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Introduction

• Discontinuous Galerkin methods
– Finite-element discretization 

allowing for inter-elements 
discontinuities 

– Weak enforcement of compatibility 
equations and continuity (C0 or C1, …) 
through interelement integrals called numerical fluxes

– Stability is ensured with quadratic interelement integrals
• Applications of DG to solid mechanics

– Allowing weak enforcement of C0 continuity:
• Non-linear mechanics (Noels and Radovitzky 2006; Ten Eyck and Lew 2006)
• Reduction of locking  for shells (Güzey et al. 2006)
• Beams and plates (Arnold et al. 2005, Celiker and Cockburn 2007)

– Allowing weak enforcement of C1 continuity (strong enforcement of C0):
• Beams and plates (Engel et al. 2002)
• Strain gradient continuity (Molari et al. 2006)
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Introduction

• Purpose of the presentation: to develop a DG formulation
– for Kirchhoff-Love shells,
– which is a C0 displacement formulation,
– without addition of degrees of freedom,
– where C1 continuity is enforced by DG interface terms,
– which leads to an easy implementation of the shell elements in the 

reduced coordinates,
– without locking in bending 

• Scope of the presentation
– Kirchhoff-Love shells
– DG formulation
– Numerical properties
– Implementation
– Numerical examples
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Kirchhoff-Love shells

• Kinematics of the shell
– Shearing is neglected

– Small displacements formulation

– Resultant linear and angular equilibrium equations

and ,

in terms of the resultant stress components        and        , with

, and
and are the resultant applied tension and torque
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• Constitutive behavior and BC
– Resultant strain components

high order

– Linear constitutive relations  

– Boundary conditions

and

Kirchhoff-Love shells
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Discontinuous Galerkin formulation

• Hu-Washizu-de Veubeke functional 
– Polynomial approximation uh∈Pk ⊂ C0

– New inter-elements term accounting for 
discontinuities in the derivatives
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Discontinuous Galerkin formulation

• Minimization of the functional (1/2)
– With respect to the resultant strains        and

and
– With respect to the resultant stresses        and

Discontinuities result in new terms (lifting operators)

and in the introduction of a stabilization parameter β.

– With respect to the displacement field balance equation (next slide)
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Discontinuous Galerkin formulation

• Minimization of the functional (2/2)
– With respect to the displacement field uh

– Reduction to a one-field formulation

Mesh size

with
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• Consistency
– Exact solution u satisfies the DG formulation

• Definition of an energy norm

• Stability  

• Convergence rate of the error in the mesh size hs

– Energy norm:

–– LL2 norm:

Numerical properties

k+1 (if k>0)k+1 (if k>2)≥ k-1

kk-1k-1

Pure 
membrane

Pure 
bending

General

Motivates the use of 
quadratic elements

with C>0 if β > Ck, Ck depends only on k.
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Implementation of 8-node bi-quadratic quadrangles

• Membrane equations

– Solved in (ξ1, ξ2) system
– 3 X 3 Gauss points with EAS method or 

2 X 2 Gauss points

• Bending equations

– Solved in (ξ1, ξ2) system
– 3 X 3 or 2 X 2 Gauss points 
– Locking taken care of by the 

DG formulation

Straightforward implementation of the equations
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Implementation of 8-node bi-quadratic quadrangles

• Interface equations

– Interface element s solved in ξ1 system
– 3 or 2 Gauss points
– Neighboring elements Se– and Se+

evaluate values (∆t, δ∆t, ρ, δρ, Hm)
on the interface Gauss points and
send them to the interface element s

– Local frame (ϕ0,1, ϕ0,2, t0) of interface
element s is the average of the neighboring
elements’ frames
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Implementation of 16-node bi-cubic quadrangles

• Membrane equations
– Solved in (ξ1, ξ2) system
– 4 X 4 Gauss points 

(without EAS method)

• Bending equations
– Solved in (ξ1, ξ2) system
– 4 X 4 Gauss points

• Interface equations
– Interface element s

solved in ξ1 system
– 4 Gauss points
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• 8-node bi-quadratic quadrangles
Membrane test Bending test

– Bending test:
• Instability if β ≤ 10 and locking if β > 1000
• Convergence rate k-1 in the energy-norm and k+1 in the L2-norm

Numerical example: Cantilever beam (L/t = 10)
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• 8-node bi-quadratic quadrangles
Clamped/Clamped Supported/Clamped Supported/Supported

– Instability if β ≤ 10 and locking if β > 1000

Numerical example: Plate bending (L/t = 100)
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• 8-node bi-quadratic quadrangles

Numerical example: Pinched ring (R/t = 10)
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Bending and membrane coupling
• Instability if β ≤ 10
• Convergence: k-1 in the energy-

norm and k in the L2-norm
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8-node bi-quad. 16-node bi-cub.

Numerical example: Pinched open-hemisphere (R/t = 250)
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• Instability if β ≤ 10
• Locking if β > 1000 (quad.) 

and if β > 100000 (cubic)
• Convergence in L2 norm: k+1
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Double curvature
• Convergence in energy-norm: 
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8-node bi-quad. 16-node bi-cub.

Numerical example: Pinched cylinder (R/t = 100)
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Complex membrane state
• Instability if β ≤ 10
• Locking if β > 10000 (quad.) 

and if β > 100000 (cubic)
• Convergence in L2-norm: k
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8-node bi-quad. 16-node bi-cub.

Numerical example: Pinched cylinder (R/t = 100)
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Complex membrane state
• Convergence rate k-1 in 

the energy-norm
• Convergence improved 

with k increasing
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Conclusions

• Development of a discontinuous Galerkin framework for 
Kirchhoff-Love shells:

– Displacement formulation (no additional degree of freedom)
– Strong enforcement of C0 continuity
– Weak enforcement of C1 continuity

• Quadratic elements:
– Method is stable if β ≥ 100
– Bending locking avoided if β ≤ 1000
– Membrane equations integrated with EAS or Reduced integration

• Cubic elements:
– Method is stable if β ≥ 100
– Bending locking avoided if β ≤ 100000
– Full Gauss integration

• Convergence rate:
– k-1 in the energy norm
– k or k+1 in the L2-norm




