

Stiction failure in microswitches due to elastoplastic adhesive contacts

L. WU, J.-C. GOLINVAL , L. NOELS

24th October 2012

- Introduction
 - Stiction in MEMS
 - Multiscale approach developed
- Model Description
 - Basic Theory for One asperity
 - Statistical Model of Rough Surface
- Multiscale Model
 - Polysilicon to Polysilicon Interaction
 - Cantilever beam (FEM): validation with experiments
- Elasto-plastic adhesive contact
- Conclusions

Introduction

area:

• Stiction in MEMS

Stiction failure in a MEMS sensor

(Jeremy A.Walraven Sandia National Laboratories. Albuquerque, NM USA)

Reason:

Relatively high surface volume ratio (1,000:1 to 10,000:1 m⁻¹)

Adhesive forces:

Electrostatic force, Van der Waals force, Capillary force, Hydrogen bridging...

Introduction

• Multiscale approach developed

Single asperity adhesive-micro contact

- Adhesive-elastic contact (Hertz) theories
 - Johnson, Kendall, and Roberts (JKR)
 - Short ranged surface forces
 - Act only inside the contact area
 - Soft, compliant materials with high surface energy

Derjaguin, Muller and Toporov (DMT)

- Long-ranged adhesive forces
- Outside of the contact area
 - Harder, less compliant materials with
 - low surface energy and small asperity tip radius

Maugis transition solution

- Intermediate cases between JKR and DMT
 - For all elastic materials INTERNATIONAL EXPLORATORY WORKSHOP, Cluj-Napoca, Romania

Single asperity adhesive-micro contact

- Maugis transition solution
 - Based on a Dugdale assumption for interaction potential
 - Constant traction σ₀ within a critical value of separation z₀
 - Zero traction for gap larger than z₀

- Maugis transition parameter λ

- Representation of the surface properties
 - R: asperity radius
 - K: equivalent elastic constant

JKR model

Single asperity adhesive-micro contact

- Maugis transition solution (2)
 - Adhesive-micro (elastic) contact force during unloading

• In term of Maugis transition parameter $\lambda =$

Adhesive contact between rough surfaces

- Rough surfaces
 - Reduced number of interacting asperities
 - In terms of distance d

- Rough surfaces model
 - Constant asperity tip radius
 - Statistical distribution in height *h*

$$\varphi(h) = \frac{1}{\sigma\sqrt{2\pi}} \exp(\frac{-h^2}{2\sigma^2})$$
High roughness σ
Roughness $\sigma = 0$

Adhesive contact between rough surfaces

- **Micro adhesive contact forces of rough surfaces**
 - **Integrate Maugis solution using**

Multiscale Model

- Design example: cantilevers
 - Finite element model
 - Timoshenko Beams
 - Interacting with pad
 - Use adhesive micro-contact law at interface
 - Polysilicon-Polysilicon interactions
 - Surfaces properties from
 - AFM
 - Surface energy measured

In vacuum	ன =2.54 J/m²		
In air	ன =0.167 J/m²		

Contact remains elastic

Validation vs literature experiments*

* W. M. van Spengen,, R. Puers and I. De Wolf, "On the physics of stiction and its impact on the reliability of microstructures," *J. Adhesion Sci. Technol.*, vol. 17, no. 4, pp. 563–582, 2003 (Analytical)

* M.P. de Boer, "Capillary adhesion between elastically hard rough surfaces," *Experim. Mech.*, vol. 47, pp. 171–183, 2007 (Experiment)

INTERNATIONAL EXPLORATORY WORKSHOP, Cluj-Napoca, Romania

anchor

Multiscale Model

- Design example: cantilevers (2)
 - Initial gap $g = 2.0 \ \mu m$
 - Admissible thickness t (μm) & length l (μm) ???

