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ABSTRACT 

This paper presents the development of small-scale solar Organic Rankine Cycles for 

rural electrification in remote areas of Lesotho. It is subdivided in two parts. The first part 

deals with the success conditions of decentralized rural electrification projects. Through 

a literature survey, relevant guiding principles and recommendations are formulated. The 

second part of the paper describes the proposed system, which is designed in agreement 

with the formulated recommendations. A framework for benchmarking the performance 

and cost of various micro-utility platforms and rural electrification distribution models is 

proposed. 
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INTRODUCTION 

Energy access is a central preoccupation in the field of international development. A 

decade following the establishment of the Millennium Development Goals (MDGs), a 

significant fraction (over 20%) of the world population continues to lack access to modern 

forms of energy such as electricity, LPG or renewable sources of energy [1]. Thermal 

energy demand is mainly met by traditional fuels (wood, dung, etc.), that are inefficient 

when converted to their final use and can cause negative externalities, such as e.g., health 

problems and environmental degradation [2]. 

The link between social indicators and energy consumption is significant for the 

majority of the countries in the world. Increased energy access can improve education, 

health or environmental conditions in developing countries, where the greatest effects on 

well-being (measured via the human development index) are being realized at the lowest 

per capita energy consumption rates [3]. 

Energy access includes electricity access in urban, peri-urban and rural areas, in other 

words a disparate geography that may encompass a wide range of production modes. The 

specific benefits of electricity are commonly understood to include, for example, an 

increase in the standard of living, improved education through e.g. lighting, or decreased 

time spent on domestic tasks such as wood collection. It cannot, however, be concluded that 

access to electricity automatically induces local production activity or economic growth [4]. 

Energy access appears to be a necessary but not sufficient condition to drive development. 

To provide electricity to remote areas of developing countries, decentralized power 

generation is often a more effective option than centralized power generation plants [5]. 

mailto:squoilin@ulg.ac.be
http://dx.doi.org/10.13044/j.sdewes.2013.01.0015


Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2013 
Volume 1, Issue 3,  pp 199-212 

 

Page 200 

Decentralized power generation can be provided through a number of technologies such as 

diesel generators, solar photovoltaic (PV) systems, micro-hydraulic systems or biomass 

combustion. Each technology features inherent advantages and drawbacks, e.g. diesel 

engines have a high availability but are a source of atmospheric pollution and require 

expensive fuel; PV systems present a lower carbon footprint but necessitate high investment 

costs and rely on expensive and unreliable battery storage to overcome intermittency, and so 

forth. 

In this work, an alternative technology is proposed, consisting in the coupling between a 

low-cost solar thermal concentrator and an Organic Rankine Cycle engine. The aim of the 

technology is to integrate within a distributed generation framework to provide rural areas 

of developing countries with a micro-grid platform that can be manufactured and assembled 

locally (unlike PV collectors) and can replace or supplement Diesel generators in off grid 

areas, by generating clean power at a lower levelized cost. 

The first part of the paper deals with the success conditions of decentralized rural 

electrification projects. Through a literature survey, different guiding principles and 

recommendations are formulated. The second part of the paper describes the proposed 

system, and the design trade-offs that are considered in order to agree with the formulated 

guidelines. 

SUCCES FACTORS OF RURAL ELECTRIFICATION PROJECTS 

The history of development projects, in particular for rural electrification, has 

included high failure rates, often attributed to planning omissions where local 

institutions, the socio-economic environment or the hierarchical links between the 

different local actors were not taken into account [6]. 

This section aims at establishing success factors through a review of rural 

electrification projects, by reviewing examples of successes and failures where 

underlying factors were identified and classified. The proposed analysis is transversal: 

different types of criteria (economic, technical, social) are considered and analysed. 

