

Development of discontinuous Galerkin method for linear strain gradient elasticity

R Bala Chandran

Computation for Design and Optimizaton
Massachusetts Institute of Technology
Cambridge, MA

L. Noels*

Aerospace and Mechanical Engineering Department
University of Liège
Belgium

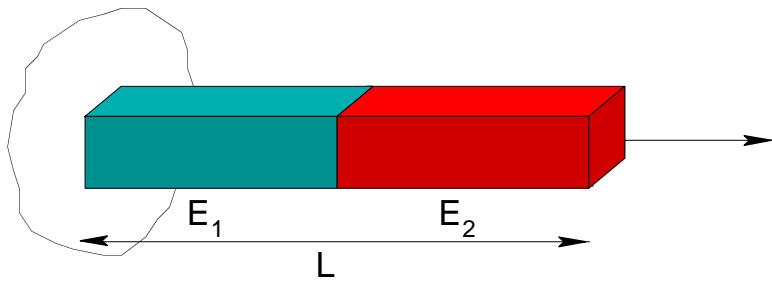
R. Radovitzky

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, MA

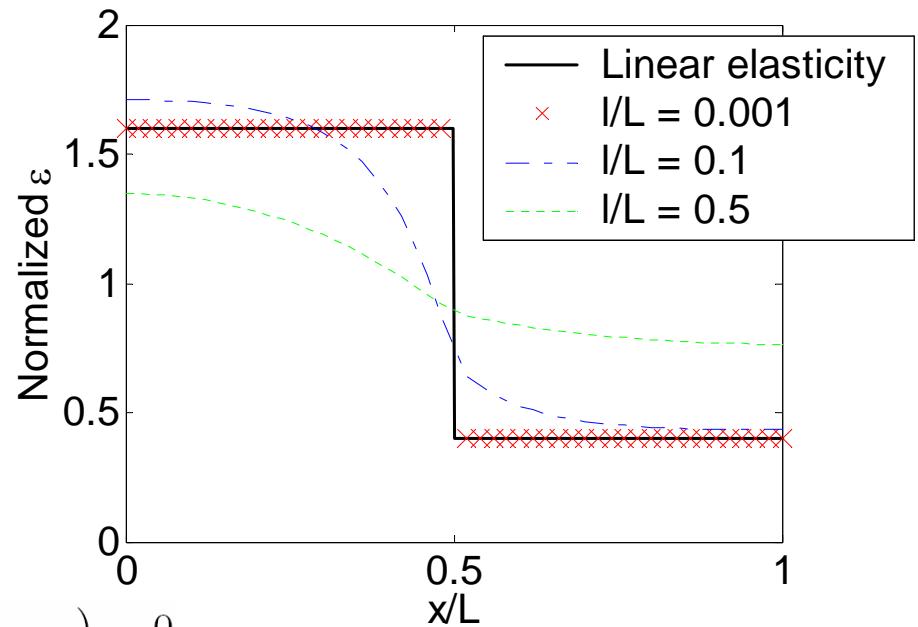
*9th US National Congress on Computational Mechanics
San Francisco, California, USA, July 23-26, 2007*

Introduction & Motivation

- Length scales in modern technology are now of the order of the micrometer or nanometer
- At these scales, material laws depend on strain but also on strain-gradient
- Example:
 - Bi-material tensile test:



- $E_1/E_2=4$
- Characteristic length l
- Differential equation: $E (u_{,xx} - l^2 u_{,xxxx}) = 0$



Introduction & Motivation

- Introduction of strain-gradient effect in numerical simulations
 - Domain of applications:
 - Stress concentrations (around hole, at crack tip, ...)
 - Grain size effect on polycrystalline yield strength
 - Void growth
 - ...
 - Finite elements framework
 - In the general 3D case, shape functions are not C^1 , which prevents the direct evaluation of the strain gradients
- Idea: enforcing weakly the C^1 continuity by recourse to discontinuous Galerkin methods

