise of PSII *in vivo* : biochemical studies (mainly based on isolation of PSII complexes and subsequent analysis).
- Iwai et al., 2008



• We suggest that PSII $\alpha$  phase refers to PSII mega- and super- complexes and that PSII $\beta$  phase refers to PSII core complexes.

## Summary :

- development of a protocol for PSII heterogeneity analysis during state transition and improvement of mathematical analysis
- $\bullet~{\rm connectivity}~{\rm for}~{\rm PSII}\beta$
- demonstration of an interconversion of PSII $\alpha$  to PSII $\beta$  during state transitions for the first time <u>in vivo</u>
- link between functional approach and biochemical and structural studies

## Summary :

- development of a protocol for PSII heterogeneity analysis during state transition and improvement of mathematical analysis
- $\bullet~{\rm connectivity}~{\rm for}~{\rm PSII}\beta$
- demonstration of an interconversion of PSII $\alpha$  to PSII $\beta$  during state transitions for the first time <u>in vivo</u>
- link between functional approach and biochemical and structural studies



www.biophoto.ulg.ac.be







$$rF_{V}(t) = \sum_{i=1}^{3} \frac{(1-p_{i})\text{PSII}_{i}^{closed}(t)}{1-p_{i}\text{PSII}_{i}^{closed}(t)} \qquad \text{PSII}_{i,0}^{closed}(t) = \text{PSII}_{i,0}^{open}(1-e^{(-k_{i}t)})$$
$$k_{i}(t) = \frac{k_{i}^{0}}{1-p_{i}\text{PSII}_{i}^{closed}(t)}$$

$$\mathbf{k}_{i}^{0} = rac{1-
ho_{i}}{t(
ho_{i}rF_{V,i}(t)+1-
ho_{i})}\Big(\ln\left(1-
ho_{i}(1-rF_{V,i}(t))
ight) - \ln(1-rF_{V,i}(t)) - \ln(1-
ho_{i})\Big)$$