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Introduction

* Discontinuous Galerkin methods
— Finite-element discretization

allowing for inter-elements 1\ / /
/ |
1
I
1

/N

Field

discontinuities

— Weak enforcement of compatibility
equations and continuity (C°% or C7, ...
through interelement integrals called numerical fluxes

— Stability is ensured with quadratic interelement integrals

 Applications of DG to solid mechanics

— Allowing weak enforcement of CO continuity:
* Non-linear mechanics (Noels and Radovitzky 2006; Ten Eyck and Lew 2006)
* Reduction of locking for shells (Glzey et al. 2006)
« Beams and plates (Arnold et al. 2005, Celiker and Cockburn 2007)
— Allowing weak enforcement of C' continuity (strong enforcement of CO):
 Beams and plates (Engel et al. 2002)
 Strain gradient continuity (Molari et al. 2006)
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Introduction

* Purpose of the presentation: to develop a DG formulation

for Kirchhoff-Love shells,

which is a CO displacement formulation,

without addition of degrees of freedom,

where C! continuity is enforced by DG interface terms,

which leads to an easy implementation of the shell elements in the
reduced coordinates,

without locking in bending

e Scope of the presentation

Kirchhoff-Love shells
DG formulation
Numerical properties
Implementation
Numerical examples
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Kirchhoff-Love shells

» Kinematics of the shell

— Shearing is neglected

t v — /)\'U' i
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— Small displacements formulation

Poa=Poatu, wmp tu)=t)+At(u) Al 2
13 =
— 7

— Resultant linear and angular equilibrium equations =

I - 1 - )
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in terms of the resultant stress components 7% and m*’, with
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n® = n""postNm" o5

, o mo = m*%po s+ Mty and 1=\, + )\ﬁ’-}}”‘z:j“tpg_ﬂ

n”* and m* are the resultant applied tension and torque
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Kirchhoff-Love shells

« Constitutive behavior and BC
— Resultant strain components

1 1
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Linear constitutive relations
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— Boundary conditions
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Discontinuous Galerkin formulation

 Hu-Washizu-de Veubeke functional

— Polynomial approximation u,ePkc CO

— New inter-elements term accounting for
discontinuities in the derivatives
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Discontinuous Galerkin formulation

* Minimization of the functional (1/2)
— With respect to the resultant strains ¢,5and p, o5

) 737 = HO ey, s and my’ = HEPY phos
— With respect to the resultant stresses 725 and 77

1 1

Chad = =%P0a - WUh g+ —Uha - Pog, N A
2 ' 2 _

/
— phn,fj = P00 " At (uh),;g + uh,o- : tU,,ﬁ "{ Z 'r:;j ([[At]]) I\‘ -Ac
sedAe

Pr’as = Poa - At (Un) 5+ o - tos X Pris ([AL]) on F€ 0A.

Discontinuities result in new terms (lifting operators)

/ s 5 ([AE]) 6m*jod A = [, [At] - <cp0.,.35'rh”'-”30> v doA
An

and in the introduction of a stabilization parameter f.

— With respect to the displacement field == balance equation (next slide)
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Discontinuous Galerkin formulation

* Minimization of the functional (2/2)

— With respect to the displacement field u,,
— Reduction to a one-field formulation
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Numerical properties

« Consistency

— Exact solution u satisfies the DG formulation a (u, du) =b(5u)
* Definition of an energy norm

—avf?
\/ Hm..j[] (‘PU.(‘[‘ ) Ati + U, - tU.d)

2

L2(A.)

2
. a3 ]
|||u|| I.2 = Z \j Hn 70 ((pU.(k U3 + U - 900.5) + Z

e 2 L2(Ae e
fH —af3 =
D m] =

Z I h J0 Po,a " [[At]] V__.-j
SEOL A ° L2(s)

. Stability

a (un, us) = C(B) |||usl||* with C>0 if #> Ck, Ckdepends only on k.

