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Discontinuous Galerkin Methods

e Main idea
— Finite-element discretization
— Same discontinuous polynomial approximations for the

e Test functions ¢, and \
 Trial functions o¢ J / /

Field

(@-1)(a-1)*@) (@)* (a+l)(a+1)*
— Definition of operators on the interface trace:
« Jump operator: [e]=e"—e"

o+—0—o*
 Mean operator: () = s

— Continuity is weakly enforced, such that the method

* |s consistent

 |s stable

» Has the optimal convergence rate @
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Discontinuous Galerkin Methods

e Discontinuous Galerkin methods vs Continuous
— More expensive (more degrees of freedom)
— More difficult to implement

e So0 why discontinuous Galerkin methods?

— Weak enforcement of C* continuity for high-order equations
« Shells with complex material behaviors

— Exploitation of the discontinuous mesh to simulate dynamic
fracture [Seagraves, Jérusalem, Noels, Radovitzky].
o Correct wave propagation before fracture
e Easy to parallelize & scalable
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Discontinuous Galerkin Methods

e Continuous field / discontinuous derivative

— No new nodes S —_

— Weak enforcement of - /
C! continuity T

— Displacement formulations X
of high-order differential (1) (@ (@]

equations
— Usual shape functions in 3D (no new requirement)

— Applications to

e Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells
& Dung, CMAME 2007]

* Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IINME
2009]

 Damage & Strain Gradient [wells et al., CMAME 2004; Molari, CMAME 2006;
Bala-Chandran et al. 2008]
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Key principles of DG methods

« Application to non-linear mechanics
— Formulation in terms of the first Piola stress tensor P

P.-N =T on oxQ
vo-Pl=0ma & N

@n = @p on opB
— New weak formulation obtained by integration by parts on
each element Q¢

Z]VO-PT(qoh)-ésodBo
I

—P(Lph):VocSLde+Z/5@-P(<ph)-NdaB:0
¢ a0g
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Key principles of DG methods

Interface term rewritten as the sum of 3 terms
— Introduction of the numerical flux h

f[[écp-P(goh)]]-N_ dOB — / [0¢] - h (P, P~ N™) dOB
6;30 aIBD
h(Pt, P~ N~)=—h(P~,P", NT)

e Has to be consistent:
h (Pexacta Pexa‘ctp Nﬁ) — Pexa.ct -IN—

* One possible choice: h(PY,P~,N")=(P)-N~
— Weak enforcement of the compatibility

opP
/ [en] - <ﬁ :V06<p> N~ doB
81 Bo

— Stabilization controlled by parameter g, for all mesh sizes hs

[ tonon (22 paron- won

8, By Noels & Radovitzky, IINME 2006 & JAM 2006

— Those terms can also be explicitly derived from a variational
formulation (Hu-Washizu-de Veubeke functional)
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Key principles of DG methods

 Numerical applications

— Properties for a polynomial approximation of order k

e Consistent, stable for #>C¥k, convergence in the e-norm in k
o Explicit time integration with conditional stability At = e [po

| . iV E
* High scalability
— Examples
Taylor's impact Wave propagation
* = Theoretical
Plastic strain 1.5 ° CG
K —f=1 !
g i 1l =—B=100 !
& * B=10000

X4
QOOQOOC 0O
. X th G

00000000 3 ks

AN

lovity [m/s]

Vv

0.5 | 1.5 2
Time [ms]

Time evolution of the free face velocity
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Discontinuous Mesh & Dynamic Fracture

 Dynamic fracture

— Fracture: a gradual process of separation which occurs in
small regions of material adjacent to the tip of a forming
crack: the cohesive zone [pugdale 1960, Barrenblatt 1962, ...]

— Separation is resisted to by a cohesive traction
— 2-parameter cohesive law
« Peak cohesive traction o,,,, (spall strength)

e Fracture energy G,
« Automatically accounts for time scale [camacho & Ortiz, 1996]

 |ntrinsic law VS Extrinsic law
: )
Omax Failure criterion o.., Failure criterion external
iIncorporated within to the cohesive law
the cohesive law Ge
5 5
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Discontinuous Mesh & Dynamic Fracture

 Finite element discretization & interface elements

— The cohesive law is integrated on an interface element
Inserted between two adjacent tetrahedra [ortiz & Pandolfi 1999] 3+

— Potential structure of the cohesive law:
[Ortiz & Pandolfi 1999]

 Effective opening in terms of g, the
ratio between the shear and normal
critical tractions:

52=/8n " 52=||8|?

