

Control of aphid populations by the implementation of "push-pull" strategies

Gembloux Agro-Bio Tech Functional and evolutionary entomology

Thomas Lopes

Table of contents

Research work in China

Research work in Belgium

Perspectives

Research work in China

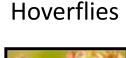
• Objective:

Reduce pesticide applications to improve the quality of vegetables in China

• Specific objective:

Control aphid populations in vegetable crops by the implementation of "push-pull" strategies

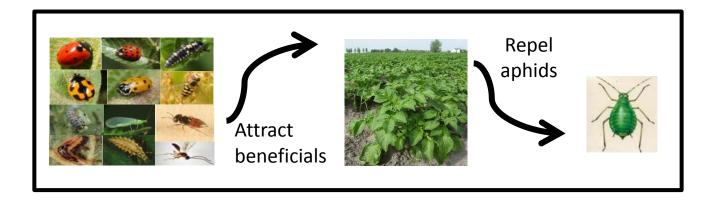
Introduction


• Conservation biological control:

"Enhancement of naturally occurring wild populations of natural enemies, by means of habitat management or manipulation of their behaviour"

• Aphidiphagous beneficial insects:

Ladybirds



Parasitoid wasps

Introduction

• "Push-pull" approach:

- Semiochemicals: Informative molecules used by insects and plants to communicate
- Intercropping: Grow a crop in association with another one, in the same field

Objectives

1. Characterize the socio-economic structure of rural households in Shandong province

2. Implement and evaluate different "push-pull" strategies in potato and courgette fields.

The work focused on aphidophagous beneficial insects

3. Elaborate informative sheets for Chinese farmers

Material and methods

1. Characterization of the socio-economic structure of rural households in Shandong

• A survey was conducted in this province

- 27 questionnaires were submitted in various villages in three different districts
- Two periods: from 15 to 17 July 2009 and 1 to 3 August 2009

- Chinese farmers have a little knowledge about pests and beneficial insects
- But also about the toxicity of pesticides
- No farmers heard about alternative methods
- There is a relationship with the level of formation

<u>Conclusion</u>: information must reach Chinese farmers

Material and methods

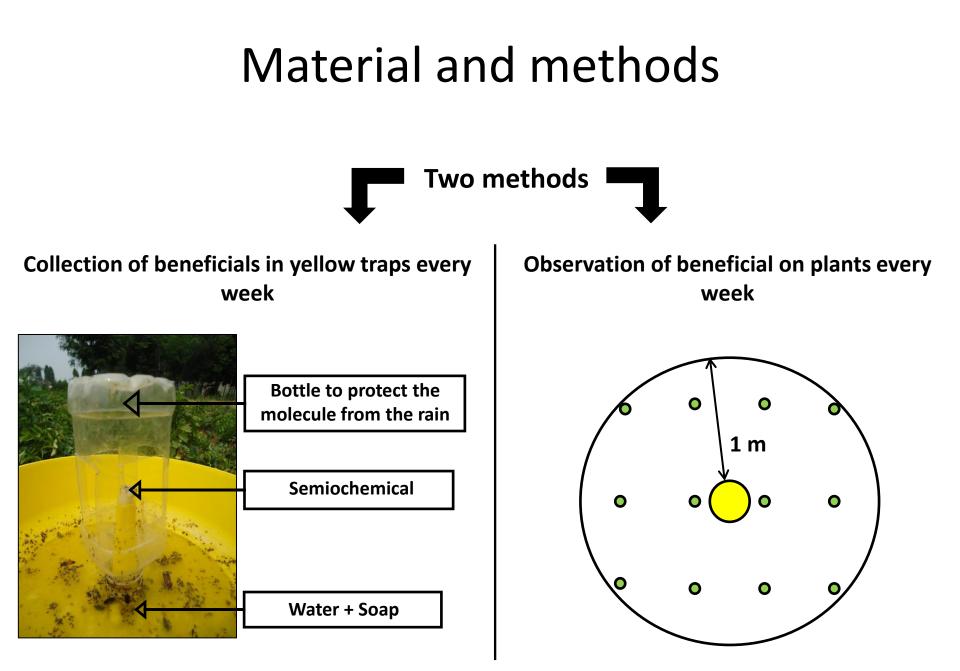
2. Implementation of "push-pull" strategies to control aphid populations by the action of their natural enemies

