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Discontinuous Galerkin Methods

• Main idea
– Finite-element discretization
– Same discontinuous polynomial approximations for the

• Test functions ϕh and 
• Trial functions δϕ

– Definition of operators on the interface trace:
• Jump operator:
• Mean operator:

– Continuity is weakly enforced, such that the method
• Is consistent
• Is stable
• Has the optimal convergence rate

(a-1)+ (a)+

x

(a+1)-

Fi
el

d

(a+1)+(a)-(a-1)-



Department of Aerospace and Mechanical Engineering

Discontinuous Galerkin Methods

• Discontinuous Galerkin methods vs Continuous
– More expensive (more degrees of freedom)
– More difficult to implement
– …

• So why discontinuous Galerkin methods?
– Weak enforcement of C1 continuity for high-order equations

• Shells with complex material behaviors
– Exploitation of the discontinuous mesh to simulate dynamic 

fracture [Seagraves, Jérusalem, Noels, Radovitzky]:
• Correct wave propagation before fracture
• Easy to parallelize & scalable
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Discontinuous Galerkin Methods

• Continuous field / discontinuous derivative
– No new nodes
– Weak enforcement of

C1 continuity
– Displacement formulations 

of high-order differential 
equations

– Usual shape functions in 3D (no new requirement)
– Applications to

• Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells 

& Dung, CMAME 2007]

• Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 
2009]

• Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; 
Bala-Chandran et al. 2008]
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Topics

• Key principles of DG methods
– Illustration on volume FE

• Discontinuous Mesh & Dynamic Fracture
– DG/Extrinsic cohesive law combination

• Kirchhoff-Love shells 
– C0/DG formulation of non-linear shells

• Dynamic Fracture of thin structures
– Full DG formulation of beams
– DG/Extrinsic cohesive law combination

• Conclusions & Perspectives
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Key principles of DG methods

• Application to non-linear mechanics 
– Formulation in terms of the first Piola stress tensor P

&

– New weak formulation obtained by integration by parts on
each element Ω 

e
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Key principles of DG methods

• Interface term rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:
– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

– Those terms can also be explicitly derived from a variational 
formulation (Hu-Washizu-de Veubeke functional)

Noels & Radovitzky, IJNME 2006 & JAM 2006
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Key principles of DG methods

• Numerical applications
– Properties for a polynomial approximation of order k

• Consistent, stable for β >Ck, convergence in the e-norm in k
• Explicit time integration with conditional stability
• High scalability

– Examples
Taylor’s impact Wave propagation

Time evolution of the free face velocity




Department of Aerospace and Mechanical Engineering

Discontinuous Mesh & Dynamic Fracture

• Dynamic fracture
– Fracture: a gradual process of separation which occurs in 

small regions of material adjacent to the tip of a forming 
crack: the cohesive zone [Dugdale 1960, Barrenblatt 1962, …]

– Separation is resisted to by a cohesive traction
– 2-parameter cohesive law

• Peak cohesive traction σmax (spall strength)
• Fracture energy Gc

• Automatically accounts for time scale [Camacho & Ortiz, 1996]

• Intrinsic law vs Extrinsic law

Failure criterion external 
to the cohesive law

Failure criterion 
incorporated within 
the cohesive law
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Discontinuous Mesh & Dynamic Fracture

• Finite element discretization & interface elements
– The cohesive law is integrated on an interface element 

inserted between two adjacent tetrahedra [Ortiz & Pandolfi 1999]

– Potential structure of the cohesive law:
[Ortiz & Pandolfi 1999]

• Effective opening in terms of βc the
ratio between the shear and normal 
critical tractions:

• Definition of a potential:

• Interface traction:
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Discontinuous Mesh & Dynamic Fracture

• Two methods
– Intrinsic Law

• Cohesive elements inserted from the beginning
• Drawbacks:

– Efficient if a priori knowledge of the crack path 
– Mesh dependency [Xu & Needelman, 1994]
– Initial slope modifies the effective elastic modulus
– This slope should tend to infinity [Klein et al. 2001]:

» Alteration of a wave propagation
» Critical time step is reduced

– Extrinsic Law
• Cohesive elements inserted on the fly when 

failure criterion is verified [Ortiz & Pandolfi 1999]

• Drawback
– Complex implementation in 3D (parallelization)

• New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
– Interface elements inserted from the beginning
– Interface law corresponds initially to the DG interface forces
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Discontinuous Mesh & Dynamic Fracture

• New DG/extrinsic method:
[Seagraves, Jerusalem, Radovitzky, Noels]

– Numerical application: the spall test
• Two opposite waves interact at the center of the specimen 
• The interaction leads to stresses higher than the spall stress
• The specimen breaks exactly at its middle
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Discontinuous Galerkin Methods

• Continuous field / discontinuous derivative
– No new nodes
– Weak enforcement of

C1 continuity
– Displacement formulations 

of high-order differential 
equations

– Usual shape functions in 3D (no new requirement)
– Applications to

• Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells 

& Dung, CMAME 2007]

• Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 
2009]

• Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; 
Bala-Chandran et al. 2008]
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Kirchhoff-Love Shells

• Description of the thin body

• Deformation mapping

• Shearing is neglected

& the gradient of thickness stretch   neglected
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with

&

&

Mapping of the 
mid-surface

Mapping of the normal 
to the mid-surfaceThickness stretch

Higher order equation
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Kirchhoff-Love Shells

• Resultant equilibrium equations:
– Linear momentum

– Angular momentum

– In terms of resultant stresses:       

of resultant applied tension        and torque

and of the mid-surface Jacobian
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Kirchhoff-Love Shells

• Non-linear material behavior
– Through the thickness integration by Simpson’s rule
– At each Simpson point

• Internal energy W(C=FTF) with 

• Iteration on the thickness ratio in order to reach 
the plane stress assumption σ33=0

– Simpson’s rule leads to the 

resultant stresses:
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Kirchhoff-Love Shells

• Non-linear discontinuous Galerkin formulation
– New weak form obtained from the momentum equations
– Integration by parts on each element A e

– Across 2 elements δ t is discontinuous
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Kirchhoff-Love Shells

• Interface terms rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:

– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

Linearization leads to the 
material tangent modulii Hm
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Kirchhoff-Love Shells

• New weak formulation

• Implementation
– Shell elements

• Membrane and bending responses 
• 2x2 (4x4) Gauss points for bi-quadratic 

(bi-cubic) quadrangles
– Interface elements

• 3 contributions
• 2 (4) Gauss points for quadratic (cubic) meshes
• Contributions of neighboring shells evaluated at these points

Se-

Se+

ν-
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Kirchhoff-Love Shells

• Pinched open hemisphere 
– Properties:

• 18-degree hole
• Thickness 0.04 m; Radius 10 m
• Young 68.25 MPa; Poisson 0.3

– Comparison of the DG methods 
• Quadratic, cubic & distorted el.

with literature 
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Kirchhoff-Love Shells

• Pinched open hemisphere 
Influence of the stabilization Influence of the mesh size

parameter

– Stability if β > 10
– Order of convergence in the L2-norm in k+1
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Kirchhoff-Love Shells

• Plate ring 
– Properties:

• Radii 6 -10 m
• Thickness 0.03 m
• Young 12 GPa; Poisson 0

– Comparison of DG methods 
• Quadratic elements

with literature 
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Kirchhoff-Love Shells

• Clamped cylinder        
– Properties:

• Radius 1.016 m; Length 
3.048 m; Thickness 0.03 m

• Young 20.685 MPa; Poisson 
0.3

– Comparison of DG methods 
• Quadratic & cubic elements

with literature 
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Dynamic Fracture of thin structures

• Extension of DG/ECL combination to shells
– We have to substitute the C0/DG formulation by a full DG 