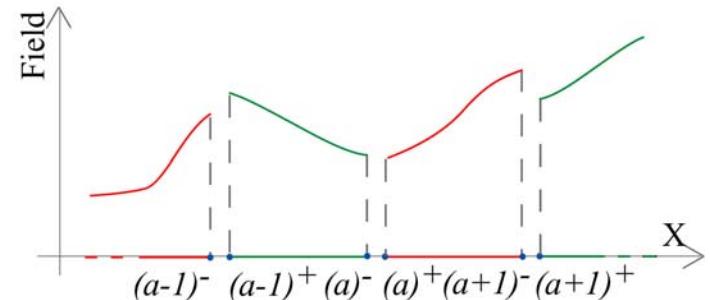
Introduction & Motivation

- Discontinuous Galerkin methods

- Finite element discretizations which allow for jump across elements
 - Compatibility of the field variable or its spatial derivative is imposed in a weak sense
 - Stability enforced with a quadratic interelement integrals

- Application of discontinuous Galerkin methods in solid mechanics

- Allow weak enforcement of C^0 continuity:
 - Non-linear mechanics (Ten Eyck and Lew 2006, Noels and Radovitzky 2006)
 - Reduction of locking for shells (Güney et al. 2006)
 - Beams and plates (Arnold et al. 2005, Celiker and Cockburn 2007)
 - Allow weak enforcement of C^1 continuity (strong enforcement of C^0):
 - Beams and plates (Engel et al. 2002)
 - Strain gradient (1D) (Molari et al. 2006)
 - Kirchhoff-Love shells (Noels and Radovitzky 2007)



Introduction & Motivation

- Purpose of the presentation is to develop a dG formulation for strain gradient elasticity, which
 - Is a single field formulation in displacement
 - Requires only the use of C^0 continuous interpolations
 - Is demonstrated to be consistent and stable
 - Is easy to integrate into a regular 3D finite-element code
 - Has C^1 continuity constrained in a weak sense
- Scope of this presentation
 - Strain gradient theory of elasticity
 - Discontinuous Galerkin formulation
 - Numerical properties
 - FEM 3D implementation
 - Numerical examples
 - Conclusions & Future work

Strain gradient theory of elasticity

- Strain gradient theory:

- At a material point stress is a function of strain and of the gradient of strain (*Toupin 1962, Mindlin 1964*)
- Strain energy $W = W(\epsilon_{ij}, \eta_{ijk})$ is assumed to be a function of strain and gradient of strain
- Low and high order stresses introduced as the work conjugate of low and high order strains

$$\sigma_{ij} = \frac{\partial W}{\partial \epsilon_{ij}} = C_{ijkl} \epsilon_{kl} \quad \tau_{ijk} = \frac{\partial W}{\partial \eta_{ijk}} = J_{ijklmn} \eta_{lmn}$$

- Governing PDE obtained from satisfying the virtual work statement

$$\int_{B_0} (\sigma_{ij} \delta \epsilon_{ij} + \tau_{ijk} \delta \eta_{ijk}) dV = \int_{B_0} \hat{b}_k \delta u_k dV + \int_{\partial_N B} \hat{t}_k \delta u_k dS + \int_{\partial_M B} \hat{r}_k \delta u_{k,l} n_l dS$$

↓ ↓ ↓

Body forces Low order tractions Double stress tractions

Strain gradient theory of elasticity

- The boundary value problem:

- Local equation

$$0 = b_k + (\sigma_{ik} - \tau_{jik,j})_{,i} \text{ in } B_0$$

- Natural boundary conditions

$$\begin{aligned} \hat{t}_k &= n_i (\sigma_{ik} - \partial_j \tau_{ijk}) + n_i n_j \tau_{ijk} (D_p n_p) - \\ &\quad \cdot D_i (n_j \tau_{ijk}) \text{ on } \partial_N B_0 \end{aligned}$$