» Convergence rate of the error e = u, — u* in the mesh size hs
General Pure Pure
bending |[membrane :
Motivates the use of
— Energy norm: T k-1 @ K o _
guadratic elements
— L2 norm: e any| 2k | k+1 (ifk>2) [k+1 (if k>0)
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Implementation of 8-node bi-quadratic quadrangles

 Membrane equations
af, (n, ) = [ 2 (wn) 30205 (w) Fod A

— Solved in (&1, £€2) system

— 3 X 3 Gauss points with EAS method or
2 X 2 Gauss points

» Bending equations
as, (up, 51:,):/:4 s () HEP 5p0s () Jod A

— Solved in (&1, &2) system

— 3 X 3or2 X2 Gauss points
— Locking taken care of by the
DG formulation

== Straightforward implementation of the equations
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Implementation of 8-node bi-quadratic quadrangles

 Interface equations
aj (up, ou) =/5 [At (uy)] - <@U?7H§f"55paﬁ (u) }0> vy dOA —I—/S [0At (u)] - <¢U,7H:f75pmg (up) _'0> vy dOA +
af3vyo
[t @l onps (TEE) [t ()] - pnavdos

— Interface element s solved in &' system

— 3 or 2 Gauss points

8 _ -
— Neighboring elements S~ and S+ 8 -~
evaluate values (At, dAt, p, op, H,) /
on the interface Gauss pointsand ¢, Se-

send them to the interface elements .

— Local frame (@, 1, ¢,, to) of interface 4™~
element s is the average of the neighboring
elements’ frames
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Implementation of 16-node bi-cubic quadrangles

 Membrane equations
— Solved in (&1, £2) system
— 4 X 4 Gauss points
(without EAS method)

» Bending equations

— Solved in (&1, &2) system
— 4 X 4 Gauss points

* |Interface equations

— Interface element s
solved in &' system

— 4 Gauss points
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Numerical example: Cantilever beam (L/t = 10)

« 8-node bi-quadratic quadrangles

Membrane test _ Bending test

1.5 10° 10° ‘
__/ /
[%e] 1
1 4 w10
E — B=10 5 — B=10 o107} — p=10?
= B —— = 2 (= B —— = 2 - —_— = 4
So0s p=102 402 p=102 5 p=10¢
— B=10 — B=10 — p=10
— p=10° — p=10° —— Membrane
—— Membrane 3 —— Membrane - |
0 10 -2 ‘-1 0 10 -2 ‘-1 0
0 0.05 0.1 10 10 10 10 10 10
h®/ L hS/ L hS/ L

— Bending test:

* Instability if #< 10 and locking if #> 1000
« Convergence rate k-1 in the energy-norm and k+1 in the L2-norm
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Numerical example: Plate bending (L/t = 100)

« 8-node bi-quadratic quadrangles
Clamped/Clamped Supported/Clamped Supported/Supported

o g ii\\\\i\\i\\\l\ | E ii Wi i i i |
ym. Sym.

\\\\\\\\\\\\ 11114y

|
Sym.

— B=10
— p=10°
— p=10* ]
— p=10°8
+ p=10°

lllelll

Normalized §
Error on §

0 005 01 015 02 - -
hS/ L hS/ L

— Instability if < 10 and locking if 5> 1000

h%/ L
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Error on §

Numerical example: Pinched ring (R/t = 10)

« 8-node bi-quadratic quadrangles

0.5

B =100 T — B 102
« — p=10
fo — p=10°
o 30.8 — p=10°
Ny O = + p=108
= £
— hSL=1/2 0.6/
N © hYL=1/8
— Exact -
0% 20 40 60 80 0402 04_ 06 08 1
h/ L
10° . 10° Equivalsnt von Mises stress on Uooer sics of shsll
.| 0.000 %.00s+005 1.605+00
5107} Bending and membrane coupling
102  Instability if <10
— Bigz _— @ « Convergence: k-1 in the energy-
o'l g;1o4 1 norm and k in the L2-norm
10 - 107 g 408 - 10
+ p=108
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Error on §

Normalized §

Numerical example: Pinched open-hemisphere (R/t = 250)

8-node bi-quad.

16-node bi-cub.

