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/Introduction

• Materials are multiscale in nature:

Metals

10‐9  m 1 m

Polymers

Molecular 
Dynamics

Monte Carlo Method, 
Statistical Mechanics …

Continuum 
Mechanics

Why Multiscale?
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/Introduction

• Multiscale Methods for Composites
For material design:  
These effective properties  are difficult or expensive to measure.
For composite structures analysis: 
• Continuum mechanics analysis at Macroscale  

Accuracy!
• Take into account the individual component properties and 

geometrical arrangements.
Expensive,   unreachable!

• Solution:
The engineering problems are solved at macroscopic scale with the  
homogenized properties.
The homogenized properties are obtained from the individual 
component properties and their microstructure.

Why Multiscale?
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/Introduction

• Finite element solutions for strain softening problems suffer 
from: 
– The loss the uniqueness and strain localization

– Mesh dependence 

Problem in finite element simulations

The numerical results change with the 
size of mesh and direction of meshHomogenous unique solution

Lose of uniqueness

Strain localized

The numerical results change without 
convergence
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/Introduction

Multiscale Methods have this problem too!

•Solution:
Introduce high order term in the continuum 

description

Strain gradient model, nonlocal model…

Problem in finite element simulations
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/Mean Field Homogenization

• At the macroscale, the problem is a classical continuum mechanics 
problem (Finite Element method). 

• At a macroscopic material point the properties of the material 
correspond to a representative volume element (RVE) of the 
microstructure.

Macro Macro 

Macro

Micro
MFH

nε ε∆C σ

Basing on 
The marco strain      and  stress        

equal the average strain         
and stress         over a RVE

ε
σ

σ
ε

∫=
V

Va
V

a d)(1 X
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/Mean Field Homogenization

• How to get      in RVE?  Such that

– Direct finite element simulation 

– Semi‐analytical mean field homogenization models

( Voigt, Reuss,Mori‐Tanaka, Double‐Inclusion, Self‐Consistent …)

• Two‐phase composite

– Volume fraction                    

C εCσ :=

110 =+ vv

Subscription: 0(matrix) and 1(inclusion)
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/Mean Field Homogenization

• Single inclusion problem

is single inclusion strain concentration tensor (numerical, 
analytical) 

is Eshelby’s tensor 

• Multiple inclusion problem

Mori‐Tanaka model:

and 
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/Nonlocal Approach

• Description
Some variables (a ) are replaced by  their weighted (w 

) average over a characteristic volume (V c) to reflect the  
interaction between neighboring material points.

The state variable a  can be strains, internal variables 
(eg. accumulated plastic strain, damage….)

Problem: Weight function w  ?? Characteristic 
volume V c ??

∫=
cV

c

awdV
V

a 1
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/Implicit Gradient Formulation

• Gradient model
– Derived from non‐local models by expanding the 
integration of         in Taylor series.

– The coefficients c1, c2... depend on the weight function 
and the characteristic volume V c.

Explicit gradient formulation: 

c has the dimension of length squared.

a
...4

2
2

1 +∇+∇+= acacaa

acaa 2∇+=
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/Implicit Gradient Formulation

• Implicit gradient formulation *: 
Green’s function G(y; x)  weight function w(y; x)

The natural boundary condition:

aaca =∇− 2

0=
∂
∂

=
∂
∂

i
i x

an
n
a

How can we use it in Mean Field 
Homogenization ? 
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* Peerlings et al., 1996
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/Ductile Damage in the Matrix of 
Composite

• Damage in matrix only (neglect the Damage in fiber)

• Lemaitre ‐ Chaboche  ductile damage mode:

where     S0 and n are the material parameters

Y is the strain energy release rate 

is the accumulate plastic strain ,

• Nonlocal damage:
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/Ductile Damage in the Matrix of 
Composite

• Considering the damage in matrix, the incremental 
form of stress in composite*:  
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Mori‐Tanaka

Subscription: 0(matrix) and 1(inclusion)

* Doghri I. et al., 2003
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• For implicit gradient enhanced elastic‐plasticity 

where     ‐ the body force vector;

‐ the characteristic length of matrix material.  

• Discretization  (in each element)

Governing equations
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/Finite Element Implementation
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/Validation and Simulation

• Polyamide matrix reinforced by short glass fibers (15.7 %, ellipsoidal, AR = 15)
Matrix: E = 2.1 GPa,  v = 0.3, σY = 29 MPa, R(p) = h1 p+ h2(1‐exp(‐mp)), h1 = 139 MPa, 

h2 = 32.7 MPa and m = 319;  LC‐Damage:  S0 = 2.0 MPa, n = 0.5, p0 = 0.;

Inclusions: E = 72 GPa,  v = 0.22;

15

Verification: FEM implementation



/Validation and Simulation
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• Unidirectional fiber reinforced composite
Epoxy Matrix: E = 2.89 GPa,  v = 0.3, σY = 35 MPa, R(p) =h(1‐exp(‐mp))

h = 73.0 MPa and m = 60;  LC Damage:  S0 = 2.0 Mpa, n = 0.5, p0 = 0.

Carbon fiber: E = 238 GPa,  v = 0.26; 

Validation: DNS vs. FE/MFH 



/Validation and Simulation

• Unidirectional fiber reinforced composite
Transverse Stress‐stain: 

17

Validation: DNS vs. FE/MFH 



/Validation and Simulation

• Notched sample
Characteristic length l =0.0002 m

Characteristic length l =0.001 m

18

Simulation



Thank you!



/Validation and Simulation

• Elasto‐plastic matrix, elastic inclusions (15 %, spherical)
Matrix: E = 100 GPa,  v = 0.3, σY = 75 MPa, R(p) = hpm , h=400 MPa, m = 0.4;

Validation: material law vs. MFH code 

Damage parameters:

LC:  S0 = 2.0 MPa, n = 0.5, 

p0 = 0.01;

LIN: p0 =0.01, pC =0.2.

Inclusions: E = 200 GPa, 

v = 0.2; 


