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ABSTRACT 

A quadrilateral element with smoothed curvatures for Mindlin-Reissner plates is proposed. The 

curvature at each point is obtained by a non-local approximation via a smoothing function. The 

bending stiffness matrix is calculated by a boundary integral along the boundaries of the smoothing 

elements (smoothing cells). Numerical results show that the proposed element is robust, 

computational inexpensive and simultaneously very accurate and free of locking, even for very thin 

plates. The most promising feature of our elements is their insensitivity to mesh distortion. 
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1. Introduction 

Plate structures play an important role in Engineering Science. There are two different plate 

theories, the Kirchhoff plate and the Mindlin-Reissner plate theory. Kirchhoff plates are only 

applicable for thin structures where shear stresses in the plate can be ignored. Moreover, Kirchhoff 

plate elements require C1 continuous shape functions. Mindlin-Reissner plates take shear effects 

into account. An advantage of the Mindlin-Reissner model over the biharmonic plate model is that 

the energy involves only first derivatives of the unknowns and so conforming finite element 

approximations require only the use of C0 shape functions instead of the required C1 shape functions 

for the biharmonic model. However, Mindlin-Reissner plate elements exhibit a phenomenon called 

shear locking when the thickness of the plate tends to zero. Shear locking is characterized by 

incorrect transverse forces under bending. When linear finite element shape functions are used, the 

shear angle is linear within an element while the contribution of the displacement is only constant. 

The linear contribution of the rotation cannot be ‘‘balanced” by a contribution from the 

displacement. Hence, the Kirchhoff constraint w,x + βy = 0, w,y + βx = 0 is not fulfilled in the entire 

element any more. Typically, when shear locking occurs, there are large oscillating shear/transverse 

forces and hence a simple smoothing procedure can drastically improve the results. Early methods 

tried to overcome the shear locking phenomenon by reduced integration or a selective reduced 

integration, see Refs. [29,30,67]. The idea is to split the strain energy into two parts, one due to 

bending and the other one due to shear. Commonly, different integration rules for the bending strain 

and the shear strain energy are used. For example, for the shear strain energy, reduced integration 

is used while full integration is used for the bending energy. Reduced integration leads to an 

instability due to rank deficiency and results in zero-energy modes that can be eliminated by an 

hourglass control, [3,6,28,66]. 

For a general quadrilateral plate element, the deflection and the two rotations of the four-node 

element can be interpolated. Often, approximated fields of high degree are used. However, except 

for the 16-node isoparametric element of [66], most other elements still exhibit shear locking when 

the thickness tends to zero. To overcome this phenomenon, a reduced integration scheme is 

employed in the shear term. However, most of these elements still exhibit either locking or exhibit 

artificial zero-energy modes. Another famous class of plate elements are mixed formulation/hybrid 

elements [36,37,48] and equilibrium elements [25]. However, such elements are complex and the 

computational cost is high. They are not popular in most commercial finite element method (FEM) 

codes. 

The assumed natural strain (ANS) method was developed to eliminate shear locking for bilinear 

plate elements, [31]. The basic idea is to compute the shear strains not directly from the derivatives 

of the displacements but at discrete collocation points, from the displacements. Afterwards, they 

are interpolated over the element with specific shape functions. For the bilinear element for 

example, the collocation points will be placed at the midpoint of the element edges since the shear 

stresses are linear in the element and zero in the middle of the element. This reduces in addition one 

of the constraints, since it makes one of the Kirchhoff constraints linear dependent on the other 
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constraints. Bathe and Dvorkin [4] extended the ANS plate elements to shells. The resulting element 

is known as the MITC (mixed interpolation of tensorial components) or Bathe-Dvorkin element, see 

also [5,24]. Many ANS versions of plate and shell elements have been developed. A nice overview can 

be found, e.g. in the textbooks by [66] and [3], as well as [49]. 

An alternative to the ANS method to avoid shear locking is the discrete-shear-gap (DSG) method [10]. 