5= Jjucp]] N[ 182 |le] - le] N N |}

 Definition of a potential: ¢ = #(9)

.., 00 0p . 0 s
e Interface traction: t= s 8—6“N i
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Discontinuous Mesh & Dynamic Fracture

e Two methods
— Intrinsic Law t
» Cohesive elements inserted from the beginning

« Drawbacks:
— Efficient if a priori knowledge of the crack path

— Mesh dependency [Xu & Needelman, 1994]
— Initial slope modifies the effective elastic modulus 5
— This slope should tend to infinity [kiein et al. 2001]:

» Alteration of a wave propagation

» Critical time step is reduced t

— Extrinsic Law o
» Cohesive elements inserted on the fly when
failure criterion is verified [ortiz & Pandolfi 1999]

e Drawback -
— Complex implementation in 3D (parallelization)

e New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
— Interface elements inserted from the beginning
— Interface law corresponds initially to the DG interface forces

Gmax

——

B d;‘
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Discontinuous Mesh & Dynamic Fracture

e New DG/extrinsic method:

[Seagraves, Jerusalem, Radovitzky, Noels]
— Numerical application: the spall test
 Two opposite waves interact at the center of the specimen
* The interaction leads to stresses higher than the spall stress
* The specimen breaks exactly at its middle

0,, (Pa)

4.00E+08
J.64E+08
3.27E+08
2.91E+08
2.55E+08
2.18E+08
1.82E+08
| .45E408
| .09E+08
7.27€+07
3.64E+07
0.00E+00

t=0.23 s

The waves meet
at the spall plane

N
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Discontinuous Galerkin Methods

e Continuous field / discontinuous derivative

— No new nodes S —_

— Weak enforcement of - /
C! continuity T

— Displacement formulations X
of high-order differential (1) (@ (@]

equations
— Usual shape functions in 3D (no new requirement)

— Applications to

e Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells
& Dung, CMAME 2007]

* Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IINME
2009]

 Damage & Strain Gradient [wells et al., CMAME 2004; Molari, CMAME 2006;
Bala-Chandran et al. 2008]
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Kirchhoff-Love Shells

X
P

* Description of the thin body

2= (£) = o (€1)+ €Nt (€°)

. /
Mapping of the

mid-surface

— N2y 23 rel g2
Mapping of the normal Do=o(&', SY+5 (S, &)

Es ®=(&', E)+EUELE)

Thickness stretch to the mid-surface
. . A ) //
* Deformation mapping g
F=V&o |V, ! with =
| oP
V=g, oFE §& g¢:V¢'E¢:8£@.
B ob B 3 3 B odb B
== Ja — (‘95‘1 — P.a + f )\ht,a + f tAh,o[ & g3z = 8{3 - Aht

e Shearing is neglected

lei Awa

— t—“"-”\‘“H & the gradient of thickness stretch *...neglected

Higher order equation
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Kirchhoff-Love Shells

e Resultant equilibrium equations:
— Linear momentum |5 (n®) , +n* =0

— Angular momentum

hmaXO
— In terms of resultant stresses: < [m°® == f Eogtdet (V) d¢®
h

'j min

hmax[]
I == f ag’det (V@) de?
\ j hmin[]

of resultant applied tension »* and torque ="

and of the mid-surface Jacobian j=|viA el
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Kirchhoff-Love Shells

e Non-linear material behavior

— Through the thickness integration by Simpson’s rule

— At each Simpson point - o o
P P C=gi-99029) =292 g}

det (Vo) OW
det (V®) g, 79

 Internal energy W(C=FTF) with < 5
oc=0"9 ®g; =2

-

- - . hmax - hmin .
e |teration on the thickness ratio A, = : - In order to reach
max() — {min0
the plane stress assumption ¢23=0

. y ( max0
— Simpson’s rule leads to the o ;/h g™ det (V) de?
J Jh

resultant stresses: 1

hmaxo
£ |m*== / Eog”det (V) de?
J Jh

minQ

1 hmaXD
l = —_/ og’det (V®) de?
\ j hmin[]
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Kirchhoff-Love Shells

e Non-linear discontinuous Galerkin formulation

— New weak form obtained from the momentum equations
— Integration by parts on each element ¢

— Across 2 elements ot is discontinuous
(¢n)) 6cpd./4+/ nt . Spjd A+

/‘ﬂ 5tAhdA+/ A - 5th,jdA

Z/ im? (en) - (0tA,). dA+Z/ (en) - 0t A dA

& / jn® (en) - 690,Qd,4+f gl - StApdA +
/7 5 A:L Ay
h B ~ p;
gm*® (en) - (0tA) , dA +/ [6t - FA,m ] v dOA =
ng)hCDO C‘D///gNAh Ap e Or ApUor Ay,