Semiochemicals:

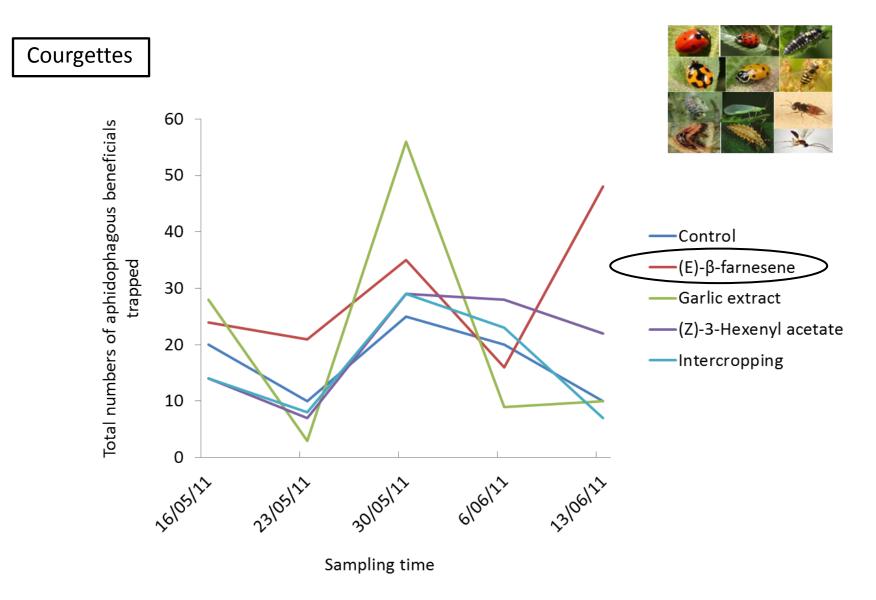
- (E)-β-farnesene (EBF)
- (Z)-3-Hexenyl acetate
- Garlic extract

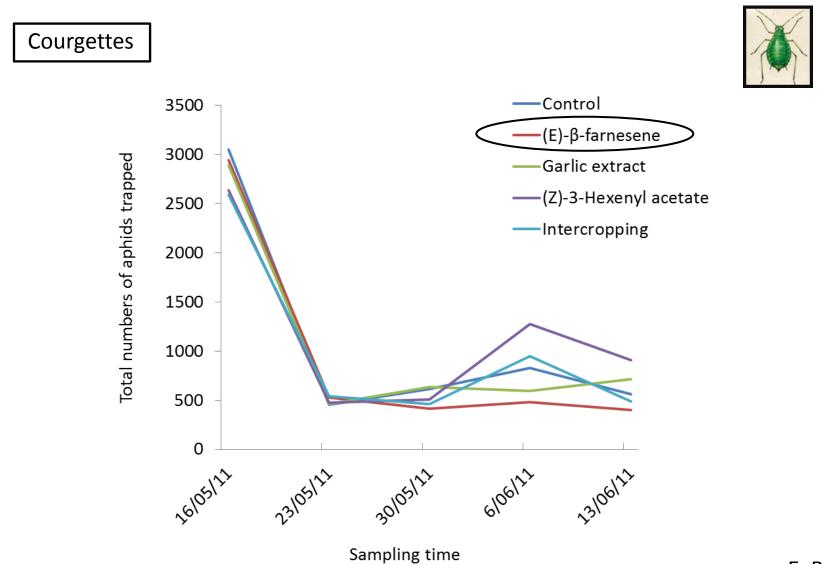
Intercropping:

- Pea/courgette
- Pea/potato


Potatoes

Courgettes

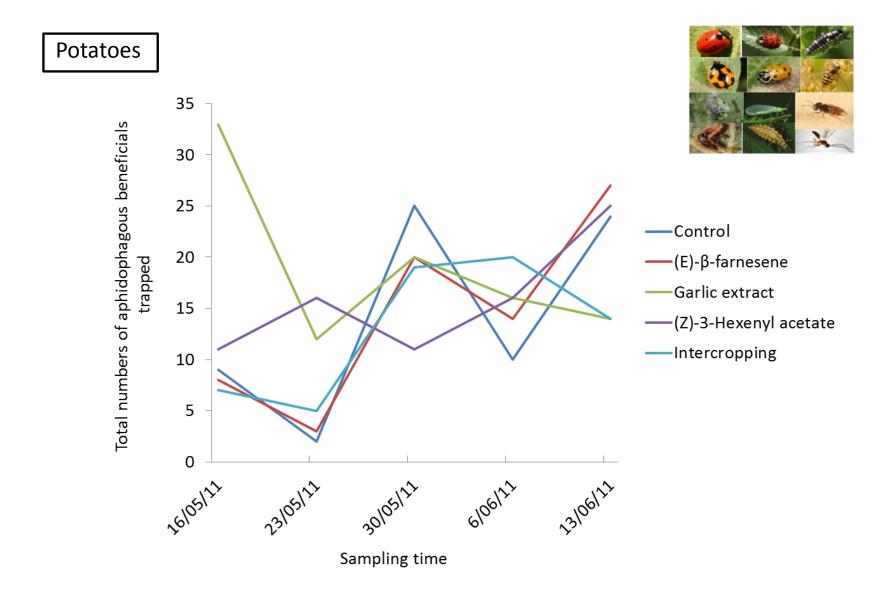

2 crops:

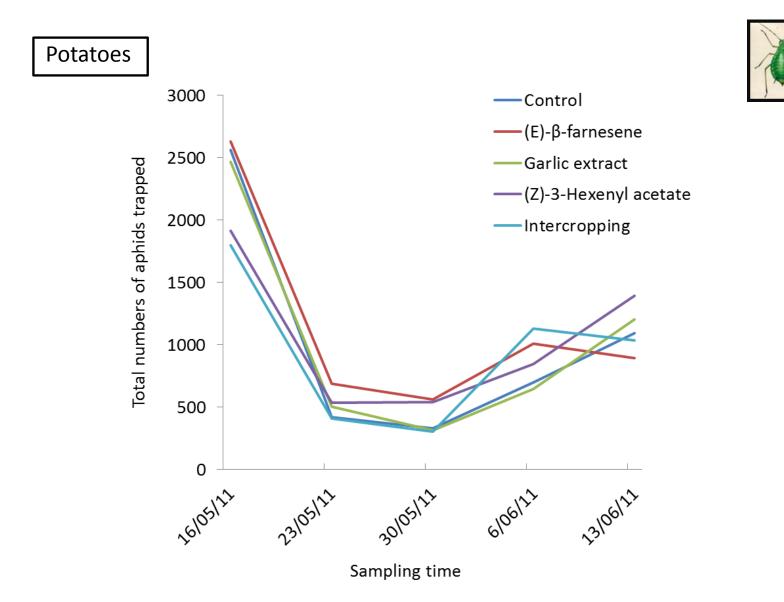


		Courgettes (Cucurbita po	epo L.)				-
Species trapped in the different treatments			T1	T2	Т3	T4	T5
Predators	Coccinellidae	C. septempunctata (adult)	16	34	19	23	19
		C. septempunctata (larva)	0	0	0	1	0
		H. convergens (adult)	2	3	4	0	3
		Platynaspis sp. (adult)	5	7	2	4	0
		P. japonica (adult)	4	2	3	0	4
		P. japonica (larva)	0	0	0	2	0
		H. axyridis (adult)	0	0	0	0	1
	Syrphidae	E. tenax (adult)	1	0	1	1	0
		<i>E. corollae</i> (adult)	0	3	3	4	5
		E. arbustorum (adult)	0	2	0	0	0
	Chrysopidae	C. carnea (adult)	1	1	0	0	2
		C. carnea (larva)	0	0	0	0	2
		C. pallens (adult)	1	0	0	0	0
		Larva of Chrysopidae	0	0	0	0	1
Parasitoids	Braconidae	Lysiphlebus sp.	6	9	12	4	7
		A. avenae	0	1	0	1	1
		D. rapae	1	0	0	0	2
		A. gifuensis	19	17	16	16	12
		L. gracilis	1	4	19	8	4
	Aphelinidae	Aphelinus sp.	24	61	27	21	37
Total			81	144	106	85	100

(T1: Intercropping ; T2: (E)-β-farnesene ; T3: Garlic extract ; T4: Control ; T5: (Z)-3-Hexenyl acetate)

E. Bosquée


Courgettes (Cucurbita pepo L.)								
Species of beneficials observed in the different treatments				T2	Т3	T4	T5	
Predators	Coccinellidae	C. septempunctata (adult)	4	1	5	4	3	
		C. septempunctata (larva)	0	3	7	4	5	
		P. japonica (adult)	4	4	3	3	2	
		P. japonica (larva)	0	0	0	0	1	
	Syrphidae	<i>E. corollae</i> (adult)	5	3	5	3	3	
		S. scripta (adult)	1	0	1	0	0	
		Larva of Syrphidae	1	1	0	2	0	
	Chrysopidae	C. carnea (larva)	0	0	2	2	1	
		Larva of Chrysopidae	0	0	1	0	1	
Parasitoids	Braconidae	A. avenae	0	0	0	0	1	
		A. gifuensis	12	9	10	11	6	
		L. gracilis	0	0	0	1	0	
Total			27	21	34	30	23	



		Potatoes (Solanum tuber	osum L.)	T		T	
Species trapped in the different treatments				T2	Т3	T4	T5
Predators	Coccinellidae	C. septempunctata (adult)	0	0	5	3	3
		C. septempunctata (larva)	0	0	0	1	0
		H. convergens (adult)	0	0	2	1	0
		Platynaspis sp. (adult)	2	2	1	4	1
		P. japonica (adult)	12	10	9	3	6
		H. axyridis (adult)	5	2	3	0	0
	Syrphidae	<i>E. tenax</i> (adult)	1	0	1	0	1
		E. corollae (adult)	0	2	0	0	0
		E. arbustorum (adult)	1	0	0	0	0
		S. macrogaster (adult)	1	1	0	0	1
	Chrysopidae	C. carnea (adult)	7	7	2	3	6
		C. carnea (larva)	0	0	1	1	0
		Larva of Chrysopidae	0	0	0	1	0
Parasitoids	Braconidae	Lysiphlebus sp.	1	2	2	2	3
		A. avenae	2	1	4	1	1
		D. rapae	2	0	0	0	1
		A. gifuensis	27	18	42	17	11
		L. gracilis	0	2	2	3	0
	Aphelinidae	Aphelinus sp.	18	25	21	30	31

(T1: (Z)-3-Hexenyl acetate ; T2: (E)-β-farnesene; T3: Garlic extract; T4: Control ; T5 : Intercropping)