The DSG method is in a way similar to the ANS method since it modifies the course of certain strains 

within the element. The main difference is the lack of collocation points that makes the DSG method 

independent of the order and form of the element. Instead, the Kirchhoff constraints are imposed 

directly on the element nodes. The enhanced- assumed-strain (EAS) method principally can be used 

to avoid locking phenomena as well. While the EAS method was successfully applied to eliminate 

membrane locking in shells, it was not very efficient in removing shear locking in plates. The EAS 

element of Simo and Rifai [53] gives satisfying results for rectangular plates. 

In this work, we present new plate elements based on the MITC4 element in which we incorporate 

stabilized conforming nodal integration (SCNI). The SCNI approach was originally developed in 

meshfree methods as a normalization for nodal integration [17,64] of the meshfree Galerkin weak 

form and recently in the FEM [40]. In this approach, the strain smoothing stabilization has been 

introduced. In the SCNI, to meet the integration constraints and thus fulfills the linear exactness in 

the Galerkin approximation of the second order partial differential equations. Wang et al. [56] have 

shown that the cause of shear locking in Mindlin-Reissner plate formulations is due to the inability 

of the approximation functions to reproduce the Kirchhoff mode, and the incapability of the 

numerical method to achieve pure bending exactness (BE) in the Galerkin approximation. In their 

study, the Kirchhoff mode reproducing condition (KMRC) is ensured for Mindlin-Reissner plates. The 

approximation functions for the displacement and the rotations are constructed to meet the KMRC. 

Then, they derived the integration constraints for achieving BE, and a curvature smoothing method 

(CSM) is proposed to meet the bending integration constraints. A further extension of the SCNI to 

analysis of transverse and inplane loading of laminated anisotropic plates with general planar 

geometry was studied in [57]. Other contributions to remove shear locking in meshfree plate 

discretizations are given in [26,34,35,39,54], and, very recently, [2,19,57]. 

In meshfree methods with stabilized nodal integration, the entire domain is discretized into cells 

defined by the field of nodes, such as the cells of a Voronoi diagram [17,64]. Integration is performed 

along the edges of each cell. Although meshfree methods such as EFG obtain good accuracy and 

high convergence rates, the non-polynomial or usually complex approximation space increases the 

computational cost of numerical integration. Recently, applications of the SCNI to the FEM so-called 

the smoothed finite element method (SFEM) for two dimensional problems had been proposed by 

Liu et al. [40,41]. It was shown that the SFEM is stable, accurate and effective [20,21,47]. Following 

the idea of the SFEM, Nguyen et al. [46] have formulated the SFEM with a selective cell-wise 

smoothing technique in order to eliminate locking in incompressible cases, which have also been 

studied in [47]. 

We will show by numerical experiments that our element performs better or slightly better than the 

original MITC4 element, at least for all examples tested. Moreover, due to the integration technique, 
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the element promises to be more accurate especially for distorted meshes. We will also show that 

our element is free of shear locking. 

The outline of the paper is organized as follows. In the next section, we present the basic equations 

of the plate problem and the weak form. The curvature smoothing stabilization and the finite 

element discretization using the curvature smoothing method are introduced in Section 3. Several 

numerical examples are given in Section 4. Finally, Section 5 closes this manuscript with some 

conclusions and future plans. 

2. Governing equations and weak form 

Let Ω be the domain in R2 occupied by the mid-plane of the plate and w and β = (βx, βy)T denote the 

transverse displacement and the rotations in the x — z and y — z planes, see Fig. 1, respectively. 

Assuming that the material is homogeneous and isotropic with Young’s modulus E and Poisson’s 

ratio ν, the governing differential equations of the Mindlin-Reissner plate are 

 (1) 

 (2) 

 (3) 

where t is the plate thickness, p = p(x, y) is the transverse loading per unit area, 𝜆 =
𝑘𝐸

2(1+𝜈)
 , k = 5/6 is 

the shear correction factor and Db is the tensor of bending moduli, k and γ are the bending and shear 

strains, respectively, defined as 

 (4) 

The Eqs. (1)-(3) correspond to the minimization of the total potential function 

 (5) 

The weak form of the equilibrium equation follows from the stationarity of Eq. (5): 