Criteria related to the institutional arrangements of the project, while important, are 

outside the scope of this study. According to Barnes [7] reporting eight success stories of 

rural electrification, the institutional model is not a critical element: he argues that these 

models are highly variable depending, for example, on the geographic configuration or 

socio-economic environment of the project and that it is preferable to respect relevant 

guiding principles within a project framework. The author acknowledges that 

institutional factors play a role in generating project objectives, funding implementation 

and evaluating and leveraging outcomes, and these will be identified with reference to the 

proposed system of the second half of the paper. For the purposes of this study however, 

we will follow Barnes in focusing the analysis within a project framework to identify a 

standard approach within the development community as applied to energy projects. This 

approach may be classified according to distinct principles, as follows: 

1. Participation of the target population 

Numerous studies have shown that local participation to the electrification project is a 

sine qua non condition to their success [8, 9, 10]. Local communities are presumed to be 

more aware of their particular needs and situation, and of the issues linked to the project 

[2]. In any case, it seems obvious that a local demand for the product (in this case: 

electricity) should be expressed before proceeding with any intervention. 

According to Cernea [10], many development projects have failed despite local 

enquiries and the inclusion of the local population in the project, possibly due to 

considering the local population as monolithic without distinguishing between 



Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2013 
Volume 1, Issue 3,  pp 199-212 

 

Page 201 

subgroups. Cernea proposes that it is necessary to determine a “unit of social 

organization” able to carry out the project, and to include it in the decision process, 

including planning and execution of the project.  In the absence of such a social unit, it 

may be possible within the context of an intervention to create a local association with 

ownership of the project and involved key decisions. This option has been tested 

successfully by Zilles [8] in the case of a PV electrification project in two rural 

communities in Mexico. 

The main criteria in this respect are therefore the demand for the product, the 

identification of a proper unit of social organization and its inclusion in the decision and 

planning processes. 

2. Technology adoption 

Technology development and dissemination are usually differentiated and sequential.  

This typically involves the installation of a demonstration plant in the community 

(demonstration phase), followed by a diffusion phase. A demonstration/diffusion 

approach may yield good results in certain projects, e.g. in Mexico with the installation of 

42,000 PV systems [8].The demonstration/diffusion model relies on the intrinsic quality 

of the product, i.e. “if it is good/useful, adoption is inevitable”. Salient examples of this 

principle in practice might include internal combustion engines and wireless telephony, 

both of which are widelydistributed in the developing world. Akrich [11] showed through 

selected examples that this principle is not always true, and that characteristics such as 

the evolutivity of the system are relevant (i.e. the technology should be designed in such 

a way that it can be taken over by the local population: it should not be presented as a 

“black box” but as a system that can be modified, adapted, tuned with regards to the local 

needs).  In the case of early cell phone adoption it is not clear that this condition was ever 

met, although the advent of more advanced mobile device platforms has recently 

provided scope for considerable user-generated applications. 

3. “Appropriate” technology  

Some authors aspire for alternative technologies, distinct from mainstream 

technologies, but more efficient and adaptable yet. Schumacher [13] calls such a 

technology an “Intermediate technology”, i.e. a more cost effective technology inviting 

the creativity of its users to adapt and to improve it. This technology would presumably 

be engineered to be more labour-intensive than capital-intensive, better adapted to the 

situation of developing countries, where labour tends to be in surplus relative to capital. 

The relative merits of such an approach, however, have yet to be rigorously quantified in 

the context of economic development. 

The experience of photovoltaic installations in developing countries clearly shows 

that reliability is one of the key factors for technology adoption. Frequent failures, even 

of small and widely available components, cause rapid dissatisfaction among the users, 

who generally refuse to reimburse the fees when the system was sold on credit [8]. In the 

1970’s, a high rate of malfunction or failure was noted on photovoltaic installations, 

mainly due to a lack of technical maturity. While failures are normal to the process of 

improving technology, technical immaturity can be a cause of rejection of the technology 

by the local communities. A distinction should therefore be established between 

experimental units and large scale diffusion units. 