381

E. Bosquée

Potatoes (Solanum tuberosum L.)								
Species of beneficials observed in the different treatments			T1	T2	Т3	T4	T5	
Predators	Coccinellidae	C. septempunctata (adult)	0	0	0	2	0	
		C. septempunctata (larva)	0	0	1	10	1	
		P. japonica (adult)	0	0	2	0	3	
		P. japonica (larva)	0	3	0	0	1	
		H. axyridis (adult)	0	0	0	0	1	
		H. axyridis (larva)	0	0	0	0	1	
	Syrphidae	E. corollae (adult)	3	3	5	3	3	
		S. scripta (adult)	1	2	0	0	1	
		Larva of Syrphidae	0	0	0	1	0	
	Chrysopidae	C. carnea (adult)	0	0	1	0	0	
		C. carnea (larva)	0	1	0	0	0	
		Larva of Chrysopidae	0	1	1	1	0	
Parasitoids	Braconidae	Lysiphlebus sp.	1	0	0	1	0	
		A. avenae	0	1	0	0	0	
		A. gifuensis	10	11	12	8	9	
		L. gracilis	0	1	0	0	0	
Total			15	23	22	26	20	

Discussion

These results are probably due to:

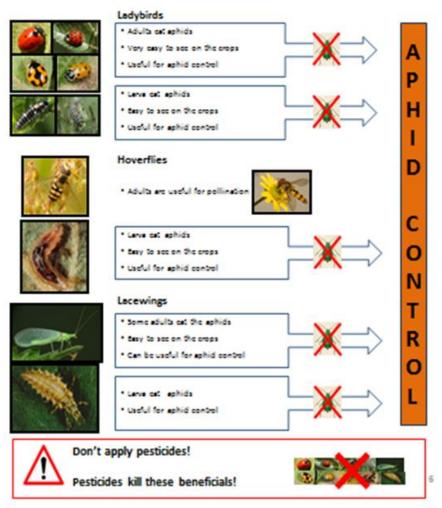
- The small size of the experimental plots
- The presence of several different crops near to the plots (lack of homogeneity)

Difficult to compare treatments

Conclusions

- (E)-β-farnesene has good potential to be used in the « push-pull » approach
- This molecule gave good results in other studies (Zhou Haibo 2012 – PhD thesis in Belgium)
- Further research is therefore necessary to confirm this potential and to reevaluate the other molecules and the intercropping.

Material and methods


3. Elaboration of informative sheets for Chinese farmers

Topics:

- Aphids and related viruses
- Aphidophagous beneficials found in potatoes and courgettes fields
- Neutral insects
- Danger of pesticides

Aphidophagous beneficials found in potatoes and courgettes fields: their role on aphid populations control

Predators

Research work in Belgium

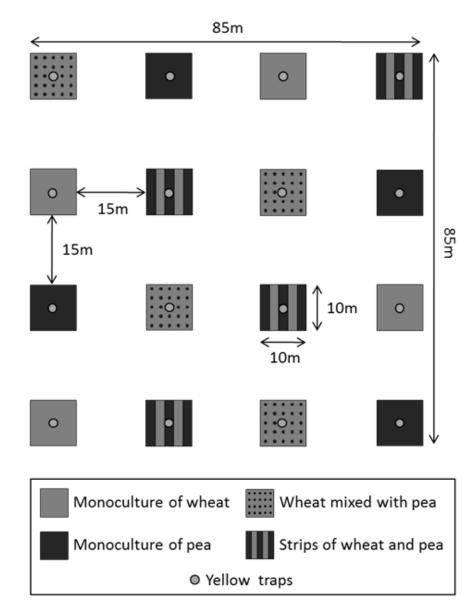
- PhD project
- Objective:

Develop sustainable crop pest control methods by combining cultural associations with the use of semiochemical releasers

• Objective for the first year:

Study the effect of cultural associations on the populations of aphids and aphidophagous beneficials

Introduction


• *resource concentration hypothesis* (Root, 1973)

