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Abstract

In this paper we present a high-gain observer for a gen-
eral class of nonlinear SISO systems for which the high-
gain parameter is determined on-line in an adaptive
fashion. The adaptation scheme is simple and univer-
sal in the sense that it is independent of the system
the observer is designed for. We prove that the ob-
server output error becomes smaller than a user spec-
ified bound for large times and that the adaptation
converges. The assumptions required for the adaptive
high-gain observer are the same as for the non-adaptive
high-gain observer, namely that the system is uniformly
observable for any w(t).

keywords: nonlinear observers, adaptive, high-gain,
robustness, bioreactor.

1 Introduction

For systems that are uniformly observable for any w(¢)
(i.e. the states of the system can be determined from
the output of the system and its derivatives, indepen-
dently of the input)[3], a high-gain observer has been
suggested in [9]. One of the advantages of this observer
are its excellent robustness properties [9]. By choosing
the observer gain k large enough (therefore the name
“high-gain”) the observer error can be made arbitrarily
small. The difficulty in practical applications is, how-
ever, the determination of an appropriate value for the
observer gain. For values too low, the desired bounds
on the observer error cannot be achieved. For values
unnecessarily high, the sensitivity to noise increases,
thus limiting the practical use.

In this paper we propose an adaptation scheme for the
observer gain of the high-gain observer in [9] such that
its advantages are retained and that the observer gain is
adjusted automatically until the observer output error
becomes smaller than a desired target value.

The paper is organized as follows: in Section 2 we recall
the main result on the high-gain observer in [9]. In
Section 3 we present the adaptation scheme and prove
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the boundedness of the observer error and convergence
of the adaptation scheme. The paper is concluded with
a simple bioreactor example.

2 High-Gain Observer

The theory of high-gain observers as in [9] assumes that
the system is given in observability normal form [11],
also called the generalized controller canonical form [2].
In principle, every uniformly observable SISO-system
with input u and output y can be transformed into this
normal form:

Iy = 1y

Si?g = I3

, (1)
Ipn-1 = Ip

Zn = ¢(x,u)

y = 1.

with x = [21,... ,2,]7 and u = [u, %, u@, ... w7

A possibility to observe such systems (1) is the high-
gain observer [9]. The structure of the high-gain ob-
server is a simple chain of integrators, each “corrected”
by the injection of the output error (y — §) multiplied

by a factor depending on the constant observer gain k:

I = &2 + pik(y—9)
Z2 = & + pkYy-9)
. o . X (2)
Tn-1 = In + Pn- k=t (v — 9)
17 = .f?l .
where X = [#;,...,%,]7 denotes the estimate of the

states x and g the estimate of the system’s output (cf.
Figure 1).

In contrast to the classical Luenberger observer [6], the
high-gain observer does not consist of a replica of the
system (1) plus correction terms as the nonlinearity
@(x, 1) is not modeled. The observer error will be de-
noted by e with e(t) = [ey(2),... ,e,(t)]” with
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Figure 1: High-gain observer for a system in observability
normal form.

The following theorem is proven in [9].

Theorem 1 (High-Gain Observer). Assume that
A1) the system (1) ezhibits no finite escape time and

A2) the nonlinearity ¢ in (1) is bounded,. i.e
oG, w)f < Vx, 1

If the coefficients {p1,...,pn} are such that s" +
}:J \Ppis" 7 is o Hurwitz polynomial with distinct
roots, then for all d > 0 and all times T > O there
exists a finite observer gain k such that for all constant
k > k the observer error satisfies:

le(®)ll <d Vt>¢

This means that by an appropriate choice of the ob-
server gain k the observer error e can be made arbi-
trarily small in an arbitrarily short time.