In the approach outlined above, appropriate technology possesses certain 

key-characteristics: effectiveness (meeting the demand) and reliability (low failure rate, 

vetted and mature technology) with some preference for simplicity (ease of use and 
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understandability) and adaptability (ability to modify the device according to one’s 

needs). 

4. Cost  

The majority of scientific publications on rural electrification focus on the 

comparative cost when selecting the most appropriate technology. Many authors 

consider economic payback as a non-negotiable prerequisite [14, 15]. Others suggest a 

preselection of candidate technologies based on environmental or socio-economic 

aspects and then the use the cost criterion to select the remaining technologies post-hoc
1
 

[16]. Technology selection in developing countries, however, may not be purely rational 

or based solely on economic return. 

One prominent example is the generalized use of diesel generators to meet off-grid 

power demand. According to several authors [14, 18, 19], the levelized cost of PV Solar 

Home Systems (SHS) for individual use is lower than that of diesel generators. The key 

factor to explaining the selection of diesel generator is the investment cost: access to 

credit is indeed often limited for rural communities of developing countries [2, 16, 20], 

and the initial cost of PV systems is prohibitive for local users who prefer a 

pay-as-you-go model for fuel expenses. 

Finally, some authors note that the externalities, defined as “costs that are not 

reflected in the cost of electricity”, such as the costs linked to environmental impact of 

power generation [21] should be internalized when selecting energy generation 

technology. According to Zomers [20], decentralized technologies would become much 

more competitive if external costs were taken into account using, e.g. a life cycle cost 

assessment (discussed below). 

5. Technology transfer and maintenance  

Maintenance is a critical issue for decentralized power equipment: local technicians 

must be able to be able to fix or replace failed components. According to Martinot et al. 

[9], international aid for development has typically focused on providing the capital costs 

for decentralized systems, with a low fraction of aid dedicated to recurrent costs such as 

maintenance, and less than 10% spent on technical or managerial training. The lack of 

proper maintenance is one of the major causes of system failure, along with a misuse of 

the device [20]. Several barriers to the necessary technology transfer for system 

maintenance can be identified: 

 A lack of access to components and materials [22]: this includes the absence of 

local manufacture or a limited access to international supply chains. 

 A lack of industrial infrastructure, requiring costly and time-consuming transport 

of spares or repaired parts between the point of use and distant industrial centres 

[23]. 

 A dependence on imported components, with implications for cost, availability, 

customs and clearance delays, and local assimilation of the technology’s core 

                                                 
1When calculating the cost of a given system, it is important to consider the system on its whole lifetime. 

The “Levelized Electricity Cost” (LEC) constitutes a good criterion for the comparison: 

         
    

   

         
      

 
   

   

      

 

with 𝐿𝐸𝐶 being the present kWh cost (USD/kWh), 𝐼0 the investment cost (USD), 𝑀𝑖 the maintenance cost 

(USD), 𝐹𝑢𝑒𝑙𝑖 the fuel cost (USD), 𝐸𝑖 the total yearly power generation (kWh), 𝑡 the actualisation rate 

(%) and 𝑛 the system lifetime (years). 
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concepts [24]. 

 A lack of competent technicians and engineers with the knowledge and 

experience to undertake a maintenance program. 

Rural electrification projects may therefore benefit from associated training 

programs, whose aim is to build capacity of local technicians and managers. The access 

to replacement components or materials being often problematic, it is important to 

privilege local components and manufacturing processes. In the case where no 

engineering infrastructure is present, it may be advantageous to create it, in the form of 

local workshops with appropriate equipment and tools. These workshops should 

moreover be designed in such a way that they can diversify their activities and become a 

source of local productive activity. 

6. Decentralization  

Historically, rural electrification has largely been conducted through centralized 

power generation and the extension of the electric grid [9]. Technological advances in 

decentralized power generation however, have made these technologies more 

competitive and continue to shift the calculus towards increased deployment. The 

spectrum of centralization to decentralization can be distinguished in three levels:  

- Centralized power generation, with a reticulated electrical network serving a 

(usually heavily populated) geographic area. 

