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Introduction & Motivation

* Length scales in modern technology are now of the order of the
micrometer or nanometer

* At these scales, material laws depend on strain but also on
strain-gradient
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Introduction & Motivation

* Introduction of strain-gradient effect in numerical simulations
— Domain of applications:

Stress concentrations (around hole, at crack tip, ...)

Grain size effect on polycrystalline yield strength

Void growth

— Finite elements framework
— In the general 3D case, shape functions are not C1, which prevents the
direct evaluation of the strain gradients
« |dea: enforcing weakly the C! continuity by recourse to
discontinuous Galerkin methods
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Introduction & Motivation

* Discontinuous Galerkin methods  _
— Finite element discretizations which 2 /
allow for jump across elements 1\ /
— Compatibility of the field variable or 1
1

its spatial derivative is imposed in a | o N
Tl @t @ @ @ @

/N

weak sense
— Stability enforced with a quadratic interelement integrals

» Application of discontinuous Galerkin methods in solid mechanics

— Allow weak enforcement of CO continuity:
* Non-linear mechanics (Ten Eyck and Lew 2006, Noels and Radovitzky 2006)
* Reduction of locking for shells (Glizey et al. 2006)
» Beams and plates (Arnold et al. 2005, Celiker and Cockburn 2007)

— Allow weak enforcement of C1 continuity (strong enforcement of C9):
 Beams and plates (Engel et al. 2002)

« Strain gradient (1D) (Molari et al. 2006)
» Kirchhoff-Love shells (Noels and Radovitzky 2007)

H .
\
II I Il massachusetts Institute of Technology University of Lieg e% Z\\
ASC



Introduction & Motivation

e Purpose of the presentation is to develop a dG formulation for
strain gradient elasticity, which
— Is a single field formulation in displacement
— Requires only the use of CO continuous interpolations
— |Is demonstrated to be consistent and stable
— Is easy to integrate into a regular 3D finite-element code
— Has C! continuity constrained in a weak sense

e Scope of this presentation
— Strain gradient theory of elasticity
— Discontinuous Galerkin formulation
— Numerical properties
— FEM 3D implementation
— Numerical examples
— Conclusions & Future work
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Strain gradient theory of elasticity

e Strain gradient theory:

— At a material point stress is a function of strain and of the gradient of
strain (Toupin 1962, Mindlin 1964)

— Strain energy W = W (€5, m:51) 1S assumed to be a function of strain and
gradient of strain

— Low and high order stresses introduced as the work conjugate of low and

: : oW ow
high order strains  ¢,; = = Cyjm €l Tijk = 7= Jijktmn Nimn
€45 anijk
— Governing PDE obtained from satisfying the virtual work statement
/ (0@'56@;‘ + ’T@'jk(S??@'jk) dV = Bkéukd\/ + / fk5ukd5 + / ’f“\kéuk,lngds
Bo Bo/ 8}\]8/ 3}\48]
Body forces Low order Double stress tractions
tractions
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Strain gradient theory of elasticity

e The boundary value problem:
— Local equation

0 = by + (0w — sz‘k,j)ji in By

— Natural boundary conditions VB

te = ni (0w — O5Tize) + nanTuse (Do) —

- D; (nj751) on Oy By

T = NiN,;Tijr o0 OBy
— Essential boundary conditions

up, = upon OpBy

nity; = Duy;on OpBy
— Finite-elements discretization

U;E:l (e = By, = By

OnBo U OpBy = 0By
O Bo U OBy = 08,
OnBoNOpBy = ()
O Bo N OBy =0
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Discontinuous Galerkin formulation

* Derivation of the weak form:
— Choose the appropriate space for the test (u,)) and trial functions (w), which:
e Are C9on the whole domain
e Are Pkin each element

» Satisfy the essential BC's
— Multiply the local equation by a test function

E
Zf Wi (bk -+ (ng — Tjik,j)!i) dV =0
e=1 e

— Integrate by parts and use divergence theorem

Z/ wy U@k Tﬁkj mdS Z/ uvma@kcﬂ/ Z/ Wi %JTJdeV

e=1 O 2e

Z/ wkbkcﬂ/ =0
e=1 2

Introduces inter-element
contributions °
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Discontinuous Galerkin formulation

e |ntroduction of the numerical fluxes:
— On inter-element boundaries

E —_—

E / Wi i TjikT dS ~ — [[U)k’i]] Tjiknj_ dS
| 00Ny 01
— ﬁinqup
Tiielty = (Tjin) Ny + 1 <—h, [tp.g]

/

Ensures consistency Ensures stability (h = mesh size and g = parameter)

— Extension to weak enforcement of high-order BC

E
r—/-_-_"——.