$$\hat{r}_k = n_i n_j \tau_{ijk} \text{ on } \partial_M B_0$$

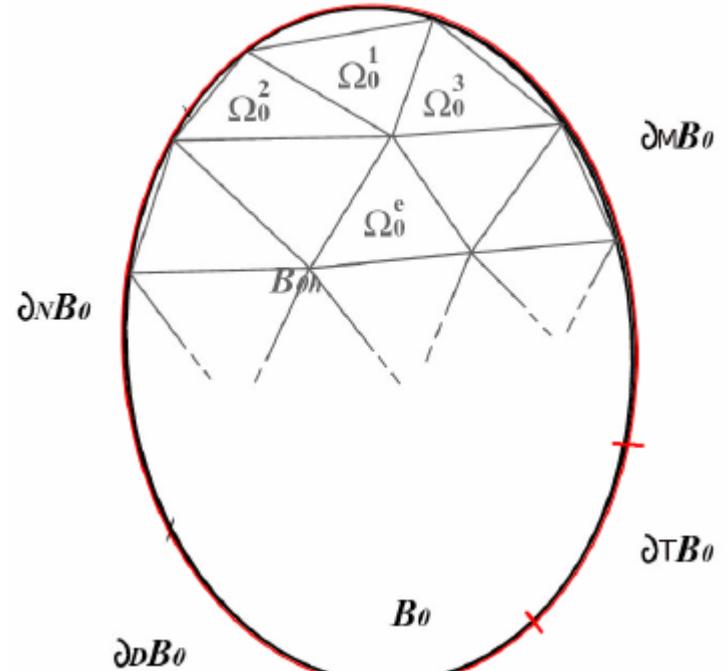
- Essential boundary conditions

$$u_k = \bar{u}_k \text{ on } \partial_D B_0$$

$$n_i u_{k,i} = \bar{D} u_{k,i} \text{ on } \partial_T B_0$$

- Finite-elements discretization

$$\bigcup_{e=1}^E \Omega_e = B_{0h} \approx B_0$$



$$\partial_N B_0 \cup \partial_D B_0 = \partial B_0$$

$$\partial_M B_0 \cup \partial_T B_0 = \partial B_0$$

$$\partial_N B_0 \cap \partial_D B_0 = \emptyset$$

$$\partial_M B_0 \cap \partial_T B_0 = \emptyset$$

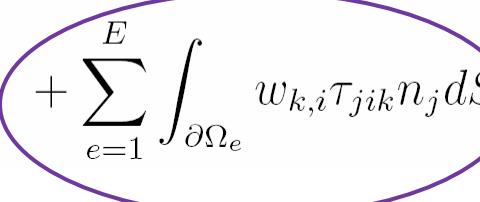
Discontinuous Galerkin formulation

- Derivation of the weak form:
 - Choose the appropriate space for the test (u_h) and trial functions (w), which:
 - Are C^0 on the whole domain
 - Are \mathbb{P}^k in each element
 - Satisfy the essential BC's
 - Multiply the local equation by a test function

$$\sum_{e=1}^E \int_{\Omega_e} w_k \left(b_k + (\sigma_{ik} - \tau_{jik,j})_{,i} \right) dV = 0$$

- Integrate by parts and use divergence theorem

$$\sum_{e=1}^E \int_{\partial\Omega_e} w_k (\sigma_{ik} - \tau_{jik,j}) n_i dS - \sum_{e=1}^E \int_{\Omega_e} w_{k,i} \sigma_{ik} dV - \sum_{e=1}^E \int_{\Omega_e} w_{k,ij} \tau_{jik} dV$$

Introduces inter-element contributions ← 

$$+ \sum_{e=1}^E \int_{\partial\Omega_e} w_{k,i} \tau_{jik} n_j dS + \sum_{e=1}^E \int_{\Omega_e} w_k b_k dV = 0$$

Discontinuous Galerkin formulation

- Introduction of the numerical fluxes:

- On inter-element boundaries

$$\sum_{e=1}^E \int_{\partial\Omega_e \cap \partial_I \Omega} w_{k,i} \tau_{jik} n_j dS \approx - \int_{\partial_I \Omega} \llbracket w_{k,i} \rrbracket \widehat{\tau_{jik} n_j^-} dS$$

$$\widehat{\tau_{jik} n_j} = \langle \tau_{jik} \rangle n_j + n_j \left\langle \frac{\beta J_{jikqrp}}{h} \right\rangle \llbracket u_{p,q} \rrbracket n_r$$

Ensures consistency

Ensures stability (h = mesh size and β = parameter)

- Extension to weak enforcement of high-order BC

$$\sum_{e=1}^E \int_{\partial\Omega_e \cap \partial_T \Omega} n_i w_{k,l} n_l \tau_{jik} n_j dS \approx \int_{\partial_T \Omega} n_i w_{k,l} n_l \widehat{\tau_{jik} n_j^-} dS$$

$$\widehat{\tau_{jik} n_j} = \tau_{jik} n_j + n_j \frac{\beta J_{jikqrp}}{h} (n_s u_{p,s} n_q - \overline{D u_p} n_q) n_r$$

Discontinuous Galerkin formulation

- Resulting bi-linear weak form:

$$a(\mathbf{u}, \mathbf{w}) = b(\mathbf{w})$$

with $a(\mathbf{u}, \mathbf{w}) = \sum_e \int_{\Omega_e} w_{k,i} \sigma_{ik} d\Omega + \sum_e \int_{\Omega_e} w_{k,ij} \tau_{jik} d\Omega$

New inter-element contributions $\left\{ \begin{array}{l} + \int_{\partial_I \Omega} \llbracket w_{k,i} \rrbracket \left[\langle \tau_{jik} \rangle n_j + n_j \left\langle \frac{\beta J_{jikqrp}}{h} \right\rangle \llbracket u_{p,q} \rrbracket n_r \right] dS \\ - \int_{\partial_T \Omega} w_{k,l} n_l n_i \left[\tau_{jik} n_j + n_j \frac{\beta J_{jikqrp}}{h} n_s u_{p,s} n_q n_r \right] dS \end{array} \right.$

$$b(\mathbf{w}) = \sum_e \int_{\Omega_e} w_k b_k d\Omega + \int_{\partial_N \Omega} w_k \hat{t}_k dS + \int_{\partial_M \Omega} w_{k,l} n_l \hat{r}_k dS$$

New inter-element contributions $\left\{ \begin{array}{l} - \int_{\partial_T \Omega} w_{k,l} n_l n_i n_j \frac{\beta J_{jikqrp}}{h} \overline{Du_p} n_q n_r dS \end{array} \right.$

Numerical Properties

- Consistency
 - Exact solution \mathbf{u} satisfies the DG formulation $a(\mathbf{u}, \mathbf{w}) = b(\mathbf{w})$
- Definition of a new energy norm

$$\begin{aligned}\|\mathbf{v}\|^2 &= \sum_e \left\| \sqrt{C_{ijkl}} v_{k,l} \right\|_{L^2(\Omega^e)}^2 + \sum_e \left\| \sqrt{J_{ijklmn}} v_{n,lm} \right\|_{L^2(\Omega^e)}^2 \\ &\quad + \sum_e \frac{1}{2} \left\| \sqrt{\frac{J_{ijklmn}}{h}} \llbracket v_{n,l} \rrbracket \cdot n_m^- \right\|_{L^2(\partial\Omega^e \cap \partial_I B_h)}^2\end{aligned}$$