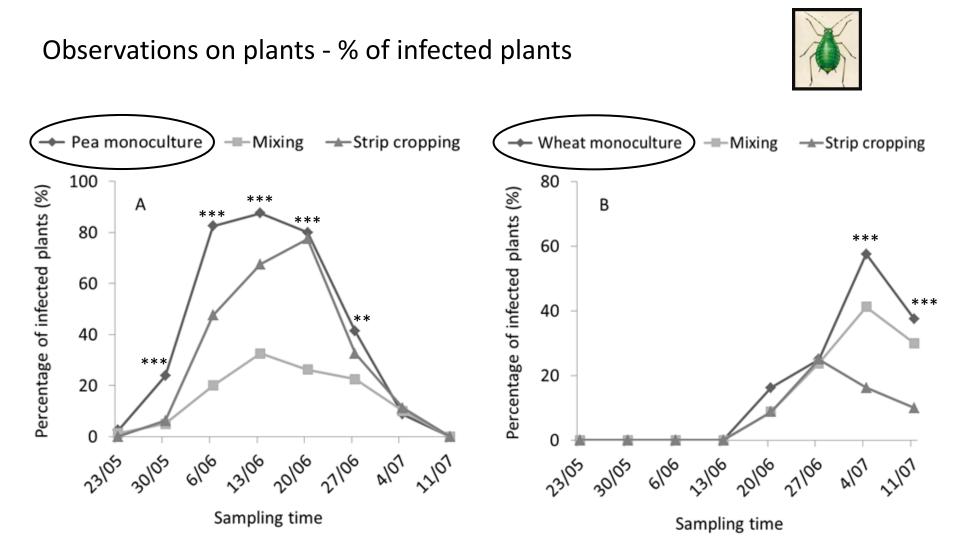
"specialist herbivores are more likely to find and remain on host plants that are concentrated in dense or pure stands (monocultures)."

• enemy hypothesis (Root, 1973)

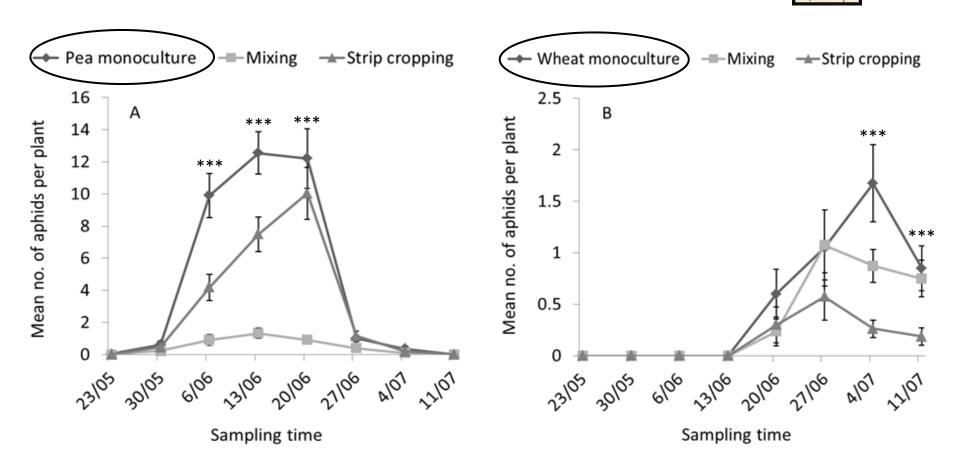
"natural enemies are expected to be more abundant in complex environments and therefore supress herbivores more efficiently in polycultures."

Material and methods

Material and methods


• Sampling of aphids and aphidophagous beneficials

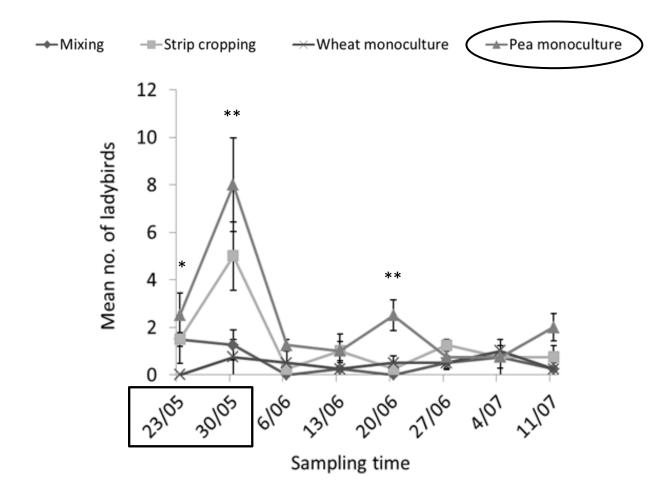
Yellow traps


(winged aphids + aphidophagous predators and parasitoids)