E / T W T T 545105 dS ~ n@-u,*k,mﬁjikn; dsS
e—1 dQeNOT orQ2

— 5ijéqup
TiikTy = TjieNy; + Ny —h (nsup,an - Dup”@*) Tor
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Discontinuous Galerkin formulation

e Resulting bi-linear weak form:

CL(U,W) = b(w)

with CL(U, W) = Z/ ’wk,@U@de + Z/ u)k,@'j’rjikd-Q
r , e e e |
J'@' T
+ / [[wk,z']] [<Tj@'k> Uz + 1 </d Jikq p> [[’bbp,q]] ﬂr] dS
9,0 h

New inter-element

contributions < BT,
Jikqrp
— / Wg T ['rj@-knj + 1 ns’up,s’nqn?"] dS
070 h
.
b(w) — E / Wb dS) + / witrdS + / wk,mﬂﬁkds
o . ON Q) A 2
New inter-element S e
S — W NN —— Du,nn,dS
contributions P h
T
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Numerical Properties

o Consistency
— Exact solution u satisfies the DG formulation a(u, w)

o Definition of a new energy norm

|||V||| —ZH\/ i kiUk +ZH\/ zjklmnlnlm
| 2
+2.5

e

L?(Qe) L2(Qe)

J@'jklmn [[’U ,l]] n=
n

h

L2(0QeNd; By,)

. Stability

b(w)

a(u,u) > Cy () |||u||]” >0 with C,>0 if #> Ck, Ckdepends only on k.

« Convergence rate of the error with the mesh size:

llelll = 3~ CH=Dlulgges o
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FEM 3D-implementation

o Linear system KU, = fie With Kiuww = > Kfy + Z Kl + Z Kﬁkb

s

Volume term Interface term Boundary term
¢ VOIume term K(fkbl — / (Na,ij inkmnle,mn + Na,ic?jklmNb,m) dQ

Qe
— 10-node isoparametric tetrahedra
— 4 Gauss guadrature points
— Needs up to second derivative of shape functions

* Interface & Boundary terms
— No duplication of nodes (C° continuous)

— Geometric data generated from B-Rep
(Radovitzky 1999)

— Derivatives of shape functions of adjacent "

tetrahedra stored on the facet s~
— 6 quadrature points per interface
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Numerical Examples

* Bi-material tensile test
E,/E,=4
— Characteristic length I, with I/L=0.1
— Differential equation: E (t,.e —1*t,zzz2 )

e 2 meshes are considered:

— 6 & 18 tetrahedra on the length
— Convergence toward analytical solution
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Numerical Examples

+ Study of bending stiffness K
y ; roser |4

— Elastic bending stiffness K. = s =75 | h¢
= ;
- o K0
— Influence of characteristic length | on the effective stiffness: 7 = 2
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Numerical Examples

o Study of torsion stiffness K

— Elastic torsion stiffness K. //\"
( b
A
L
— Influence of characteristic length | on the
effective stiffness: y= K J/K "
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Conclusions & Future work

e Conclusions:

— Development of discontinuous Galerkin framework for linear strain gradient
elasticity:
« Single field formulation
» Strong enforcement of C° continuity
* No new degrees of freedom
* Weak enforcement of C! continuity
» Higher order Dirichlet condition enforced weakly
— Implementation in a 3D finite-elements code
— Passes standard patch tests

— Size effects of gradient law demonstrated
e Future work

— Consideration of the symmetrization term (super-convergence in L2-norm)
— Application to crystal plasticity
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