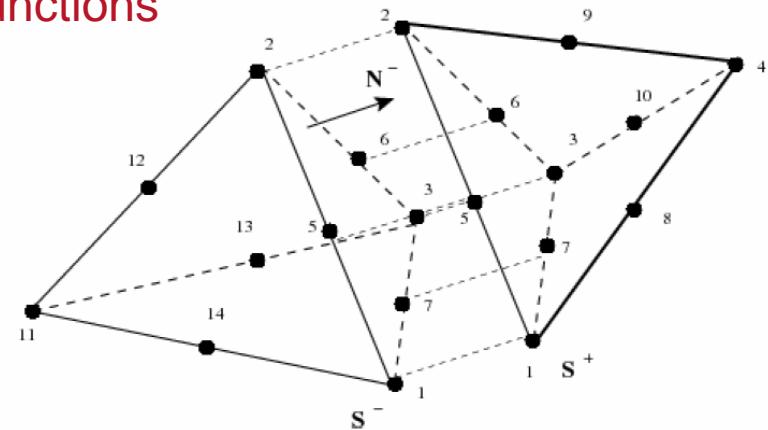
- Stability
 - $a(\mathbf{u}, \mathbf{u}) \geq C_2(\beta) \|\mathbf{u}\|^2 > 0$ with $C_2 > 0$ if $\beta > C^k$, C^k depends only on k .
- Convergence rate of the error with the mesh size:

$$\|e\| = \sum_e Ch^{k-1} |\mathbf{u}|_{\mathbf{H}^{k+1}(\partial\Omega^e)}$$

FEM 3D-implementation

- Linear system $K_{iakb}U_{kb} = f_{ia}$ with $K_{iakb} = \sum_e K_{iakb}^e + \sum_I K_{iakb}^I + \sum_B K_{iakb}^B$

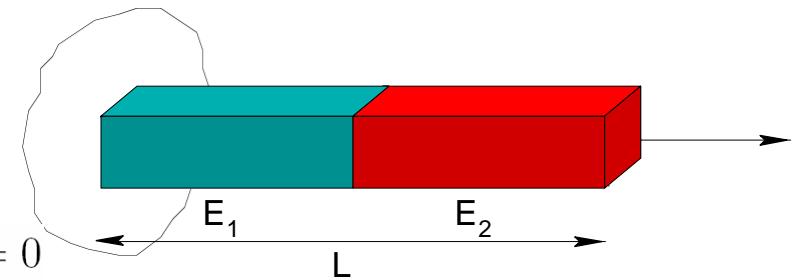
- Volume term $K_{akbl}^e = \int_{\Omega_e} (N_{a,ij} J_{jikmnl} N_{b,mn} + N_{a,i} C_{iklm} N_{b,m}) d\Omega$
 - 10-node isoparametric tetrahedra
 - 4 Gauss quadrature points
 - Needs up to second derivative of shape functions
- Interface & Boundary terms
 - No duplication of nodes (C^0 continuous)
 - Geometric data generated from *B-Rep* (Radovitzky 1999)
 - Derivatives of shape functions of adjacent tetrahedra stored on the facet
 - 6 quadrature points per interface