/ 37 - Spd A+ / G - StARdA + / nt SpjdA + |t 5t jdA
In Ay Onr Ay An Ap
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Kirchhoff-Love Shells

e [nterface terms rewritten as the sum of 3 terms
— Introduction of the numerical flux h

/ [[jma (Soh) . 5tAh]] V;d,A — Hét]]h ((j)\hma)—l- ’ (j)\h?’ha)_ ? I/a) dA
dr An

drAp

¢ HaS to be ConSIStent h()\hjmgxa.ct? j)\hmgxactv ‘UOC') — Ah;mgxa.ctyc;

« One possible choice: & ((j/\hmaﬁ, GAn®) ™, y;) — uT (A
— Weak enforcement of the compatibility

/ [t (er)] - (6 (GAnm)) v, dOA Linearization leads to the
91 An / material tangent modulii 4,

% / [t (r)]-CGoHn ™ (30 -t + 0y - Ot s) @5 + JARY -5 Op 5) v dOA
OrAp

— Stablilization controlled by parameter g, for all mesh sizes hs

o o
[t e {2 st v doa
Or ApUor Ay

Department of Aerospace and Mechanical Engineering Université

de Liége




Kirchhoff-Love Shells

e New weak formulation
/ jna (Soh) 0@ o dA +/ j’ﬁ’ba (goh) . (5tAh).a dA Jr/ jl Ot dA +
An An ' An

[t (pr)] - GoHp " (8@ - ts + @ - Ot6) o+ T -5 0 5) v, dOA

]81./—1;1 Uor.Ay

o BioHZPT® L
/ ot - G v do.Al| [ [t(on)]- 05 ( 2 ) [68] -0z dOA L
A ApUOT Ap Ir Ap UoT Ap

/ G- dpdA + f G- StAdA + / nA . spidA+ [ A seajdA
OnNAp, O Ap A

An
* Implementation
— Shell elements
« Membrane and bending responses _
o 2Xx2 (4x4) Gauss points for bi-quadraticlr -

(bi-cubic) quadrangles ¢ <
— Interface elements LY ’
e 3 contributions el L

o 2 (4) Gauss points for quadratic (cubic) meshes
» Contributions of neighboring shells evaluated at these points
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8 (m)

Kirchhoff-Love Shells

* Pinched open hemisphere

— Properties:
» 18-degree hole
* Thickness 0.04 m; Radius 10 m
* Young 68.25 MPa; Poisson 0.3
— Comparison of the DG methods
e Quadratic, cubic & distorted el.
with literature

20

— 3 xA:-s Y linear
— Yy 12 bi-quad. el.
15+ 1 — 5 Xys 12 bi-quad. el.
— -0 Vg 8 bi-cubic el.
38 Xy 8 bi-cubic el.

stup U i=002 =001

0.000

Eojuivalznt vor Misss sireas
1. 252005 2. 50=--005

5.0+ 005

10t o o o 8Yg 8 bi-cubic el. dist.
x 8%y 8 bi-cubic el. dist.
o BYg Areias et al. 2005
5l . o 9Xy Areias et al. 2005
% 200 400 600 800
P (N)
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Kirchhoff-Love Shells

* Pinched open hemisphere

Influence of the stabilization Influence of the mesh size
parameter
10 ‘ ‘ : 10"
8,
10
6/ <
B 5
4r 102
— ¥Yy 12 bi-quad. el.
2r 1| = 3% 12 bi-quad. el.
I Vg 8 bi-cubic el.
‘ ‘ ‘ ____ &x., 8 bi-cubic el. 2
20° 10" 102 10° 10* A Y107 10"
B hS/ R

— Stability if > 10
— Order of convergence in the L?-norm in k+1
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Kirchhoff-Love Shells

* Plate ring

— Properties:

« Radii6-10m

e Thickness 0.03 m

* Young 12 GPa; Poisson 0
— Comparison of DG methods

e Quadratic elements

with literature

30t o
25¢
20+ E
— 3 Z, 16x3 bi-quad. el.
15; — 3 Zg 16x3 bi-quad. el.
+ 8 Z, Sansour, Kollmann 2000
10, % O Zp Sansour, Kollmann 2000 0.000 750
x O Z, Areias et al. 2005
5 o & Zg Areias et al. 2005
0 | | ‘ | ‘ |
0 2000 4000 6000 8000 10000 12000

g (N/m)
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Kirchhoff-Love Shells

