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Introduction

En 1878, Cantor a construit une bijection entre [0, 1] et [0, 1]?, bijection définie via les
fractions continues.

ﬁ G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal flr die reine und
angewandte Mathematik (Crelle’s Journal), Vol. 84, 242-258, 1878.

Sommaire
@ Fractions continues
@ Fonction de Cantor
@ Continuité de la fonction de Cantor
© Régularité holdérienne de la fonction de Cantor

Notations

E=][0,1], D=EnNQ et I=FE\D,
N désigne I'ensemble des naturels non nuls.
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Fractions continues

ﬁ A. Ya. Khintchine, Continued fractions, P. Noordhoff, 1963.

Soit @ = (a;);eq1,... n} Une suite finie de nombres réels positifs (n € N); l'expression
[a1,...,ay] est définie par récurrence comme suit :

@)=~ and | ) .
al| = — A1y...,Am| = 5
! ar ! ay + [az, ..., am)
pour toutm € {2,...,n}. Sia € N", on dit que
1
[a1,...,a,] = . N
a
1 N 1
an . 1
S
Gy

est une fraction continue finie (simple). Les nombres a; (j € {1,.

..,n}) sont
appelés quotients partiels de la fraction continue.
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Fractions continues finies

Proposition

Pour tout a € N" (n € N), [aq, ..., a,] appartient & D. Réciproquement, pour tout
x € D, il existe un naturel n et une suite a € N" telle que = = [aq, . . ., a,].

On dit que [aq, . .., a,] est un développement en fraction continue de x.

Tout nombre de D peut s’exprimer comme une fraction continue [aq, . . ., a,] dans
laquelle le dernier quotient partiel peut étre modifié. En effet, d’'une part, si a,, > 1, on
peut écrire

[a1,...,an] = [a1,...,an — 1,1]

et d’autre part, si a,, = 1, on peut écrire
[a1,...,an_1,a,] =[a1,...,an-1 +1].

A cette modification pres, le développement en fraction continue d’'un élément de D
est unique.
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Fractions continues finies

Exemple

Ona

37 1
— =11,5,3,2] =

44 1

1+
1
5+ —

34 1
2

En effet, en appliquant I'algorithme d’Euclide aux naturels 44 et 37, on obtient
successivement

4 = 1x37+7
37 = H5xT742
= 3x2+1

= 2x1+0.
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Fractions continues et convergents

Soit @ € N. Pour tout j € N, on définit les quantités pj(a) et ¢;(a) par récurrence
comme suit :

p-1(a) =1, g-1(a) =0, po(a) =0, go(a) =1
et,pourk € {1,...,j},

{ pr(a) = appr—1(a) + pr—2(a)
qr(a) = arqr—1(a) + qr—2(a)

On appelle convergent d’ordre j de a le quotient pila)

gj(a)”
Proposition
Soit a € NV, Pourtout j € N,ona
pj(a)
[a1,...,a;] = .
7 g(a)

En étudiant les propriétés des convergents, on peut montrer que la suite
xj = [a1,...,a;] converge. On appelle fraction continue infinie la limite de cette
suite et on la note [a1, .. .].
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Fractions continues infinies

Proposition

Pour tout a € N, [a1,...] appartient & I. Réciproquement, pour tout = € I, il existe
une suite @ € N" telle que z = [a4, .

..]; de plus, cette suite est unique.

Exemple 1

Ona

% =11,1,10,10,1,1,1,48,3,1,2,27,1,2,...] ~ 0,5235987755983 . ..

Convergents | Approximation décimale | Erreur d’approximation
1€ 1 1 0,4764012244017
2¢ 1/2 0,5 0, 0235987755983
3| 11/21 0, 5238095238095 0,0002107482112
4° | 111/212 0, 5235849056604 0, 0000138699379
5¢ | 122/233 0, 5236051502146 0,0000063746163
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Fractions continues infinies

Exemple 2
Ona
V2 -1=12,2,2,2,2,...] = [2] ~0,4142135623731 ...

Convergents | Approximation décimale | Erreur d’approximation
1€ 1/2 0,5 0,0857864376269
28 2/5 0,4 0,0142135623731
3¢ | 5/12 0,4166666666666 0,0024531042935
4° | 12/29 0,4137931034483 0,0004204589248
5¢ | 29/70 0,4142857142857 0,0000721519126

Proposition

Un élément = € I est un (irrationnel) quadratique si et seulement si son
développement en fraction continue [a] est ultimement périodique (i.e. il existe
k,J € Ntels que a1, = a; pour tout j > J).
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Théorie métrique des fractions continues

Pour tout @ € NV, [a] désigne un nombre x € I. Pour j € N, on peut considérer le
quotient partiel a; comme une fonction de z : a; = a;(x).

e Fonction a4

On peut écrire

1
—:a1+[a2,...].
T

Pour tout £ € N, on a

a1 (z)

a=k & <:17<1
te k+1 =k

e . Donc, a; est une fonction constante par
0 14 13 12 1 , .
= morceaux décroissante.
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Théorie métrique des fractions continues

e Fonction ay (Représentation avec a; = 1)

112 A1) 1(1+113) 1

T

e Fonction a; (j € N)

Si j est impair, a; est une fonction
constante par morceaux décroissante.
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On peut écrire

37:[(11,7’2]2 1
a; + —
T2

avec o € [1,00). Pour tout k € N, ona
aa=k & k<ro<k+1.

Donc, as est une fonction constante par
morceaux croissante.