- Mini or micro-grid: a grid serving the needs of a community or defined, 

co-located loads. 

- Decentralized power generation: an individual unit covering the need of one 

household or load. 

The two last levels may involve the use of local storage capacity (batteries). Typical 

systems include Solar Home Systems (PV), diesel generators, micro-hydraulic, or 

biomass gasification. Decentralized systems are a source of local employment, are more 

flexible in their operating modes, and provide a degree of autonomy from utility service 

(which may be unreliable in some areas). 

The main criterion governing the choice of a decentralized solution is the relative 

cost of the technology compared to a centralized technology. This cost is a function of the 

geographic scenario (the cost function of extension is proportional to distance and 

increases with geographic obstacles) and the consumption density. The latter can be 

expressed as the number of connectable customers (weighted by estimated demand) per 

kilometre of grid extension. Whether or not cross-subsidy is contemplated, since the 

Levelized Electricity Cost (LEC) of grid electricity decreases with a higher consumption 

density while that of a decentralized system is more or less constant, from a capital 

investment perspective a break-even point exists where a lower consumption density 

favours the decentralized solution. Chakrabarti [19] calculated this break-even point for 

India and reached a distance of 16 km, below which grid extension is more interesting 

than a PV system. A related analysis was performed by Chaurey [15] where the 

calculated break-even point between a PV mini-grid and PV Solar Home Systems was 

200 households. 

7. Environmental impact 

In the energy field, environmental impacts are mainly related to the emission of 

pollutants, the effects of which can be toxic (microparticles, CO, etc.), climate forcing 

(CO2, N2O, methane, etc.) or potentially ozone depleting (CFC, HCFC, N2O, etc.).  

When assessing impacts, it is important not only to consider the emissions during the 

operational lifetime of the studied technology, but also to take into account the emissions 
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arising from its construction to its disposal or recycling. Tools such as The Life Cycle 

Assessment (LCA) can be applied for such an analysis: in one study, PV systems were 

found to have a carbon footprint comprised between 98 and 167 gCO2/kWh (depending 

on PV cell type and manufacturing process), while diesel combustion amounts to a 

minimum value of 772 gCO2/kWh for a high efficiency generator. Meanwhile, SO2 and 

NO2 emissions are 0.2-0.34 and 0.18-0.3 g/kWh respectively for PV and 1.55 and 12.3 

g/kWh respectively for the diesel technology [20]. 

8. Energy needs and demand  

It is difficult to establish the energy needs for a given population, especially as these 

are trending upwards for most segments of society. Prediction would normally be 

modelled on inventories of electrical devices, their power draw and duration of use, or by 

extrapolating load curve data measured in representative or aspirational population with 

existing service. In terms of gross energy consumption, per capita basic needs have been 

estimated at as low as 0.5 kWh/day [25]. This estimation is performed by assuming 

minimum values for a number of indicators such as life expectancy, daily food 

consumption or living area and evaluating the minimum energy necessary to achieve 

these indicators. 

It is however important to make a distinction between basic needs, perceived needs, 

and actual demand which is likely to be some combination of the two overlaid with 

economic factors (e.g. ability to pay, availability of subsidy). Some research has shown 

that non-basic needs can be prioritized over basic needs, such as a preference for 

television rather than e.g. lights for studying or a well pump for drinking water or 

irrigation [4]. 

The evaluation of energy demand can be performed via local inquiries 

(formal/informal, targeted/generalized, etc.) depending on the situation of the studied 

area. These inquiries should be carried out with care, with an awareness of their 

limitations and the anticipation that demand will evolve during a project [11]. 

9. Technology deployment strategies 

One of the major obstacles to the deployment of decentralized renewables is the high 

initial cost. Therefore, project finance strategies are required in order to introduce the 

technology to the market and facilitate its deployment. 