Field
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Dynamic Fracture of thin structures

• Kinematics of linear beams        
– Beam’s equation are deduced from Kirchhoff-Love shell kinematics

• So the DG formulations can be related to each other
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Dynamic Fracture of thin structures

• Linear momentum equation for linear Euler-Bernoulli beams
– Resultant stresses

• &

• Only the component along x-axis is non-zero

– Resultant equation (no volume forces)
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Dynamic Fracture of thin structures

• Angular momentum equation for linear Euler-Bernoulli beams
– Resultant bending stresses

• &

• Only the component along x-axis is non-zero

• In order to develop a full dg formulation we keep the shearing term l1

– Resultant equation (no volume forces)
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Dynamic Fracture of thin structures

• Full DG formulation of linear Euler-Bernoulli beams
– From the 2 equations

• &

– The weak formulation reads 
•

• As shape functions and their derivatives are discontinuous, the
integration by parts becomes

• 3 interface terms that will be treated as before, each one will give 
– A consistency term
– A symmetric term
– A stabilization term
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Except the shearing term, as n31 = 0
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Dynamic Fracture of thin structures

• Full DG formulation of linear Euler-Bernoulli beams (2)
– The weak formulation reads (2)

• From

• As before, DG terms are integrated using interface elements
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Dynamic Fracture of thin structures

• Full DG/ECL combination for Euler-Bernoulli beams
– When rupture criterion is satisfied at an interface element

• Shift from 
– DG terms (αs = 0) to

– Cohesive terms (αs = 1)

– What remain to be defined are the cohesive terms
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Dynamic Fracture of thin structures

• New cohesive law for Euler-Bernoulli beams
– Should take into account a through the 

thickness fracture
• Problem : no element on the thickness

• Very difficult to separate fractured and 

not fractured parts 

– Solution:
• Application of cohesive law on 

– Resultant stress                                      

– Resultant bending stress 

• In terms of a resultant opening ∆*

N, M

N

M



Department of Aerospace and Mechanical Engineering

Dynamic Fracture of thin structures

• Resultant opening        and cohesive laws           &
– Defined such that

• At fracture initiation
– N0 = N(0) and N0 = M(0)  

satisfy σ(±h/2) = ± σmax

• After fracture
– Energy dissipated = h GC

– Solution

•

– ∆x: Opening is tension

– ∆r: Opening in rotation

– Coupling parameter     

=

• Null resistance for ∆* = ∆c = 2GC /σmax

∆x

∆r

∆c=

N, M

N

M

N0

M0

∆*

2Gc     
σmax
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Dynamic Fracture of thin structures

• Numerical example
– DCB with pre-strain

• When flexion increases

– When the  maximum stress is reached
» Beam should shift from a DCB configuration to 2 SCB configurations

• During the rupture process
– Either the variation of internal energy is larger than hGC and rupture should 

be instable
– Or the variation of internal energy is smaller than hGC and rupture should 

be stable
» Complete rupture is achieved only if flexion is still increased
» Whatever the pre-strain, after rupture, the energy variation should 

correspond to hGC
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Dynamic Fracture of thin structures

• Instable fracture
– Geometry such that variation 

of internal energy > hGC
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Dynamic Fracture of thin structures

• Stable fracture
– Geometry such that variation 

of internal energy < hGC
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Dynamic Fracture of thin structures

• Stable fracture
– Effect of pre-strain

• Dissipated energy always = hGC
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Conclusions & Perspectives

• Development of discontinuous Galerkin formulations
– Formulation of non-linear dynamics

• As interface elements exist: cohesive law can be inserted
– Formulation of high-order differential equations

• C0/DG formulation of non-linear shells
– No new degree of freedom
– No rotation degree or freedom

• Full DG formulation of beams
– New degree of freedom
– No rotation degree or freedom
– As interface elements exist: cohesive law can be inserted




