Stiction failure in microswitches due to elasto-plastic adhesive contacts

L. WU, J.-C. GOLINVAL, L. NOELS

24th October 2012
• Introduction
 – Stiction in MEMS
 – Multiscale approach developed

• Model Description
 – Basic Theory for One asperity
 – Statistical Model of Rough Surface

• Multiscale Model
 – Polysilicon to Polysilicon Interaction
 – Cantilever beam (FEM): validation with experiments

• Elasto-plastic adhesive contact

• Conclusions
Introduction

- Stiction in MEMS

Reason:
Relatively high surface area: volume ratio (1,000:1 to 10,000:1 m⁻¹)

Adhesive forces:
Electrostatic force, Van der Waals force, Capillary force, Hydrogen bridging…

Stiction failure in a MEMS sensor
(Jeremy A. Walraven Sandia National Laboratories. Albuquerque, NM USA)
• Multiscale approach developed

Single asperity adhesive-micro contact

Adhesive elastic contact model between rough surfaces

Integration with FEM
Single asperity adhesive-micro contact

- **Adhesive-elastic contact (Hertz) theories**
 - **Johnson, Kendall, and Roberts (JKR)**
 - Short ranged surface forces
 - Act only inside the contact area
 - \(\Rightarrow \) Soft, compliant materials with high surface energy
 - **Derjaguin, Muller and Toporov (DMT)**
 - Long-ranged adhesive forces
 - Outside of the contact area
 - \(\Rightarrow \) Harder, less compliant materials with low surface energy and small asperity tip radius
 - **Maugis transition solution**
 - Intermediate cases between JKR and DMT
 - For all elastic materials
Single asperity adhesive-micro contact

- **Maugis transition solution**
 - Based on a Dugdale assumption for interaction potential
 - Constant traction σ_0 within a critical value of separation z_0
 - Zero traction for gap larger than z_0
 - **Maugis transition parameter λ**
 - Representation of the surface properties
 - R: asperity radius
 - K: equivalent elastic constant
 - $\varpi = \sigma_0 z_0$: adhesive work

\[
\lambda = \frac{2\varpi^{2/3} R^{1/3}}{z_0 (\pi K^2)^{1/3}} \quad \Longrightarrow \quad \varpi \uparrow, R \uparrow, K \downarrow \Rightarrow \lambda \uparrow
\]

\[
\varpi \downarrow, R \downarrow, K \uparrow \Rightarrow \lambda \downarrow
\]
Single asperity adhesive-micro contact

- Maugis transition solution (2)
 - Adhesive-micro (elastic) contact force during unloading

 - In term of Maugis transition parameter \(\lambda = \frac{2\sigma^{2/3} R^{1/3}}{z_0 (\pi K^2)^{1/3}} \)
Adhesive contact between rough surfaces

- **Rough surfaces**
 - Reduced number of interacting asperities
 - In terms of distance d

- **Rough surfaces model**
 - Constant asperity tip radius
 - Statistical distribution in height h

$$
\varphi(h) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{h^2}{2\sigma^2}\right)
$$
Adhesive contact between rough surfaces

- Micro adhesive contact forces of rough surfaces
 - Integrate Maugis solution using
 \[
 \varphi(h) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{h^2}{2\sigma^2}\right)
 \]

\[
\frac{F_{nT}}{N \pi \sigma R}
\]

\[
\begin{align*}
\text{(-)} & \quad \text{Responsible for stiction}
\end{align*}
\]

\[
\begin{align*}
F_{nT} & \quad \text{(-)} \\
F_{nT} & \quad \text{(-)} \\
d & \quad (+)
\end{align*}
\]
Multiscale Model

- **Design example: cantilevers**
 - **Finite element model**
 - Timoshenko Beams
 - Interacting with pad
 - **Use adhesive micro-contact law at interface**
 - Polysilicon-Polysilicon interactions
 - Surfaces properties from
 - AFM
 - Surface energy measured

 | In vacuum | $\varpi = 2.54 \text{ J/m}^2$ |
 | In air | $\varpi = 0.167 \text{ J/m}^2$ |
 - Contact remains elastic
 - Validation vs literature experiments*

Multiscale Model

• Design example: cantilevers (2)
 – Initial gap $g = 2.0 \mu m$
 – Admissible thickness $t (\mu m)$ & length $l (\mu m)$???
Validation