The extent to which the market should drive technology choice is subject to debate: 

on the one hand, prices should reflect the cost of the system in order to avoid market 

distortion and the promotion of poorly adapted technologies [2]. On the other hand, 

access to credit is generally limited and the payback period for decentralized generation 

infrastructure may discourage external investors or lenders. Moreover, political mandates 

exist to combat extreme poverty, which includes access to electricity [20]. 

Microcredit has been used at the household level to finance the initial purchase cost 

of systems, as described in a number of pilot projects in Asia, Africa and South America 

[2, 26]. It should however be noted the number of systems sold at credit is very low 

compared to the number of systems sold for cash [9]. Other approaches can include a 

fee-for-service system (lease of a SHS system), or complete donation (in which case the 

maintenance costs are covered by the user). Niewenhout et al. [12] analysed and 

compared, through case studies, these different deployment strategies. They concluded 

that no strategy is optimal, each of them showing advantages and drawbacks. It was 

found, however, that donation represents the clearest case of market distortion, and the 

beneficiaries may not feel responsible for the offered unit or allocate resources towards 

maintenance. 
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10. Subsidies 

Subsidies are motivated by different factors, such as the interest in promoting one 

technology (generally renewable) over another, the necessity to tackle extreme poverty, 

the promotion of “nascent industry” or reducing the initial cost barriers. As noted above, 

these subsidies can lead to market distortions or other deleterious effects, such as 

inefficient use of energy, or excessive benefit for some segment of the targeted 

population at the expense of other segments. These subsidies, when necessary to achieve 

a policy aim, should be limited in time (the time necessary for the introduction of the 

technology and the accompanying effects of scale) and targeted with respect to needs 

and outcomes. 

Summary 

A literature review has identified a general consensus regarding many of the success 

factors of rural electrification projects. This standard approach employs guiding 

principles that, when applied to specific energy projects, should, in theory, increase the 

probability of successful project outcomes (although this hypothesis should be subjected 

to empirical validation). The standard approach and selected guidelines and criteria are 

summarized in Table 1. 

 
Table 1. Guiding principles and selected criteria 

 

Guiding principle Selected criteria 
Participation of the beneficiaries Local demand, unit of social organization, inclusion 

in the decision processes 
Technology adoption Demonstration, adaptability 
Appropriate technology Reliability, technical maturity, simplicity, 

adaptability 
Cost Comparative cost, capital and recurring costs, 

externalities 
Technology transfer and maintenance  Training, local components and materials, upstream 

infrastructure, local productive activity  
Decentralization Relative cost, geographic configuration, 

consumption density 
Environmental impact Pollutants, life cycle analysis 
Needs and demand Local inquiries, awareness of their limitations 
Technology deployment Access to credit and microcredit, non-gratuity 
Subsidies Time limitation, targeted subsidies 

 

THE PROPOSED SOLAR ORC SYSTEM 

Researchers at MIT and University of Liège have collaborated with the 

non-governmental organization STG International for the purpose of developing and 

implementing a small scale solar thermal technology utilizing medium temperature 

collectors and an ORC. A first unit was installed by STG in 2007, and is shown in Fig. 1.   

The project goal is to develop mini-grid infrastructure appropriate to rural areas of 

developing countries, with Lesotho as a case study, in accordance with best practices such 

as formulated above. An institutional framework is also proposed, whereby a novel locally 

produced solar technology may be integrated with traditional micro-grid technologies to 

establish micro-utilities anchored at rural health and educational institutions.  In the 

proposed framework, a local enterprise is capacitated to produce, own, operate and maintain 

the micro-utility infrastructure, and obtains project finance from lenders via a negotiated 
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power purchase agreement (PPA) with institutional (government ministerial) customers.  

These arrangements serve to build local engineering capacity while importantly 

incentivizing the maintenance of the infrastructure. The institutional arrangements of the 

proposed micro-utility approach are illustrated in Fig. 2. As with other distribution 

approaches, the micro-utility and power purchase agreement model should be subject to 

empirical validation, which is an ongoing objective of STG International. 

