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Why Multiscale?

e Materials are multiscale in nature:

>

@
10° m 1m
Molecular Monte Carlo Method, Continuum
Dynamics Statistical Mechanics ... Mechanics
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Why Multiscale?

e Multiscale Methods for Composites

** For material design:
These effective properties are difficult or expensive to measure.
** For composite structures analysis:
e Continuum mechanics analysis at Macroscale
Accuracy!

e Take into account the individual component properties and
geometrical arrangements.

Expensive, unreachable!
e Solution:

A/

** The engineering problems are solved at macroscopic scale with the
homogenized properties.

** The homogenized properties are obtained from the individual
component properties and their microstructure.
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Problem in finite element simulations

* Finite element solutions for strain softening problems suffer
from:

— The loss the uniqueness and strain localization

— Mesh dependence The numerical results change with the

Homogenous unique solution size of mesh and direction of mesh

Lose of uniguen SIIXIX
{ \ / DIXIXIX
Strain localized

XXX
The numerical results change without
convergence
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Problem in finite element simulations

Multiscale Methods have this problem too!

eSolution:

Introduce high order term in the continuum
description

Strain gradient model, nonlocal model...
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e Mean Field Homogenization
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e At the macroscale, the problem is a classical continuum mechanics
problem (Finite Element method).

e At a macroscopic material point the properties of the material
correspond to a representative volume element (RVE) of the
microstructure.

Macro

Basing on
The marco strain & and stress

o equal the average strain<g> Vacro 5/0‘
and stress <0'> over a RVE '
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e Howtoget C in RVE? Suchthat (6)=C:(¢)
— Direct finite element simulation
— Semi-analytical mean field homogenization models
( Voigt, Reuss, Mori-Tanaka, Double-Inclusion, Self-Consistent ...)
e Two-phase composite
— Volume fraction v, +v, =1

<0'> =V, <0'>w0 + V1<0'>wl <8> =V, <e>w0 + V1<8>wl
(@), =Ci:(e), 7

<°'>wo =G, :<8>a)0
Subscription: O(matrix) and 1(inclusion)
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e Single inclusion problem
(£), =H"(1,C,,C) "

H E . . . . . . .
is single inclusion strain concentration tensor (numerical,

analytical) L
H®=[1+S:C,":(C,-C)]"

S is Eshelby’s tensor
 Multiple inclusion problem
<‘9>w1 =B° :<‘9>a)0 <‘9>w1 = A (e)
Mori-Tanaka model:
g = <5>m0 and B =H°
< stream ' @]
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 Nonlocal Approach and Implicit Gradient
Formulation
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* Description
Some variables (@) are replaced by their weighted (w
) average over a characteristic volume ( I/ c) to reflect the

interaction between neighboring material points.

_ 1
a = —jawdv
V, N
The state variable @ can be strains, internal variables

(eg. accumulated plastic strain, damage....)

Problem: Weight function w ?? Characteristic
volume V¢ ??
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e Gradient model

— Derived from non-local models by expanding the
integration of a in Taylor series.

a=a+cVa+c,V'a+..

— The coefficients c1, c2... depend on the weight function
and the characteristic volume l/c.

¢ Explicit gradient formulation:

a=a+cVia

¢ has the dimension of length squared.

<Lstream .
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 Implicit gradient formulation *
** Green’s function G(y; x) —> weight function w(y; x)
a-—[awdv — a-cvla=a
VC

** The natural boundary condition:

oa oa
—=n—=0
on ' OX.

How can we use it in Mean Field
Homogenization ?

E/\\gtrean‘l * Peerlings et al., 1996 H @.?cf'com_ 3
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 Ductile Damage in the Matrix of Composite
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e Damage in matrix only (neglect the Damage in fiber)
 Lemaitre - Chaboche ductile damage mode:
: Y
D=(—)"f
(So) p
where S, and n are the material parameters

Y is the strain energy release rate Y :Ege E, &
2
P is the accumulate plastic strain p = [%g’p "1, p= J pdt

e Nonlocal damage:
D=(—)"(p+c,V’p+c,Vip+..)
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e Considering the damage in matrix, the incremental
form of stress in composite™

06 = UV,06, + V00,
oo, =(1-D)C" :%,-6,0D  6,=6,/(-D)

oo =v,C %, +UO(1 D)C : %, — v 6,0D

gD
=C*9° % - UOO'O

Subscription: O(matrix) and 1(inclusion)

Qﬁff €Al +*poghril.etal, 2003 @m
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* Finite Element Implementation
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Governing equations

 For implicit gradient enhanced elastic-plasticity
(Vo+ =0 for comopsite material

< _ .
p-1°V’p=p for matrix material only

where f -the body force vector;
| - the characteristic length of matrix material.

e Discretization (in each element)

U= Nuu ﬁ — Nﬁﬁ ‘ |:Kuu KUﬁ :||:du:| :|:Fe><t _Fi”t:|
g=Bu Vp=VN,p=B,p |Ku K

pu pp
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e Validation and Simulation
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Verification: FEM implementation )

e Polyamide matrix reinforced by short glass fibers (15.7 %, ellipsoidal, AR = 15)
Matrix: £ =2.1 GPa, v=0.3, o,=29 MPa, R(p) = h, p+ h,(1-exp(-mp)), h, = 139 MPa,
h,=32.7 MPa and m = 319; LC-Damage: S,=2.0 MPa, n=0.5, p,=0.;
Inclusions: E =72 GPa, v=0.22;

Stress (Mpa)
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<Lstream 5 @ ]



/Validation and Simulation =~ 25
Validation: DNS vs. FE/MFH

 Unidirectional fiber reinforced composite
Epoxy Matrix: £ =2.89 GPa, v=0.3, g, =35 MPa, R(p) =h(1-exp(-mp))
h=73.0 MPa and m = 60; LC Damage: S,=2.0 Mpa, n=0.5, p,=0.
Carbon fiber: E =238 GPa, v=0.26;

=g (2007200} damage (200200} =g (200200}
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Validation: DNS vs. FE/MFH

e Unidirectional fiber reinforced composite

Transverse Stress-stain:
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Simulation

e Notched sample

Characteristic length | =0.0002 m

damage (200/200) svm (200°200)
] 0.0588 OE o 6.55a+17 1.21e+08

damage (172/180)
o 0.0504 0101 "ll'
[ . - . [ - .
[ - .

damage (172200) damage (200/200)
o DLd2 14 0.0225 o o214 0.0428
[ . | [ |
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Thank you!
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Validation: material law vs. MFH code

e Elasto-plastic matrix, elastic inclusions (15 %, spherical)
Matrix: £ =100 GPa, v=0.3, o,=75 MPa, R(p) = hp™ , h=400 MPa, m = 0.4;

Damage parameters: >/E+08 < LCdamage o LINdamage + NOdamage
LC: S,=2.0MPa,n=05, VE'O8 SRS
3,E+08
r m m
Py = 0.01; —_ i e
g2,E+08 e
LIN: p, =0.01, p. =0.2. ~1E+08
QO,E+00 -  ® B
|
&Nh1E08
Inclusions: E = 200 GPa, ’
-2,E+08 RRERAR
’ WW
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