- = 10 - B= 10 L L
"o | — §=1o2 "o — p=10?
— B= 104 — B= 102
<l — p=10° 4l — p=10" ||
Cpm10t 3 S peo®
T
£
2 0.5¢
0 0 e PR
0 015 02 0 005 01 015 0.2
S hS/ R
10° —p=10 10° + / Displacernents
— B =102 0.000 0465 0,930 .40 .86
gy — p=10* 107} +
107} pe10f | |
v =108 | |5 107 — B=182 Double curvature
O —_— - g .
0%, § oot - Instability if < 10
107 1 —p=10°  Locking if g > 1000 (quad.)
o 4 r o p=10 and if 2> 100000 (cubic)
107 10° 0 ) 0 )
10 100 10 « Convergence in L4 norm: k+1
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Numerical example: Pinched open-hemisphere (R/t = 250)

0

8-node bi-quad.

16-node bi-cub.

10 —— 10 T
107}
107 [
107}
— p=10
, —— p=10°
10 —— p=10* -
10” 10" 10 PT 10" 10°
hS/ R - ﬁ =10 hs/ R
+ p=108
1t 1l
o< 0.8 o= 0.8
3 2
S 06 N 0.6}
T ]
£
E 04 S 04
zZ =z
0.2} 0.2}
. | I I 0 I I I .
00 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Number of degrees of freedom Number of degrees of freedom

Double curvature

« Convergence in energy-norm:
k-1

— Present; g = 102
— Mix. EAS form., Simo
+  MITC9, Bathe
O  MITC16, Bucalem
—— Disp. form. SRI Q8, MacNeal
—— Mix. EAS hex., Kasper
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Normalized §

Error on §

Numerical example: Pinched cylinder (R/t = 100)

8-node bi-quad. 16-node bi-cub.

1.5 : 1.5
— p=10 — =10
> — p=10? . — p=10?
1t —p=10*| | | & 1 — p=10%|
— = 108 % — B= 109
S
0.5/ 1 E 0.5¢ 1
% . 1 % 0.5 1
hS/ L hS/ L
10° ‘ 10°
( Displdcernsents
>107} et T Ei182 , 860 =180 0000 180 56.0
@ g —— = 10‘; A@
107 1 || W gt T B0 ! Complex membrane state
- =10 1 aps .
— g=102 - Instability if A< 10
10°L | p=10* 10° — | * Locking if g > 10000 (quad.)
10 o —p=10° 10 N 10 and if #> 100000 (cubic)

« Convergence in L2-norm: k
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Normalized §

lllell]
—
o

Numerical example: Pinched cylinder (R/t = 100)

8-node bi-quad.

0

10

| — =10

— B =102
— p=10* 1
 a= 106
B B =10
10 - 0
10 10 10
hS/ R
1,
>0.8}
0.6}
0.4¢
0.2}
% 30

10 20
Number of elements on 1 edge

16-node bi-cub.

0

10 :
- 13 =10
— Bp=10°
— p=10*
T10" — p=10° A@
107 ‘
10 10° 10'
hS/ R
1 L
_vg>’0'8}: Present; p = 102
S o6l Mix. EAS form., Simo
i Disp. form., Simo
€ o4l MITC4, Bathe
S MITC9, Bathe
0.2l MITC16, Bucalem
’ Subdivision, Cirak
‘ \
O0 30

10 20
Number of elements on 1 edge

Complex membrane state

« Convergence rate k-1 in
the energy-norm

« Convergence improved
with k increasing
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Conclusions

 Development of a discontinuous Galerkin framework for
Kirchhoff-Love shells:

— Displacement formulation (no additional degree of freedom)
— Strong enforcement of CO continuity
— Weak enforcement of C' continuity

« Quadratic elements:

— Method is stable if 5= 100
— Bending locking avoided if #< 1000
— Membrane equations integrated with EAS or Reduced integration

e Cubic elements:

— Method is stable if 5= 100
— Bending locking avoided if #< 100000
— Full Gauss integration

« Convergence rate:

— k-1 in the energy norm
— kork+1inthe L2-norm
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