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Introduction & Motivation

• Length scales in modern technology are now of the order of the 
micrometer or nanometer

• At these scales, material laws depend on strain but also on 
strain-gradient

• Example: 
– Bi-material tensile test:

– E1/E2=4
– Characteristic length l
– Differential equation:
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Introduction & Motivation

• Introduction of strain-gradient effect in numerical simulations
– Domain of applications:

• Stress concentrations (around hole, at crack tip, …)
• Grain size effect on polycrystalline yield strength
• Void growth
• …

– Finite elements framework
– In the general 3D case, shape functions are not C1, which prevents the 

direct evaluation of the strain gradients

• Idea: enforcing weakly the C1 continuity by recourse to 
discontinuous Galerkin methods
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Introduction & Motivation

• Discontinuous Galerkin methods
– Finite element discretizations which 

allow for jump across elements
– Compatibility of the field variable or

its spatial derivative is imposed in a 
weak sense

– Stability enforced with a quadratic interelement integrals
• Application of discontinuous Galerkin methods in solid mechanics

– Allow weak enforcement of C0 continuity:
• Non-linear mechanics (Ten Eyck and Lew 2006, Noels and Radovitzky 2006)
• Reduction of locking  for shells (Güzey et al. 2006)
• Beams and plates (Arnold et al. 2005, Celiker and Cockburn 2007)

– Allow weak enforcement of C1 continuity (strong enforcement of C0):
• Beams and plates (Engel et al. 2002)
• Strain gradient (1D) (Molari et al. 2006)
• Kirchhoff-Love shells (Noels and Radovitzky 2007)
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Introduction & Motivation

• Purpose of the presentation is to develop a dG formulation for 
strain gradient elasticity, which
– Is a single field formulation in displacement 
– Requires only the use of C0 continuous interpolations
– Is demonstrated to be consistent and stable 
– Is easy to integrate into a regular 3D finite-element code
– Has C1 continuity constrained in a weak sense

• Scope of this presentation
– Strain gradient theory of elasticity
– Discontinuous Galerkin formulation 
– Numerical properties
– FEM 3D implementation
– Numerical examples
– Conclusions & Future work
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• Strain gradient theory: 
– At a material point  stress is a function of strain and of the gradient of 

strain (Toupin 1962, Mindlin 1964)

– Strain energy          is assumed to be a function of strain and 

gradient of strain

– Low and high order stresses introduced as the work conjugate of low and 

high order strains

– Governing PDE obtained from satisfying the virtual work statement

Strain gradient theory of elasticity

Low  order
tractions

Double stress tractionsBody forces
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• The boundary value problem:
– Local equation

– Natural  boundary conditions

– Essential boundary conditions

– Finite-elements discretization

Strain gradient theory of elasticity
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• Derivation of the weak form:

– Choose the appropriate space for the test (uh) and trial functions (w), which:
• Are C0 on the whole domain
• Are Pk in each element
• Satisfy the essential BC’s

– Multiply the local equation by a test function

– Integrate by parts and use divergence theorem

Discontinuous Galerkin formulation

Introduces inter-element 
contributions
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• Introduction of the numerical fluxes:

– On inter-element boundaries

– Extension to weak enforcement of high-order BC

Discontinuous Galerkin formulation

Ensures consistency Ensures stability (h = mesh size and β = parameter)
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• Resulting bi-linear weak form:

with

Discontinuous Galerkin formulation

New inter-element 
contributions

New inter-element 
contributions
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• Consistency
– Exact solution u satisfies the DG formulation

• Definition of a new energy norm

• Stability

• Convergence rate of the error with the mesh size:

Numerical Properties

with C2>0 if β > Ck, Ck depends only on k.
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• Linear system with

• Volume term

– 10-node isoparametric tetrahedra
– 4 Gauss quadrature points
– Needs up to second derivative of shape functions 

• Interface & Boundary terms
– No duplication of nodes (C0 continuous)
– Geometric data generated from B-Rep

(Radovitzky 1999)
– Derivatives of shape functions of adjacent 

tetrahedra stored on the facet 
– 6 quadrature points per interface

FEM 3D-implementation

Volume term Interface term Boundary term
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Numerical Examples

• Bi-material tensile test
– E1/E2=4
– Characteristic length l, with l/L=0.1
– Differential equation:

• 2 meshes are considered:
– 6 & 18 tetrahedra on the length
– Convergence toward analytical solution
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Numerical Examples

• Study of bending stiffness K
– Elastic bending stiffness 

– Influence of characteristic length l on the effective stiffness:
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Numerical Examples

• Study of torsion stiffness K
– Elastic torsion stiffness 

– Influence of characteristic length l on the 
effective stiffness: γ = Ke/K
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Conclusions & Future work

• Conclusions:
– Development of discontinuous Galerkin framework for linear strain gradient 

elasticity:
• Single field formulation
• Strong enforcement of C0 continuity
• No new degrees of freedom
• Weak enforcement of C1 continuity
• Higher order Dirichlet condition enforced weakly

– Implementation in a 3D finite-elements code
– Passes standard patch tests
– Size effects of gradient law demonstrated

• Future work
– Consideration of the symmetrization term (super-convergence in L2-norm)
– Application to crystal plasticity