In the Laplace domain, the relationship between w(s) =
L{z,(t)}, an additive output noise v(s) (see Fig. 1),
and the observer output error e;(s) = y(s) — y(s) is
given by: .

ei(s) = w(s) + ————v(s), (3)

1
(s+ k)" (s+ k)"
where, for simplicity, p; = (7). From (3) it is obvious
that the larger the observer gain k is chosen, the smaller
the influence w and thus of the nonlinearity ¢ (and
therefore of u) on the observer output error. For a
large observer gain, the observer is thus very robust,
provided the dimension of the state-space is known [9].
However, for large values of k the additive output noise
is damped in the observer output error, and therefore
undamped in the observer output.

3 Adaptive High-Gain Observer

To overcome the difficulty of having to choose the ob-
server gain k, we propose to use a simple adaptation

law to find the appropriate observer gain for all ¢ > tq:

L= { WO -IOF xluy sl
dt 0 for ly(t) — §(H)] < A
t;: s(t) = S; i=0,1,2,... 4)
k(t) =5 Vte[titiy1)

where A > 0, v > 0, 8 > 0, Sy are pregiven and

Si+1 - S,’ = ,Beiz Vi 2 0. (5)

The idea behind this adaptation law is that the ob-
server gain k is piecewise constant and takes values S;.
The switch to the new S; depends on the monoton-
ically increasing parameter s. Whenever s reaches a
new threshold S; (the time when this occurs is denoted
by t;) the observer gain takes this value S;. The S; are
predefined as a monotenically increasing sequence such
that their growth rate is larger than e?. One possibility
to guarantee this is given in (5). For any other choice
with growth rate larger than e, like

H—l S ,Bezln [

Theorem 2 below also holds. Thus, k(t) is increased
step-wise as long as y — ¢ lies outside A and cannot
decrease.

We now prove that the high-gain observer (2) with a
time-varying observer gain k as in adaptation law (4)
guarantees convergence of the adaptation law and
boundedness of the observer error.

Theorem 2. Assume that system (1) satisfies assump-
tions A1) and A2). If the coefficients {p1,... ,pn} are
such that s™ + Z] 1Pi8" I is a Hurwitz polynomial
then a high-gain observer (2) with the adaptation law
(4), (5) for the observer parameter k achieves for any
A>0,v>0,8>0 and any Sp:

a) k(t) < koo < 00 Vi

b) the total length of time for which the observer out-
put error is larger than X is finite, i.e.
tmae < 00 : [ dt < tmas,
where T = {¢] [ly(t) - 3()I| > A} -

When the observer output error has been larger than
A for t,,.., the observer output error will afterwards
always be smaller than A, which implies that the adap-
tation has converged.

Proof of a). The error differential equations are:

é1 = €2 - piker
€2 = e3 - pkie
(6)
bn-1 = €n — prnik™le
én = ¢(x,u) — prk"e;.
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With a coordinate change as in singular perturbation
theory:

T = t-k
é] = e]/kj_l’ j:17""n’ (7)
the transformed differential equations are:
'%"él = & - mé
J-€2 = €3 - P2 &
(8)
d -~ ~ -~
I En—1 = En = Pn-1€1
Den = Eéxu) - paén
To simplify the notation we write (8) as:
d .
—& = Aé + Bo(x,u) (9)
dr
with: -n 10
-pz 0 1
~Pn-1 0 0 1
—vn 0 0 0
b=[0 --- 0 1]7; B:kin-b.

As s™ + )7 p;s™ 7 is a Hurwitz polynomial, A is a
Hurwitz matrix. Thus, there exists a symmetric, posi-
tive definite matrix P, s.t.

ATP4+ PA=-I (10)
Therefore, a Lyapunov function candidate is:
v =28"Ps
with the properties:
V>0 Ve#0
V=0«=eé=0
Tmin(P)EI® £V < opan (PEI,

where o(-) denotes a singular value.

First we define a finite constant k:

7 ~/81lpll p
R=y—EE, (11)

where p = Pb denotes the last column of P.

The proof of a) is by contradiction. Assume that s(¢) —
0. Then there exists a finite time denoted #;~ s.t.:

k() >k Yt > t;..

We now look at a single time interval [¢;,%;,1), where k
is constant by (4). The derivative of V along a trajec-
tory of (9) is:

d_ _ de” de

— V=" pe+al
dTV dr ete PdT

= (Aé + Bo(x,u))T P& + &7 P (Aé + Bo(x,u)).