 

 

 
 

Figure 1. First solar ORC prototype installed by STG in Lesotho 

 

 

 
Figure 2.  Institutional arrangements for distribution of energy services in rural areas via market 

mechanisms 

 

At the core of the proposed technology is a solar thermal power plant consisting of a 

field of parabolic solar concentrating collectors and a vapour expansion power block for 
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generating electricity: solar radiation is concentrated towards a linear absorber at the focus 

point of the parabola, where a heat transfer fluid (HTF) is heated up. This HTF is driven to a 

storage tank accumulating heat in order to keep the system running in case of a short 

interruption in solar irradiation. HTF is then used to evaporate the organic fluid of the ORC 

cycle. The latter is driven to an expansion unit where useful work is produced. It is then 

condensed in the air condenser and pumped back to the evaporator. A recuperator is added 

between the pump outlet and the expander outlet in order to preheat the liquid before the 

evaporator, which increases the cycle efficiency. Thermal energy outputs (cogeneration) are 

also available from the thermal storage tank, which is a relatively more cost effective 

mechanism for energy storage than chemical batteries. 

 
Figure 3. Conceptual scheme of the solar ORC with components listed as follows A:expander, 

B: generator, C: recuperator, D: air condenser, E: working fluid pump, F: evaporator, G: HTF pump 

 

Because no thermal power blocks are currently manufactured in the kilowatt range a 

small-scale ORC has to be designed for this application. The design is based on modified 

commercially available components e.g. Heating Ventilation and Air Conditioning 

(HVAC) scroll compressors (for the expander), and industrial pumps and heat exchangers. 

At present, no volumetric expander is available on the market.  In order to reduce the cost of 

a practicable system, the expander is obtained by adapting an off-the-shelf hermetic scroll 

compressor to run in reverse, as proposed and successfully tested by [27].  Scroll machines 

exhibit the advantage of being widely available, reliable and comprise a limited number of 

moving parts. The proposed technology thus presents the advantage of utilizing 

off-the-shelf components that are available locally through, e.g. global industrial 

component supply chains. These components include scroll compressors, heat exchangers, 

pumps and working fluids sourced from HVAC applications; industrial motors and 

reflective aluminium sheeting; standard steel structural and pipe sections; and standard 

microcontroller and power electronics. This constitutes an important difference with the PV 

systems where the major part of the components must be imported.  

The main characteristics of a micro-utility sized for rural service providers are the 

following: 

 Target net output power: 3 kWe 

 Collector field: 75 m
2
 single-axis parabolic trough, using Miro aluminium reflectors 

and a Heat Collection Element (HCE) with selective coating and air-filled annulus 

between absorber pipe and glazing.   

 ORC: two stage expansion of R245fa using modified commercial HVAC 

compressors, brazed plate heat exchangers for high pressure heat transfer, and 

commercial HVAC tubes-and-fins air condenser for heat rejection. 
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 Heat transfer fluid (HTF): Propylene glycol with thermal buffering in a thermal 

storage tank with a 2 m
3
 packed bed of 19 mm quartzite aggregate 

 

Table 2. Approximate cost of the main components 

 