 Clamped cylinder

— Properties:

e Radius 1.016 m; Length
3.048 m; Thickness 0.03 m

e Young 20.685 MPa; Poisson
0.3

— Comparison of DG methods
e Quadratic & cubic elements

with literature

— 82, 12 bi-quad. el.
v 8 zA, 8 bi-cubic el.
g o Z, Ibrahimbegovic et al. 2001

500 1000 1500

P (N)

stao 0 =0/ cit=0005

Thicknass

0.02%5 0.029% 0.0200 0.030]1 0.03502
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Dynamic Fracture of thin structures

e Extension of DG/ECL combination to shells
— We have to substitute the CO/DG formulation by a full DG

Field

@1 (@ (@+1)

Field

~
~
~
N
~
<
<
~
~
~
~
~
N
x
L -
~
Py <is
N
-7
-

.,
-’
-,
1
lr
’,
-’
e -1”
P -
PR

(a-1)(a-1)*(a) (@)* (a+1)(a+1)*
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Dynamic Fracture of thin structures

o Kinematics of linear beams

— Beam'’s equation are deduced from Kirchhoff-Love shell kinematics
 So the DG formulations can be related to each other
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Dynamic Fracture of thin structures

e Linear momentum equation for linear Euler-Bernoulli beams

— Resultant stresses

. 1 hma,xo 1 hmax[]
o N = :_/ og®det (V&) de? & L= ?f og’det (V&) d¢*
h h

j ming j ming

* Only the component along x-axis is non-zero

hmax h'm.a,w
nll = / o11dE3 = / (E(Ul,l - U3,1153)) A&’ = Ehuy 4
h'm,in h'rnin

— Resultant equation (no volume forces)

| —

- (jn®) , +nt =0 == nl{ =0

LN

Department of Aerospace and Mechanical Engineering Université

de Liége



Dynamic Fracture of thin structures

e Angular momentum equation for linear Euler-Bernoulli beams

— Resultant bending stresses
o 1 hmaxo ; | X 1 Fnaxo . .
o M- = :_/ Cogdet (VP)de® & == og det (VP) d¢
h h

j minQ j minQ

* Only the component along x-axis is non-zero

h'maa: hmacc Eh3
mll = / 011£3de® = / (B(u11 — us11€%)) £3de® = T W
h?nin h

 In order to develop a full dg formulation we keep the shearing term |,

h h
max madx E . Eh B

— Resultant equation (no volume forces)

Gm®), —l+x+mt=0 =) mli-n*=0
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Dynamic Fracture of thin structures

e Full DG formulation of linear Euler-Bernoulli beams
— From the 2 equations

' AE3
e nll=0 & Y -nl=0

— The weak formulation reads

L <+—>
J / [nillléul + ?’71.111(5(—%3!1) — n315(—u371)] de =0 T — ) >
0 ' ’ = [ = E1
» As shape functions and their derivatives are discontinuous, the
integration by parts becomes
116u11+m (5 U311 —nl
(oml @ ol .
« 3interface terms that will be treated as before, each one will give
— A consistency term _
. Except the shearing term, as n31 =0
— A symmetric term
— A stabilization term
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Dynamic Fracture of thin structures

o Full DG formulation of linear Euler-Bernoulli beams (2)

— The weak formulation reads (2) N

 From

3 nll@u11+m O(—us.11) —”1 |
<+—>

| | . . . . . ! 1 »

I T T T T ’l T I L

(5“UJ 1+m (5( Us. 11)} dx+

l

h

<m11>{[[5 —uz1)] <Eh.85(—ua,11)>[[ uz 1] + [—usa] H@H—MSJ]H
[us] { 52255 ) [Bus]]) = 0

» As before, DG terms are integrated using interface elements

< 11> [[6u | + (ERduy 1) [rer] + [rer] <82Eh> [6u:]
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Dynamic Fracture of thin structures

 Full DG/ECL combination for Euler-Bernoulli beams

— When rupture criterion is satisfied at an interface element

+E
» Shift from ’
— |DG terms|(e, = 0) to |
—|Cohesive terms|(« = 1) > : o
< = E
Z/ [nlléul,l + mllé(—u;;?ﬂ)} dx+ L !
mn le
Do L h
(1— ay) ((nll> [our]] + (Ehouy 1) [ur] + [ui] <i 2}1 > [ow1] +
. ER B ER
() ()] +  S-(-usan) Y [-usal + sl { 225 -ausa] o