With (10) this is equal to:

d 1
TV =—lel” +2&8Tpo(xw) . (12)
For t > ti»,1.e. t € [tirti, Lirit1), ¢ > 0, we can bound
the derivative of V' by:

d

. 1
Vs ~llel* + 2 flefl llpl x T

o L
< —llell* + gliell A

1., .
<—sl&lR, ¥ lEl > a2,

Thus, V is a “Lyapunov function” for ||€]| > A/2 and
[|e(t)]l is decreasing exponentially on any time interval
{ti*+i;ti*+i+1)7i 2 0 [10] as long as ”é” > )\/2

t—tiw

()] < r(Pe™ b+ Tomaty |[8(to )] (13)

where x(P) is the condition number of P, i.e.

)= St

We now look at the effect of switching (i > 0):

ejltiy) = lim e;(?)

:k(ti)j—l lim éj(t)

t—3tipi
1\
&ilten) = (k(t'+1)) (i)
o k(t)
=il ] , = :
&7 dim &), &=

and hence

with = = diag(1,¢, -+ ,£771).

As £ € (0,1), for all 7 > 0, the switching does not
increase ||&(t)|]:
et )l = 12, lim e(t)]]
il
< Omae(E)- lim |le@)]].  (14)
N — g1

=1

Combining (13) and (14), we see that the increase with
growing ¢ of ||&(¢;+;)|| for any 7 > 0 can be bounded:

le(titir)ll < w(P) |[€(ti50)ll- (15)

With (7), it follows that:

ly(t) = 9(0)] = [1(t)] < [[e(t)]]. (16)
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For i > 0, applying (16) to (4) results in:

tivpita
Siegit1 — Sivgi = / (t)dt

tiv i

/ T ) - a0t

tiv g

tix pig1 . ,
| vswpar

tor g

<

Using (13) the right hand side can be bounded:

Sie4i < YE(P)?|&(tie14)|)?

tixyiga
-k
. / kit
t;

Siv i1 —

) E—tin gy
¥+ T oman(P) dt

it i
2 2Y0maz(P) 2
<K P i% i .
< wpp2emes e, )
With (15) we finally get:
i19 2V0maz(P),, .
Sisyitr —Sie4i < N(P)2l+2_’y—Ww)(_)”e(ti*)”2~ (17)

By (5), the growth condition on S, there exists a finite
index 4, such that the left side of (17) is greater than
the right side. Thus, the assumption that s(t) — oo
does not hold and, therefore, the observer gain must be
bounded:

Jim k(t) = k(tie13) < b(bir4341) < 00
Setting koo = k(t;+1741) completes the proof of a).

Proof of b). From (4) and (16) we get that:

o
oo—koz/ é(t)dtZ)q/dt
0 T

oo_kO

k
and tmer = < 00
Ay

Theorem 3. Assume that system (1) satisfies assump-
tions A1) and A2). If the coefficients {p1,... ,pn} are
such that s™ + 370, p;js" 7 is a Hurwitz polynomial

and k(t) > k Vt > { then the high-gain observer (2)

achieves:
2 |13| H ]’é >1
le®ll < 9 2y, i ; ) for large t,
kn

where p s defined as in (11).

Proof of Theorem 3. We will show that for any fixed &
the observer error ||e|| converges to a domain included
in the k-dependent ball around the origin.

From (12) it can be seen that

d

2
e “v <o Vg >22E ”p“N

kn
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Therefore, ||&|| converges to a subdomain of Q

{xlnx” < Zllpls }
As e = K&, with K = diag(1,k,... k" '), ||le|| con-
verges to a domain contained in the region (:

Q:{x "1||%}

-

Therefore, for large t,

2
Il < max{1, k=(* ) Ilpllu}

2||pllu k>1
lle(®ll < { 2ple 4 o (-
kpnl k <1 .