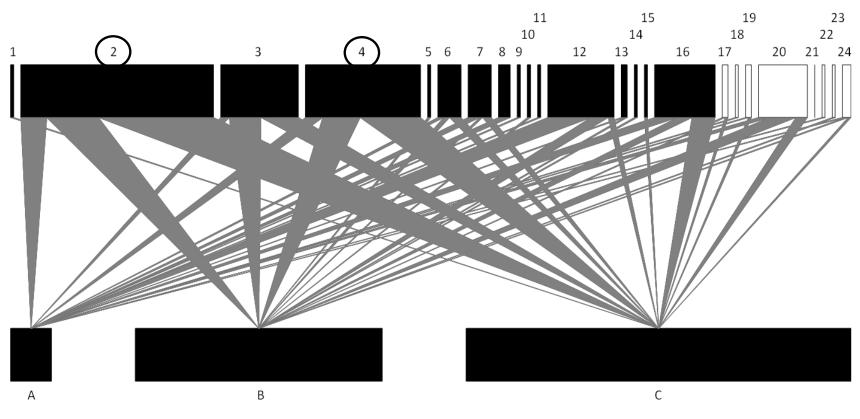
Observations on plants (aphids)

• Quantitative food web

Observations on plants - evolution of aphid colonies

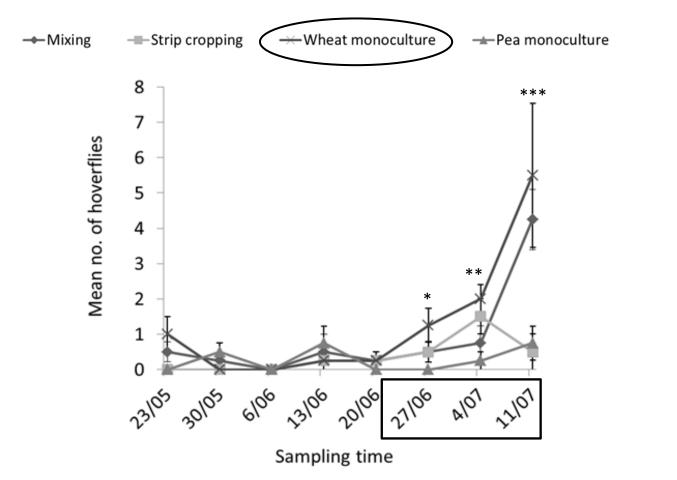

Results Yellow traps - aphidophagous beneficials

Species	Μ	SC	WM	ΡΜ	%º
Ladybirds	50.2%*)				
Adalia decempunctata (Linnaeus)	0	0	$\underbrace{}_{1}$	1	1.3
Coccinella septempunctata Linnaeus	9	18	4	40	47.0
Harmonia axyridis (Pallas)	3	11	3	13	19.9
Propylea 14-punctata (Linnaeus)	6	13	7	21	31.1
Tytthaspis 16-punctata (Linnaeus)	0	1	0	0	0.7
Hoverflies					
Episyrphus balteatus (De Geer)	2	2	6	4	15.6
Eupeodes corollae (Fabricius)	4	1	9	3	18.9
Melanostoma mellinum (Linnaeus)	4	0	3	0	7.8
Melanostoma scalare (Fabricius)	1	0	5	0	6.7
Platycheirus manicatus (Meigen)	0	1	0	0	1.1
Platycheirus peltatus (Meigen)	1	0	1	0	2.2
Sphaerophoria scripta (Linnaeus)	15	6	17	2	44.4
Syrphus ribesii (Linnaeus)	1	1	0	0	2.2
Syrphus vitripennis Meigen	0	1	0	0	1.1
Lacewings			8.6%*		
Chrysopa phyllochroma Wesmael	0	0	0	1	3.8
Chrysoperla carnea (Stephens)	8	5	4	8	96.2
Braconid wasps			11.3%*		
Aphidius ervi Haliday	0	1	0	1	5.9
Aphidius matricariae Haliday	1	0	0	0	2.9
Aphidius picipes (Nees)	1	0	0	1	5.9
Aphidius rhopalosiphi De Stefani-Perez	4	9	5	4	64.7
Aphidius salicis Haliday	0	0	1	0	2.9
Diaeretiella rapae (M'Intosh)	1	0	0	0	2.9
Ephedrus sp.	0	1	0	0	2.9
Praon volucre (Haliday)	1	1	1	1	11.8
Total number of aphidophagous species	62	72	67	100	
Proportion of total numbers of aphidophagous species (%)	20.6	23.9	22.3	33.2	

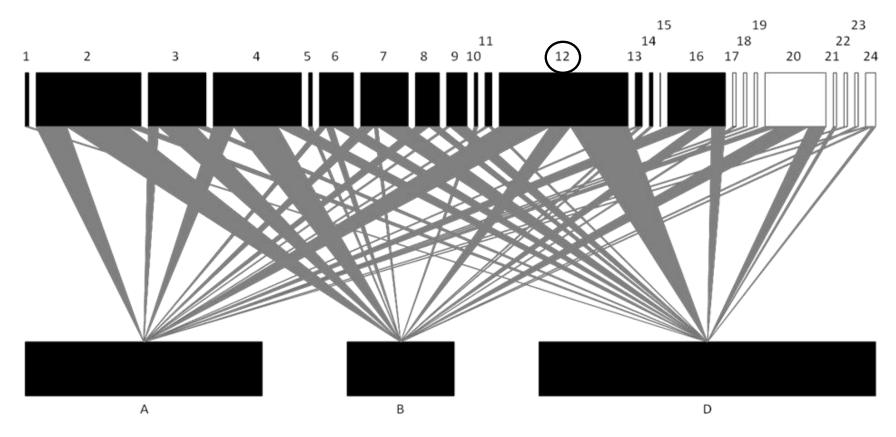


Yellow traps - Ladybirds

• Food web - Pea