Validation

- Literature*:
 - Measures of apparent adhesion energy Γ
 - Simplified models of Γ
- Numerical methods
 - Extract Γ from s
 - Environmental effect

 $\begin{array}{ll} \mbox{In vacuum} & \varpi = 2.54 \mbox{ J/m}^2 \\ \mbox{In air} & \varpi = 0.167 \mbox{ J/m}^2 \end{array}$

- Different samples
 - Surface roughness

Sample	А	В	С
R _q (nm)	1.4	2.67	3.47

* W. M. van Spengen,, R. Puers and I. De Wolf, "On the physics of stiction and its impact on the reliability of microstructures," *J. Adhesion Sci. Technol.*, vol. 17, no. 4, pp. 563–582, 2003 (Analytical)

* M.P. de Boer, "Capillary adhesion between elastically hard rough surfaces," Experim. Mech., vol. 47, pp. 171–183, 2007 (Experiment)

- Elasto-Plastic materials
 - Plastic deformations of asperities
- Repeated contact

Tip radii *R* of a part of asperities \uparrow Surface roughness $R_a \downarrow$

Stiction can appear after some cycles

• Elasto-plastic adhesive contact model is needed !

Elasto-plastic adhesive contact

• Basic idea

Adhesive contact model of the

Pelastic-plastically deformed of asperity

Numerical results for an elasto–plastic loaded sphere in contact without adhesive forces

Maugis' adhesive contact theory is performed on the equivalent elastic deformed asperity

Asperity-based rough surface model

Plastic deformations of a loaded single asperity

- Curve fitting of FE simulations*
 - Effect of maximum inteference

 δ_{max} reached during loading

- Material parameters: yield S_Y , yield interference δ_{CP}
- Residual interference

$$\delta_{res} = \delta_{\max} \left(1 - \left(\frac{\delta_{CP}}{\delta_{\max}}\right)^{0.28}\right) \left(1 - \left(\frac{\delta_{CP}}{\delta_{\max}}\right)^{0.69}\right)$$

Residual tip radius

$$R_{\rm res} = R(1+1.275(\frac{S_y}{E})^{0.216}(\frac{\delta_{\rm max}}{\delta_{\rm CP}}-1))$$

* Etsion I., Kligerman Y., Kadin Y., Unloading of an elastic–plastic loaded spherical contact, International Journal of Solids and Structures 42 (2005) 3716–3729

- Adhesive unloading of a single deformed asperity
 - Define an equivalent elastic asperity
 - Interference

$$\delta_{\rm eff} = \delta - \delta_{\rm res}$$

• Asperity tip radius
$$R_{\rm eff} = R_{\rm eff}(R, \delta, \delta_{\rm max})$$

- Apply Maugis
 - Extract adhesive-micro contact force

$$F_{\rm n} = F_{\rm n}(\delta - \delta_{\rm res}, R_{\rm eff})$$

* Etsion I., Kligerman Y., Kadin Y., Unloading of an elastic–plastic loaded spherical contact, International Journal of Solids and Structures 42 (2005) 3716–3729

- Adhesive loading/unloading of a single asperity
 - Material: Ru

- Model vs FE*

* 28Y. Du, L. Chen, N. McGruer, G. Adams, and I. Etsion, Finite element model of loading and unloading of an asperity contact with adhesion and plasticity," Journal of Colloid and Interface Science 312, 522 - 528 (August 2007)

- Adhesive unloading of rough surfaces
 - Different Ru samples

Effect of impact energy at pull-in on plastic deformations

- Time life of MEMS
 - Repeated loading/unloading loading loading changes in surfaces profile
 - Asperity profile can be updated by tracking history $\delta_{max}(h)$

- The adhesion between the contact surfaces has large influence on the design of MEMS switches, and need to be considered carefully
- The adhesive work and the surface roughness are the main factors of adhesive force
- The analytical adhesive contact results can be combined with FEM to predict the stiction of more complicated structures
- Effect of plasticity can be accounted for
- The other kinds of adhesive forces, such as capillary force, electrostatic force from dielectric charging, are not considered

Thank you!