Component Description 
Industry 

Supplier 
Notes 

Approximate Cost 

Data* 

1. Glazing Duran 50 Schott Solar 
Borosilicate 1.25 m L 84 mm 5 

mm Thickness 
65 USD/pc 

2. Reflector Miro-4 Alanod 
1.25 m W 0.4 mm Thickness 

95% Reflectivity 
15 USD/pc 

3. Working Fluid HFC-245fa Honeywell 
b.p. 15.3 c.p. 154 °C GWP 950, 

ODP 0, nonflammable 
33 USD/kg 

4. WF pump Plunger Hypro, Various Common pressure washer pump 300 USD/pc 

5. Heat transfer 

fluid 
Propylene Glycol Various 

b.p. 186 °C; used as antifreeze, 

non-toxic 
3.50 USD/litre 

6. HTF Pump 
V-20 Power 

Steering 
Vickers 

Long haul truck power steering 

pump 
290 USD/pc 

7. Fluid/tracking 

motors 
24 VDC Leeson, Various 

High efficiency permanent 

magnet drive 
300 USD/pc 

8. Expander - 

generator 

Hermetic Scroll - 

Induction machine 
Copeland Commercial HVAC compressor 1000 USD/pc 

9. Heat exchangers 
Brazed Plate 

BP-410-30 

ITT Brazepak, 

Various 

Compact high efficiency heat 

exchanger  

500 USD/pc 

40 USD/kW 

10. Air Condenser 
Force convection 

finned copper tube 
Carrier, Various 

Standard HVAC coils 3 rows 3/8 

ths tubing 

45 USD/kW 

rejection 

11. Sensor based 

Control system 

Microcontroller 

and feedback 

loops 

MIT/STG Solar ORC system optimization 1200 USD 

* Note: Costs and specifications are based on data gathered in 2006 - 2009. They are subject to change, and 

generally do not represent official claims of the manufacturer. 

 

As stated in section 1.4, the cost is a crucial parameter for the competitiveness of the 

technology. Several strategies and trade-offs are proposed to reduce to cost of the installed 

generation capacity: 

 An electronic control unit is added for autonomous operation as sub-megawatt scale 

plants cannot justify the staffing of operating personnel.  

 Operating at lower cycle temperatures (<200 °C) and lower Carnot efficiency is 

another example of a design trade-off for maintaining low cost at small scales.  For a 

given level of output power, lower temperatures enable cost savings in the materials 

and manufacture of the absorber units, heat exchangers, fluid manifolds and 

parabolic troughs. While the thermodynamic efficiency of heat engines increases 

with operating temperature, solar absorbers will have greater thermal losses due to 

convection and radiation [28]. Mitigating these losses under high-temperature 

operation, e.g. by means of selective high absorptivity and low emissivity coatings 

and evacuated glass glazing, entails higher costs in materials and manufacturing. 

These features may be economically justified in megawatt-scale installations, where 

large collector production volumes lead to lower specific costs and where the cost of 
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land lease is an important consideration. Where the cost of space is not a constraint, 

however, and where small capacity units of deployment are preferred, optimization 

for the lowest LEC may lead to medium temperature designs involving lower 

thermal efficiencies and increased footprint, e.g. from ~ 20 m
2
/kWe in a typical 

large scale Concentrating Solar Power (CSP) plant [29] to ~ 35 m
2
/kWe in a 

medium temperature CSP plant. 

 The use of widely available components (mainly from the HVAC) market allows 

economies of scale compared to components that would be specially designed for 

ORC units. 

The cost of the system was evaluated by the authors in a previous work [29]. Since 

commercial cost or performance data is not yet available for such a system, a 

thermodynamic model of each subcomponent has been built and validated. The different 

component models have then been interconnected to evaluate the performance of the 

system. An overall efficiency (solar to electricity) of 8% was predicted, with conservative 

hypotheses [30]. A cost model of each component (Table 2) has then been implemented to 

evaluate the LEC of each kWh produced by the system.  

Preliminary results indicate specific costs (a 15 year Levelized Cost of Electricity) for 

the 3 kWe reference system of approximately $0.25/kWh, which compares favourably with 

PV systems (>$0.30/kWh) and diesel generation (>$0.50/kWh) in installed in off-grid areas 

[29]. 

Decentralized power generation is justified in much of Lesotho: the density of 

population is low (around 60 persons per km
2
, much lower in rural areas), most of the areas 

are mountainous, and the current grid only covers a small portion (around 15%) of the 

territory (Figure 4).  