Density (total numbers) of predators and parasitoids trapped in the treatments containing peas (scale: host x 22)

Density (total numbers) of Acyrthosiphon pisum observed on pea plants (total host density: 5126)


Yellow traps - Hoverflies

• Food web - Wheat

Density (total numbers) of predators and parasitoids trapped in the treatments containing wheat (scale: host x 3)

Density (total numbers) of wheat aphids (*Sitobion avenae* + *Metopolophium dirhodum*) observed on wheat plants (total host density: 675)

Discussion

- Not many conclusions can be drawn from the trapping of winged aphids.
- The results of the observations on plants support Root's (1973) *resource concentration hypothesis*.
- Results from trapping of aphidophagous beneficials do not support Root's (1973) enemy hypothesis.
- There is a direct relationship between the presence of aphids and the abundance of their natural enemies (food webs).

Conclusions

- Cultural associations can prevent both crops from aphid infestations
- The mixing is specially efficient for the pea
- This practice may be effective in keeping aphid populations below the economic threshold in years of high pest pressure
- However, natural enemies were not particularly attracted by associations
- Additional methods are needed to attract beneficials into associations

Perspectives

Experiments for 2013:

- Combination of cultural associations with the use of semiochemicals seems very promising (Wang *et al.*, 2011).
- Slow-release devices (alginate beads)
- Methyl salicylate already proved to be attractive

Thank you for your attention!