IZ s (N(AN)6 [uy] + M(A*)S [[ug.l]])h 3 [6us] <2(183+E£hs > [6us] = 0

S

— What remain to be defined are the cohesive terms
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Dynamic Fracture of thin structures

e New cohesive law for Euler-Bernoulli beams

— Should take into account a through the £

Gmax

thickness fracture

* Problem : no element on the thickness G

» Very difficult to separate fractured and

not fractured parts

— Solution: ﬂ
- Application of cohesive law on N, M4

— Resultant stress
ntle=> N(AY)

— Resultant bending stress
mtte=y M(AY)

 In terms of a resultant opening A*

»
| o

A*
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Dynamic Fracture of thin structures

 Resultant opening A* and cohesive laws N(A*) & M(A%)

— Defined such that N, M 4
e At fracture initiation Y
— N, = N(0) and N, = M(0) "M

satisfy o(xh/2) = + 6.«
» After fracture
— Energy dissipated = h G,
— Solution

e A*=(1-pB)A, + ,,S%AT

— A, Opening is tension
— A, Opening in rotation

— Coupling parameter
g = 16/hMo]|
" No + [6/h M|
* Null resistance for A* = A, = 2G. /o,
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Dynamic Fracture of thin structures

« Numerical example lu-z(%)
— DCB with pre-S’[I‘ain E jlkh ; Uz, pres
] —

e When flexion increases Y

- -
- Las

— When the maximum stress is reached
» Beam should shift from a DCB configuration to 2 SCB configurations

* During the rupture process

— Either the variation of internal energy is larger than hG. and rupture should
be instable

— Or the variation of internal energy is smaller than hG. and rupture should
be stable

» Complete rupture is achieved only if flexion is still increased

» Whatever the pre-strain, after rupture, the energy variation should
correspond to hG.
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Dynamic Fracture of thin structures

107
- -
DG degree 3 16 elements
* Instable fracture ® B,ByB100-10
_0.2- — Analytic
— Geometry such that variation =03
. ‘@ 0.4
of internal energy > hG. £ .
Ju=(5) 8 09
. g ol
03( 100 H » -0.8}
L ae="T -0.9-
-2 /3 o 0.05 0.1 0.15 0.2
X positions [m]
107
-4 DG degree 3 16 elements
— ° pB,=p,=p,/100=10
E. -6 —0.5- —— Analytic
aQ
E "~
6 -8 E
(18 = -1
9
-10 DG degree 3 16 elemenis §_—1.&
ol ° B =p,=p/100=10 N
— analytic DCB _2
- - -analytic SCB
135 -2 -15 -1 -0.5 0 25l ‘ . .
i o 0.05 0.1 0.15 0.2
Displacement [mm] x position [m] §
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Dynamic Fracture of thin structures

 Stable fracture Rt

— Analytic

— Geometry such that variation
of internal energy < hG.

z positions [m]
o

~] N =3
10t ‘
O _X - 4|
_1 L aeemTT -5t L I
- 0 0.01 0.02 0.03 0.04 0.05
X positions [m]
-2f 10~
egree 3 16 elements
— 3" ° B,=p,=B,100=10
E -0.2 — Analytic
g -4 -
5 T -0.4
L -5+ c
:.g, -0.6
-6+ DG degree 3 16 elements §
o R — _ _
[31_]32_[33/1 00=10 N -0.8
=7t —— analytic DCB
- - - analytic SCB -l
_81 1 1 1 T T I
-1.4 -1.2 —1 -0.8 -0.6 -0.4 -0.2 0 \ ‘ , ‘ ,
. -1.2
D|5p|acemenl [mm] 0 0.01 0.02 0.03 0.04 0.05
X position [m] §
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Dynamic Fracture of thin structures

e Stable fracture

— Effect of pre-strain
 Dissipated energy always = hG.

-0.54

|
—
. |
m N
1 I

z Force [N]
po
a R

|
L]
T

|
.
n

_4| 1 1 1 1 1
-1.4 12 -1 -08 -06 -04 -02 0
Prescribed z displacement [mm]

-0.02 0 0.02 04 0.06 0.08 0.1
Ax mm]
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Conclusions & Perspectives

 Development of discontinuous Galerkin formulations

— Formulation of non-linear dynamics
* As interface elements exist; cohesive law can be inserted

— Formulation of high-order differential equations

e CO/DG formulation of non-linear shells
— No new degree of freedom
— No rotation degree or freedom
e Full DG formulation of beams
— New degree of freedom
— No rotation degree or freedom
— As interface elements exist: cohesive law can be inserted
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