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Introduction
En 1878, Cantor a construit une bijection entre [0, 1] et [0, 1]2, bijection définie via les
fractions continues.

G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal für die reine und
angewandte Mathematik (Crelle’s Journal), Vol. 84, 242-258, 1878.
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Notations

E = [0, 1], D = E ∩Q et I = E \D,
N désigne l’ensemble des naturels non nuls.
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Fractions continues
A. Ya. Khintchine, Continued fractions, P. Noordhoff, 1963.

Soit a = (aj)j∈{1,...,n} une suite finie de nombres réels positifs (n ∈ N); l’expression
[a1, . . . , an] est définie par récurrence comme suit :

[a1] =
1

a1
and [a1, . . . , am] =

1

a1 + [a2, . . . , am]
,

pour tout m ∈ {2, . . . , n}. Si a ∈ Nn, on dit que

[a1, . . . , an] =
1

a1 +
1

a2 +
1

. . . +
1

an

.

est une fraction continue finie (simple). Les nombres aj (j ∈ {1, . . . , n}) sont
appelés quotients partiels de la fraction continue.
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Fractions continues finies

Proposition
Pour tout a ∈ Nn (n ∈ N), [a1, . . . , an] appartient à D. Réciproquement, pour tout
x ∈ D, il existe un naturel n et une suite a ∈ Nn telle que x = [a1, . . . , an].

On dit que [a1, . . . , an] est un développement en fraction continue de x.

Tout nombre de D peut s’exprimer comme une fraction continue [a1, . . . , an] dans
laquelle le dernier quotient partiel peut être modifié. En effet, d’une part, si an > 1, on
peut écrire

[a1, . . . , an] = [a1, . . . , an − 1, 1]

et d’autre part, si an = 1, on peut écrire

[a1, . . . , an−1, an] = [a1, . . . , an−1 + 1].

A cette modification près, le développement en fraction continue d’un élément de D
est unique.
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Fractions continues finies

Exemple

On a
37

44
= [1, 5, 3, 2] =

1

1 +
1

5 +
1

3 +
1

2

En effet, en appliquant l’algorithme d’Euclide aux naturels 44 et 37, on obtient
successivement

44 = 1× 37 + 7

37 = 5× 7 + 2

7 = 3× 2 + 1

2 = 2× 1 + 0.
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Fractions continues et convergents
Soit a ∈ NN. Pour tout j ∈ N, on définit les quantités pj(a) et qj(a) par récurrence
comme suit :

p−1(a) = 1, q−1(a) = 0, p0(a) = 0, q0(a) = 1

et, pour k ∈ {1, . . . , j},{
pk(a) = akpk−1(a) + pk−2(a)
qk(a) = akqk−1(a) + qk−2(a)

.

On appelle convergent d’ordre j de a le quotient pj(a)qj(a)
.

Proposition

Soit a ∈ NN. Pour tout j ∈ N, on a

[a1, . . . , aj ] =
pj(a)

qj(a)
.

En étudiant les propriétés des convergents, on peut montrer que la suite
xj = [a1, . . . , aj ] converge. On appelle fraction continue infinie la limite de cette
suite et on la note [a1, . . .].
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Fractions continues infinies

Proposition

Pour tout a ∈ NN, [a1, . . .] appartient à I . Réciproquement, pour tout x ∈ I , il existe
une suite a ∈ NN telle que x = [a1, . . .]; de plus, cette suite est unique.

Exemple 1

On a

π

6
= [1, 1, 10, 10, 1, 1, 1, 48, 3, 1, 2, 27, 1, 2, . . .] ≈ 0, 5235987755983 . . .

Convergents Approximation décimale Erreur d’approximation
1er 1 1 0, 4764012244017
2e 1/2 0, 5 0, 0235987755983
3e 11/21 0, 5238095238095 0, 0002107482112
4e 111/212 0, 5235849056604 0, 0000138699379
5e 122/233 0, 5236051502146 0, 0000063746163
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Fractions continues infinies
Exemple 2

On a √
2− 1 = [2, 2, 2, 2, 2, . . .] =

[
2
]
≈ 0, 4142135623731 . . .