 

 
 

Figure 4. Map of the electric grid in Lesotho (Source: [31]) 

 

Technology transfer and training is an important part of the project concept. Local 

technicians and engineers have been hired and trained in theoretical and practical aspects of 

assembly of a micro-CSP system with ORC.  In 2011 the locally trained team built their first 

complete plant (Matjotjo Pilot), which is an important competency to facilitate maintenance 

and foster the replication of the power plant. It should be noted that at present Lesotho lacks 

indigenous engineering infrastructure in the industrial and workforce development sectors, 

which is problematic for production and maintenance activities. To begin to address this, 
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STG International has equipped workshops with suitable machining tools (mills, lathes, 

welding machines, etc.) in conjunction with training in manufacturing processes.  

The proposed approach aims to complement traditional methods of rural electrification 

and address the challenging aspects of extending sustainable energy supplies in developing 

countries.  As a cogeneration technology, micro-CSP is more flexible than PV or fossil-fuel 

based equipment in meeting variable (thermal and electrical) demand loads, and is scalable 

and repairable onsite. Since it is a nascent technology, strategies are needed to increase 

awareness of micro-CSP, foster capacity for its production and deployment, and establish 

supply chains and validated business models for service provision, including financing 

mechanisms and institutional arrangements.  These tasks are substantial, and necessarily 

start with a demonstration phase, to which end prototype and pilot micro-CSP plants have 

been installed in community and health clinic settings to elicit user feedback and progress 

down the technical learning curve. 

The selection of new technologies or distribution models is inherently risky: because 

micro-CSP is new, its proven reliability over time is less established than the PV or diesel 

technologies that have been deployed in the field for decades. Reliability issues could 

reduce the potential of technology adoption by local communities, if the proposed 

systems work intermittently, experience regular failures, or otherwise fail to meet 

expectations (which is likely in an initial pilot).  It is important therefore to differentiate 

the prototyping and demonstration phases, where experimental installations are 

invaluable tools for testing innovation, from a diffusion phase which must meet customer 

demands and economic criteria. The diffusion phase can only take place when minimum 

system reliability and cost effectiveness is reached, preferably following the results of a 

validation study with comparison groups of unelectrified sites and sites employing 

traditional electrification approaches. The authors propose that this activity, a 

comparative cost analysis of micro-utility technologies and models, should be the subject 

of further research efforts to establish best practices in the field of sustainable energy 

approaches for rural development. 

CONCLUSIONS 

At present more than 1.4 billion people worldwide lack access to electricity [1]. Many 

communities will continue to lack access to centralized grid infrastructure due to 

remoteness or low rates of return on investment in grid extension. Small scale, decentralized 

concentrating solar power can constitute a cost effective energy solution for remote places 

with a high solar direct normal irradiation. 

In this work, experience relative to a number of implemented rural electrification 

projects has been synthesized to generate a set of best practices or guiding principles for 

innovating within energy service provision projects. While some divergence of thought 

occurs when considering principles such as market deployment or subsidies, there is general 

agreement amongst sources regarding appropriate approaches, and these are summarized 

with reference to a proposed micro-utility project concept involving micro-CSP technology. 

This project in turn has been planned to the extent possible to conform to the formulated 

recommendations: locally available materials and components are privileged; design 

trade-offs have been calibrated to obtain a competitive specific cost of energy; training 

programs for local technicians have been established; and local inquiries to establish 

demand have been performed.  

At the present time, experimental data is lacking for the installed micro-CSP plants or 

proposed distribution models. Initial experimental results on individual component tests are 

promising: a collector efficiency of about 60% was achieved, and the first tests on the scroll 

expanders showed that an overall isentropic efficiency over 70% can be obtained. 
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Extrapolating from these experimental results, it was shown through thermodynamic 

simulation that an overall system efficiency of 8% is achievable. This efficiency is lower 

than that of PV systems, but it is justified by a lower project cost and by the cogeneration of 

thermal products.   

Additional research is necessary to establish performance benchmarks and cost 

functions of micro-CSP and competing technologies in micro-utility deployments in off 

grid areas.  A longitudinal comparative analysis is recommended using control groups at 

similar deployments, such as health clinics or education facilities, to establish relevant cost, 

reliability and operating and maintenance metrics. 
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