Summarizing Theorems 2 and 3, the adaption of the
proposed high-gain observer converges; for large times
the observer output error is smaller than some user
specified bound and the observer error is bounded.

Remark 1. The idea of the proof of Theorem 2 a) can
be used to generalize the results in [9] to the case of
nondistinct roots.

Remark 2. From (13) holding on any interval
[tiytit1), © > 1*, it does not follow that (13) holds for
all t > t;« because the switching can increase the error,
i.e. it can happen that ||e(t;)|| < {le(ti+1)il-

Corollary. If So is chosen s.t.

Sy > 2H1;Hu

then the norm of the observer error e(t) is bounded by
A for large times, i.e.

llell < A for large t.

Proof of Corollary. The result follows immediately
from Theorem 3 and is therefore omitted. ™

The proposed adaptive high-gain observer is easy to
implement (as only the state-space dimension of the
system has to be known) and retains the advantages
of the non-adaptive high-gain observer. Robustness is
improved by the adaptation law as it enables the user to
start with a small observer gain that is increased only as
needed. In a non-adaptive scheme the observer gain is
usually chosen in a conservative way, which causes the
high-gain observer to be less performant in the presence
of output measurement noise than the adaptive high-
gain observer.

4 Example

To demonstrate the adaptive high-gain observer, the
proposed method is applied to a bioreactor as given in

(1].



The bioreactor is represented by the following simple
model derived from material balances:

m Ty m

azm+s
§ = LU _—ustuay (18)
y = m.

m and s denote the concentration of the microorganism
and the substrate respectively, u is the substrate inflow
rate which is considered as input. All state variables
are strictly positive and the parameters are a; = a; =
az =1, aq = 0.1, m(0) = 0.075, s(0) = 0.03.

The system (18) can easily be transformed into the ob-
servability normal form: the new state variables z;, x5

being defined by:

=)

In [4] it has been shown that assumptions A1) and A2)
are satisfied for u € (0,aq).

z
T2

B(m, s,u, 1) = m . (19)

For the observer, the following values are used: A =
0.02,y = 100, p; = 1, ps 0.2, S =01, S; =
Sp e**, o = 0.0001, which also satisfies growth condi-
tion (5). The following substrate input flow profile is
used for the simulations:

0.087~1 te0,30)h
u(t) =<4 0.02h71 te€[30,50)h
0.084~1 ¢ > 50h

y is the plant output without, yn with noise. yo is
the observer output. so is the estimated value for s,
calculated via ®71(z,, , Zo,, u, 1), where z,, , T,, are the
states of the observer.

The first simulation is shown in Figure 2. It can be seen
that without noise the state-estimates come close to the
true value of the states. After the transient phase the
error is smaller than the target error A = 0.01. In Fig-
ure 2.a the output of the bioreactor (the concentration
of the microorganism) and its estimate as well as the
input are shown. In Figure 2.b the concentration of the
substrate and its calculated estimate are shown. Figure
2.c shows that k increases rapidly (because of the large
value ) and then stays constant at a value that is not
“high” as the name of the observer implies.

For the second simulation (Figure 3) band-limited white
noise with a rather high power spectral density of
0.25107% and a sampling time of 0.01 h is used. Here,
the observer behaves similarly to the case without noise
(Figure 2). Especially note that the observer gain in the
presence of a low noise level (Figure 3.c) is not much
higher than in the case without noise.
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Figure 2: State-estimation of the bioreactor without noise.
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(c) Observer gain k.

Figure 3: State-estimation of the bioreactor with noise.

Conclusions

In this paper we introduced an adaptive extension to
the high-gain observer originally proposed in [8]. The
adaptation of the observer gain is done via a very sim-
ple adaptation law that is universal in the sense that
it is independent of the system to be observed. Thus,
this adaptation fits in nicely into the philosophy of the
high-gain observer. We have proved that with the adap-
tive high-gain observer the observer output error be-
comes smaller than an arbitrary user-specified bound
for large times and that the adaptation converges. The
assumptions needed are the same as required for the
non-adaptive high-gain observer.
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