Convergents Approximation décimale Erreur d’approximation
1er 1/2 0, 5 0, 0857864376269
2e 2/5 0, 4 0, 0142135623731
3e 5/12 0, 4166666666666 0, 0024531042935
4e 12/29 0, 4137931034483 0, 0004204589248
5e 29/70 0, 4142857142857 0, 0000721519126

Proposition
Un élément x ∈ I est un (irrationnel) quadratique si et seulement si son
développement en fraction continue [a] est ultimement périodique (i.e. il existe
k, J ∈ N tels que aj+k = aj pour tout j ≥ J ).
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Théorie métrique des fractions continues

Pour tout a ∈ NN, [a] désigne un nombre x ∈ I . Pour j ∈ N, on peut considérer le
quotient partiel aj comme une fonction de x : aj = aj(x).

• Fonction a1

a
1
(x

)

x

On peut écrire

1

x
= a1 + [a2, . . .].

Pour tout k ∈ N, on a

a1 = k ⇔ 1

k + 1
< x ≤ 1

k
.

Donc, a1 est une fonction constante par
morceaux décroissante.
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Théorie métrique des fractions continues
• Fonction a2 (Représentation avec a1 = 1)

a
2
(x

)

x

On peut écrire

x = [a1, r2] =
1

a1 +
1

r2

avec r2 ∈ [1,∞). Pour tout k ∈ N, on a

a2 = k ⇔ k ≤ r2 < k + 1.

Donc, a2 est une fonction constante par
morceaux croissante.

• Fonction aj (j ∈ N)

Si j est impair, aj est une fonction
constante par morceaux décroissante.

Si j est pair, aj est une fonction
constante par morceaux croissante.
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Théorie métrique des fractions continues

Soit x = [a] un élément de I ; pour n ∈ N, on pose

In(x) =
{
y = [b] ∈ I : bj = aj if j ∈ {1, . . . , n}

}
.

On dira que In(x) est un « intervalle de rang n ». Pour tout n ∈ N, In(x) est un
sous-intervalle irrationnel de I , In+1(x) ⊂ In(x) et limn→+∞ In(x) = {x}. En fait,
on a

In(x) =

]
pn(a)

qn(a)
,
pn(a) + pn−1(a)

qn(a) + qn−1(a)

[
∩ I,

si n est pair (si n est impair, les extrémités de l’intervalle sont inversés). Chaque
intervalle de rang n est partitionné en un nombre infini dénombrable d’intervalles de
rang n+ 1. Si on note |In(x)| la mesure de Lebesgue de In(x), on a

|In(x)| = 1

qn(a)(qn(a) + qn−1(a))
.
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Fonction de Cantor

G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal für die reine und
angewandte Mathematik (Crelle’s Journal), Vol. 84, 242-258, 1878.

Soit x ∈ I et [a1, . . .] son développement en fraction continue. On définit les
applications f1 et f2 comme suit :

f1(x) = [a1, a3, . . . , a2j+1, . . .] et f2(x) = [a2, a4, . . . , a2j , . . .].

L’application
f : I → I2 ;x 7→ (f1(x), f2(x))

est la fonction de Cantor sur I .

Remarque

• Si Q représente les nombres quadratiques de I , f est une bijection de Q dans Q2.

• Puisque que les cardinaux de E et I sont égaux, on peut étendre f en une
bijection de E dans E2.
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Fonction de Cantor

Représentations des fonctions f1 (à gauche) et f2 (à droite)

f
1
(x

)

x

f
2
(x

)

x

L. Simons (ULg) Fonction de Cantor Lundi 28 janvier 2013 13 / 19



Continuité de la fonction de Cantor

Pour x ∈ I , on écrit ϕ(x) = a si a ∈ NN satisfait x = [a].