- **Literature**:
 - Measures of apparent adhesion energy Γ
 - Simplified models of Γ

- **Numerical methods**
 - Extract Γ from s
 - Environmental effect

 In vacuum $\omega = 2.54 \text{ J/m}^2$
 In air $\omega = 0.167 \text{ J/m}^2$

- **Different samples**
 - Surface roughness

<table>
<thead>
<tr>
<th>Sample</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_q (nm)</td>
<td>1.4</td>
<td>2.67</td>
<td>3.47</td>
</tr>
</tbody>
</table>

Elasto-plastic adhesive contact

- Elasto-Plastic materials
 - Plastic deformations of asperities
- Repeated contact
 Tip radii R of a part of asperities \uparrow
 Surface roughness $R_q \downarrow$
 Adhesive forces \uparrow
 Stiction can appear after some cycles

- Elasto-plastic adhesive contact model is needed!
Basic idea

- Adhesive contact model of the elastic-plastically deformed asperity

 Numerical results for an elasto–plastic loaded sphere in contact without adhesive forces

 Maugis’ adhesive contact theory is performed on the equivalent elastic deformed asperity

- Asperity-based rough surface model
• Plastic deformations of a loaded single asperity
 – Curve fitting of FE simulations*
 • Effect of maximum interference δ_{max} reached during loading
 • Material parameters: yield S_Y, yield interference δ_{CP}
 – Residual interference
 \[
 \delta_{\text{res}} = \delta_{\text{max}} \left(1 - \left(\frac{\delta_{\text{CP}}}{\delta_{\text{max}}}\right)^{0.28}\right)\left(1 - \left(\frac{\delta_{\text{CP}}}{\delta_{\text{max}}}\right)^{0.69}\right)
 \]
 – Residual tip radius
 \[
 R_{\text{res}} = R \left(1 + 1.275 \left(\frac{S_Y}{E}\right)^{0.216} \left(\frac{\delta_{\text{max}}}{\delta_{CP}} - 1\right)\right)
 \]

Elasto-plastic adhesive contact

- Adhesive unloading of a single deformed asperity
 - Define an equivalent elastic asperity
 - Interference
 \[\delta_{\text{eff}} = \delta - \delta_{\text{res}} \]
 - Asperity tip radius
 \[R_{\text{eff}} = R_{\text{eff}}(R, \delta, \delta_{\max}) \]
 - Apply Maugis
 - Extract adhesive-micro contact force
 \[F_n = F_n(\delta - \delta_{\text{res}}, R_{\text{eff}}) \]

Elasto-plastic adhesive contact

- Adhesive loading/unloading of a single asperity
 - Material: Ru
 - Table:
 | R (nm) | E (GPa) | ν | S_y (GPa) | z_0 (nm) | σ (J/m²) |
 | 4 | 410 | 0.3 | 3.42 | 0.169 | 1 |
 - Model vs FE*

Elasto-plastic adhesive contact

- **Adhesive unloading of rough surfaces**
 - Different Ru samples
 - Effect of impact energy at pull-in on plastic deformations

<table>
<thead>
<tr>
<th>Sample</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_q (nm)</td>
<td>2.03</td>
<td>3.99</td>
<td>7.81</td>
</tr>
</tbody>
</table>

![Graphs showing adhesive contact](image)
Elasto-plastic adhesive contact

- **Time life of MEMS**
 - Repeated loading/unloading ⇒ changes in surfaces profile
 - Asperity profile can be updated by tracking history $\delta_{\text{max}}(h)$
 - Ru sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rq (nm)</th>
<th>E_1 (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7.81</td>
<td>0.5</td>
</tr>
</tbody>
</table>

![Graph showing dimensionless force as a function of dimensionless distance for different loading cycles](image)
Conclusions

- The adhesion between the contact surfaces has large influence on the design of MEMS switches, and need to be considered carefully.
- The adhesive work and the surface roughness are the main factors of adhesive force.
- The analytical adhesive contact results can be combined with FEM to predict the stiction of more complicated structures.
- Effect of plasticity can be accounted for.
- The other kinds of adhesive forces, such as capillary force, electrostatic force from dielectric charging, are not considered.
Thank you!