Numerical Examples

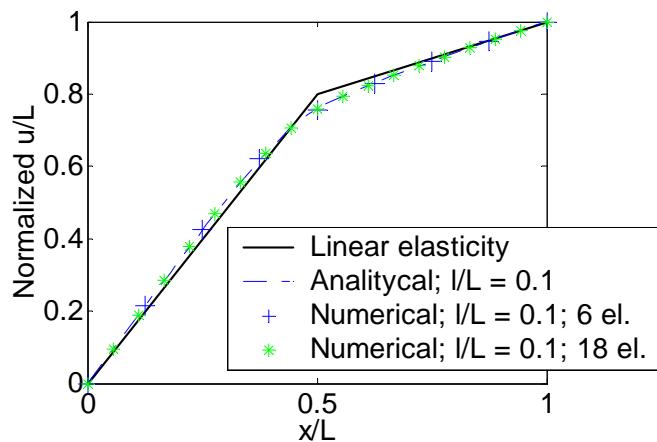
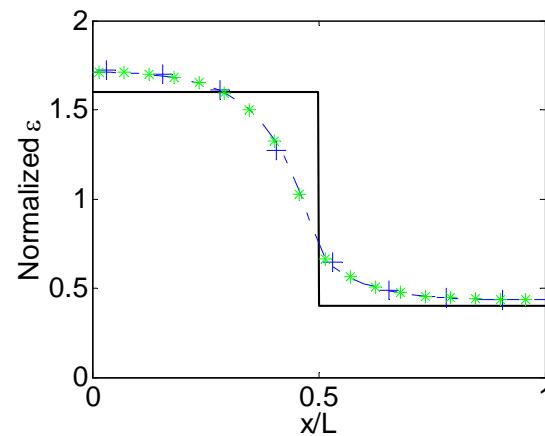
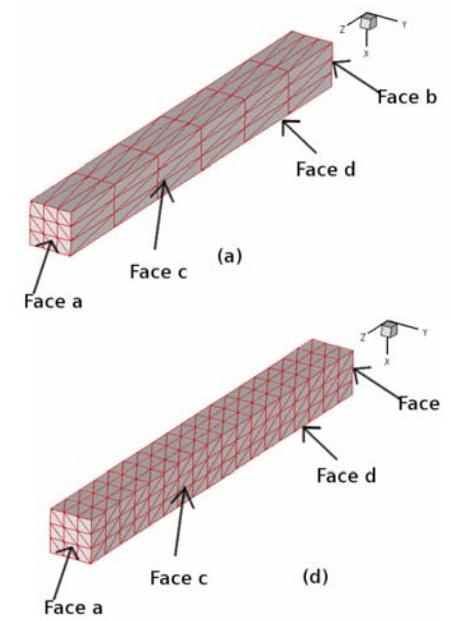
- Bi-material tensile test

- $E_1/E_2=4$
 - Characteristic length l , with $l/L=0.1$
 - Differential equation: $E (u_{,xx} - l^2 u_{,xxxx}) = 0$



- 2 meshes are considered:

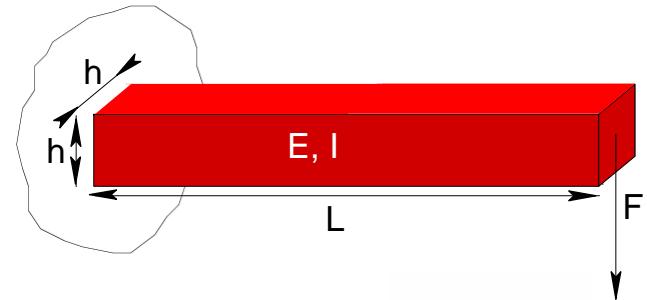
- 6 & 18 tetrahedra on the length
 - Convergence toward analytical solution



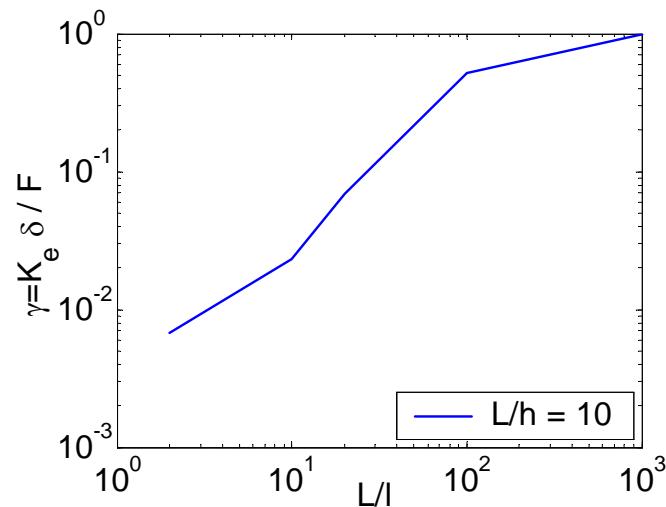
Numerical Examples

- Study of bending stiffness K

- Elastic bending stiffness $K_e = \frac{F}{\delta} = \frac{3EI}{L^3}$



- Influence of characteristic length l on the effective stiffness: $\gamma = \frac{K_e \delta}{F}$