Une distance usuelle sur NN est donnée par

d(a, b) =

∞∑
j=1

2−j
|aj − bj |
|aj − bj |+ 1

si a = (aj)j∈N et b = (bj)j∈N sont deux éléments de NN. On considère implicitement
que NN est muni de cette distance. L’ensemble I (comme D et E) sont munis de la
distance euclidienne.

Proposition

L’application ϕ est un homéomorphisme entre I et NN. En particulier, la fonction de
Cantor f est un homéomorphisme entre I et I2.
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Continuité de la fonction de Cantor

Théorème de Netto
Toute bijection g : [0, 1]→ [0, 1]2 is nécessairement discontinue.

H. Sagan, Space-filling curves, Universitext, New-York : Springer-Verlag, 1994.

Donc, la fonction de Cantor f ne peut pas être étendu en une bijection continue de E
dans E2.

Proposition
Toute extension de la fonction de Cantor sur E est discontinue sur les rationnels de E.
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Courbe de Peano
H. Sagan, Space-filling curves, Universitext, New-York : Springer-Verlag, 1994.

La courbe de Peano (représentée ci-dessous) est une surjection continue de [0, 1]
dans [0, 1]2.
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Régularité höldérienne

S. Jaffard, Wavelet Techniques in Multifractal Analysis, In Proceedings of
Symposia in Pure Mathematics, Vol. 72, 91-152, 2004.

Soit α ∈ [0, 1]. Une fonction réelle continue et bornée g définie sur A ⊂ R appartient
à l’espace de Hölder Λα(x) avec x ∈ A s’il existe une constante C > 0 telle que

|g(x)− g(y)| ≤ C|x− y|α,

pour tout y ∈ A. L’exposant de Hölder hg(x) de g au point x est définie comme suit :

hg(x) = sup{α ∈ [0, 1] : g ∈ Λα(x)}.

Si hg(x) < 1, g n’est pas dérivable au point x.

Exemple

La courbe de Peano a un exposant de Hölder égal à 1/2 partout sur [0, 1].

S. Jaffard and S. Nicolay, Space-filling functions and Davenport series, Recent
Developments in Fractals and Related Fields, 19-34, 2010.
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Régularité höldérienne de la fonction de Cantor

Théorème
Soient x = [a] un élément de I et y un élément de In(x) \ In+1(x) (avec n ∈ N). On a

1

n

dn/2e∑
j=1

log(a2j−1)

1

n

n+3∑
j=1

log(aj + 1) +
C1(n)

n

≤
log |f1(x)− f1(y)|

log |x− y|
≤

1

n

dn/2e+3∑
j=1

log(a2j−1 + 1) +
C2(n)

2n

1

n

n∑
j=1

log(aj)

où

C1(n) =
log(2)

2
+ log

(
max

{
an+2 + 2

an+2 + 1
,
an+3 + 2

an+3 + 1

})
et

C2(n) =
log(2)

2
+ log

(
max

{
a2dn/2e+3 + 2

a2dn/2e+3 + 1
,
a2dn/2e+5 + 2

a2dn/2e+5 + 1

})
.

Il y a un résultat similaire pour f2.
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Régularité höldérienne de la fonction de Cantor
En combinant le théorème précédent et un résultat d’ergodicité sur les fractions
continues, on obtient un encadrement pour l’exposant de Hölder des fonctions f1
et f2.

Théorème
Pour presque tout x ∈ I , hf1(x) et hf2(x) sont compris entre 0, 35 et 0, 72.

Remarque

Soit a ∈ NN la suite définie par

aj =

{
2j si j est pair
1 si j est impair

,

pour tout j ∈ N et soit x = [a]. Pour ce point particulier, on a hf1(x) = 0 et donc f1
est une fonction multifractale.

La fonction f2 est aussi multifractale.
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