Si j est pair, a; est une fonction
constante par morceaux croissante.
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Théorie métrique des fractions continues

Soit = [a] un élément de I; pour n € N, on pose
L(z)={y=[lel:bj=aqa;ifje{l,...,n}}.

On dira que I,,(x) est un « intervalle de rang n ». Pour tout n € N, I,,(x) est un
sous-intervalle irrationnel de I, I, 11 (z) C I, (x) et limy,—, 1 oo In(z) = {z}. En fait,
ona

1 pu(a) pu(a)+p,_1(a)
I,(z) = ,
dn (a) Qn(a) + Qn—l(a)
si n est pair (si n est impair, les extrémités de I'intervalle sont inversés). Chaque
intervalle de rang n est partitionné en un nombre infini dénombrable d’intervalles de
rang n + 1. Sion note |I,,(z)| la mesure de Lebesgue de I,,(x), on a

NI,

1

|In ()] = 4n(a)(gn(a) + qn_1(a))’
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Fonction de Cantor

ﬁ G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal fir die reine und
angewandte Mathematik (Crelle’s Journal), Vol. 84, 242-258, 1878.

Soit z € I et [ay, . . .] son développement en fraction continue. On définit les
applications f7 et fo comme suit :
fl(.’L‘) = [al, az,...,A2541, - ] et fg(.’L‘) = [ag,a4, ceey @25, ]

Lapplication
I = 150 (fi(2), f2(2)

est la fonction de Cantor sur 1.

Remarque

e Si Q représente les nombres quadratiques de I, f est une bijection de @ dans Q2.

e Puisque que les cardinaux de E et I sont égaux, on peut étendre f en une
bijection de E dans E2.
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Fonction de Cantor

Représentations des fonctions f7 (& gauche) et f5 (a droite)

fi(z)
==
=

fa(z)
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Continuité de la fonction de Cantor

Pour z € I, on écrit p(x) = a si a € N satisfait z = [a].
Une distance usuelle sur N" est donnée par

[ee]
ZQ j_lag = bl
= a; —bj|+1

sia = (a;)jen etb = (bj) jen sont deux éléments de N''. On considére implicitement
que N est muni de cette distance. Lensemble I (comme D et E) sont munis de la
distance euclidienne.

Proposition

Lapplication ¢ est un homéomorphisme entre I et NY. En particulier, la fonction de
Cantor f est un homéomorphisme entre I et I2.
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Continuité de la fonction de Cantor

Théoréme de Netto

Toute bijection g : [0, 1] — [0, 1]? is nécessairement discontinue. J

ﬁ H. Sagan, Space-filling curves, Universitext, New-York : Springer-Verlag, 1994.

Donc, la fonction de Cantor f ne peut pas étre étendu en une bijection continue de E
dans E2.

Proposition

Toute extension de la fonction de Cantor sur E est discontinue sur les rationnels de EJ
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Courbe de Peano

@ H. Sagan, Space-filling curves, Universitext, New-York : Springer-Verlag, 1994.

La courbe de Peano (représentée ci-dessous) est une surjection continue de [0, 1]
dans [0, 1]2.
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Régularité héldérienne

ﬁ S. Jaffard, Wavelet Techniques in Multifractal Analysis, In Proceedings of
Symposia in Pure Mathematics, Vol. 72, 91-152, 2004.

Soit & € [0, 1]. Une fonction réelle continue et bornée g définie sur A C R appartient
al'espace de Holder A%(z) avec x € A s'il existe une constante C' > 0 telle que

l9(z) — g(y)| < Clz —yl|*,
pour tout y € A. Lexposant de Hélder h, () de g au point = est définie comme suit :
hg(z) = sup{a € [0,1] : g € A%(x)}.
Si hy(x) < 1, g n'est pas dérivable au point x.

Exemple

La courbe de Peano a un exposant de Holder égal & 1/2 partout sur [0, 1].

ﬁ S. Jaffard and S. Nicolay, Space-filling functions and Davenport series, Recent
Developments in Fractals and Related Fields, 19-34, 2010.
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Régularité héldérienne de la fonction de Cantor

Théoreme
Soient z = [a] un élément de I et y un élément de I, (x) \ In+1(z) (avecn € N). Ona
1 A [n/2]+3
1 Ca(n
n Z tog(a;—1) ~ > log(azi 1)+ %
< log|fi(z) = fi(y)l _ =i
1 loglz—yl G
C g Y
n Z R 1(”) n > " log(ay)
=1
o log(2 2 2
Ci(n) = 0g(2) + log (max{a”+2 + , an+3 + })
2 ant2 +1 anys+1
et
+2 +2
Ca(n) = log(2) + log | max 32[n/2]+3 ’ 92[n/2]1+5 .
z Ao[n/2143 T 1 aspn/oy45 +1

Il'y a un résultat similaire pour fs.
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Régularité héldérienne de la fonction de Cantor

En combinant le théoréme précédent et un résultat d’ergodicité sur les fractions
continues, on obtient un encadrement pour I'exposant de Holder des fonctions f;
et fg.

Théoréme
Pour presque tout = € I, hy, (x) et hy, (z) sont compris entre 0, 35 et 0, 72.

Remarque

Soit a € N Ia suite définie par

)

o — 27 sij est pair
771 1  sijestimpair

pour tout j € N et soit 2 = [a]. Pour ce point particulier, on a h¢, () = 0 et donc f;
est une fonction multifractale.

La fonction f, est aussi multifractale.
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