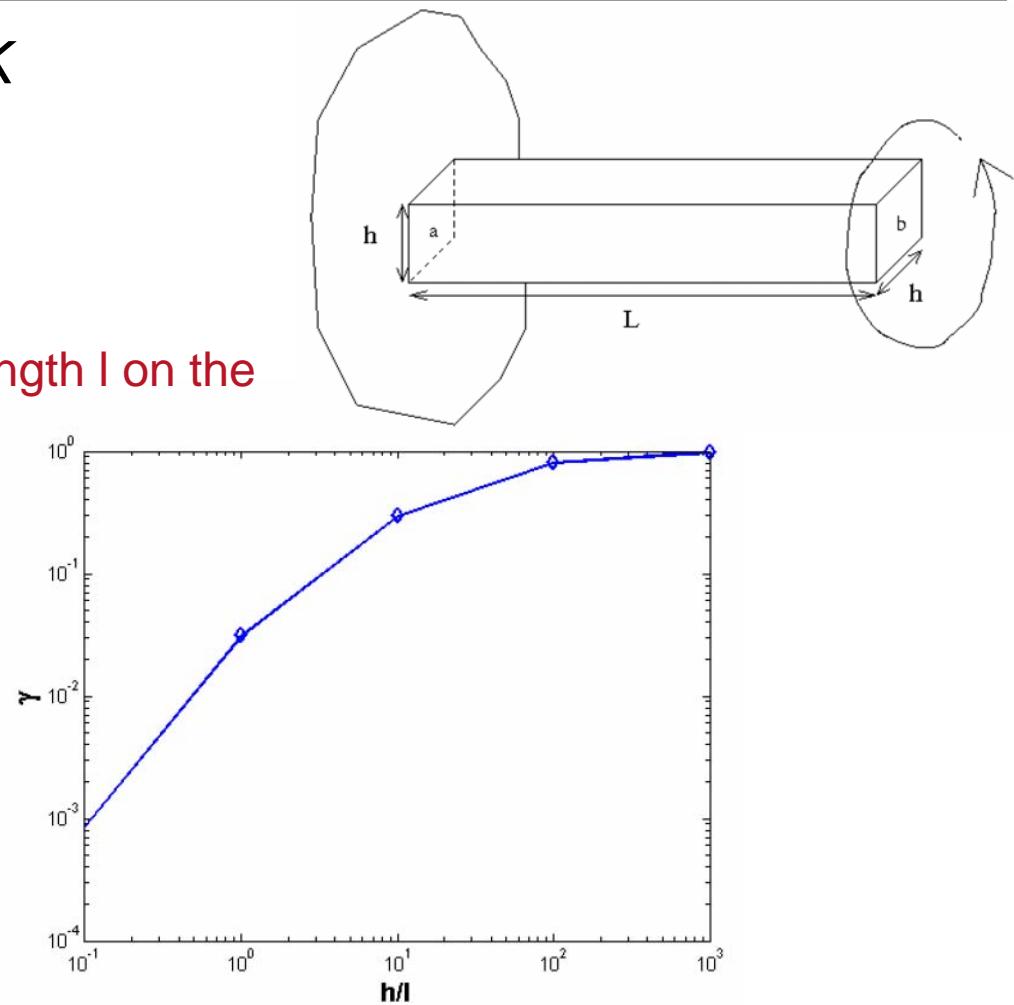


Numerical Examples

- Study of torsion stiffness K

- Elastic torsion stiffness K_e

- Influence of characteristic length l on the effective stiffness: $\gamma = K_e/K$



Conclusions & Future work

- Conclusions:
 - Development of discontinuous Galerkin framework for linear strain gradient elasticity:
 - Single field formulation
 - Strong enforcement of C^0 continuity
 - No new degrees of freedom
 - Weak enforcement of C^1 continuity
 - Higher order Dirichlet condition enforced weakly
 - Implementation in a 3D finite-elements code
 - Passes standard patch tests
 - Size effects of gradient law demonstrated
- Future work
 - Consideration of the symmetrization term (super-convergence in L2-norm)
 - Application to crystal plasticity