 (6) 
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where the delta denotes the variation. Let us assume that the bounded domain 𝛀 is discretized into 

ne finite elements, Ω≈Ωh=∪e=1
ne Ωe. The finite element solution uh = [w βx βy]T of a displacement 

model for the Mindlin-Reissner plate is then expressed as 

 (7) 

where np is the total number of element nodes, Ni are the bilinear shape functions associated to 

node i and [wiθxiθyi]
T

are the nodal degrees of freedom of the variables uh = [w βx βy]T associated to 

node i. Then, the discrete curvature field is 

kh = Bbq,(8) 

where the matrix Bb, defined below, contains the derivatives of the shape functions. The 

approximation of the shear strain is written as 

γh = Bsq (9) 

with 

 (10) 

By substituting Eqs. (7)-(9) into Eq. (5) and with the stationarity of (5), we obtain a linear system of 

an individual element for the vector of nodal unknowns q, 

Kq = g (11) 

with the element stiffness matrix 

 (12) 

and the load vector  

 (13) 

where 

 (14) 
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The element stiffness matrix K is symmetric and positive semi-definite. As already mentioned in the 

introduction, for a low-order1 element, shear locking is observed that can be eliminated by different 

techniques, [3,6,28,66]. The aim of this paper is to propose a stabilized integration for a quadrilateral 

plate element. Therefore we will 

1. Apply the curvature smoothing method which was proposed by Chen et al. [17] in meshfree 

methods based on the nodal integration and recently in the SFEM by Liu et al. [40] to the bending 

strains and 

2. Adopt an independent interpolation approximation for the shear strains as in the MITC4 

element [4]. 

In meshfree methods based on nodal integration for Mindlin-Reissner plates, convergence requires 

fulfilling bending exactness (BE) and thus requires the following bending integration constraint (IC) 

to be satisfied [56]. 

 (15) 

where Bi is the standard gradient matrix 

 (16) 

The IC criterion comes from the equilibrium of the internal and external forces of the Galerkin 

approximation assuming pure bending [56]. This is similar to the consistency with the pure bending 

deformation in the constant moment patch test in FEM. 

The basic idea is to couple the MITC element with the curvature smoothing method (CSM). 

Therefore, smoothing cells are constructed that do not necessarily have to be coincident with the 

finite elements. We use a mixed variational principle based on an assumed strain field [52] and the 

integration is carried out either on the elements themselves, or over the smoothing cells that form a 

partition of the elements. The CSM is employed on each smoothing cell to normalize the local 

curvature and to calculate the bending stiffness matrix. The shear strains are obtained with 

independent interpolation functions as in the MITC element. 

There are several choices for the smoothing function. For constant smoothing functions, after 

transforming the volume integral into a surface integral using Gauss’ theorem, the surface 

integration over each smoothing cell becomes a line integration along its boundaries, and 

consequently, it is unnecessary to compute the gradient of the shape functions to obtain the 

curvatures and the element bending stiffness matrix. In this paper, we use 1D Gauss integration 

 

1 In our case a four-node quadrilateral full-integrated bilinear finite element. 



Published in : Computer methods in applied mechanics and engineering (2008), vol. 197, pp. 

1184-1203 

DOI: doi:10.1016/j.cma.2007.10.008 

Status : Postprint (Author’s version)   

 

 

scheme on all cell edges. The flexibility of the proposed method allows constructing four-node 

elements even when the elements are extremely distorted [40]. 

3. A formulation for four-node plate element 

3.1. THE CURVATURE SMOOTHING METHOD (CSM) 

The CSM was proposed by Chen et al. [17] and Wang et al. [56] as normalization of the local curvature 

in mesh- free methods. A curvature smoothing stabilization is created to compute the nodal 

curvature by a divergence estimation via a spatial averaging of the curvature fields. In other words, 

the domain integrals are transformed into boundary integrals. This curvature smoothing avoids the 

evaluation of the derivatives of the meshfree shape functions at the nodes2, where they vanish, and 

thus eliminates defective modes. A curvature smoothing at an arbitrary point is given by 

 (17) 

where Φ is a smoothing function that has to satisfy the following properties [64] 

 (18) 

For simplicity, Φ is assumed to be a step function defined by 

  (19) 

where AC is the area of the smoothing cell, ΩC⊂Ωe⊂Ωhas shown in Fig. 2. 

Substituting Eq. (19) into Eq. (17), and applying the divergence theorem, we obtain 

 (20) 

Next, we consider an arbitrary smoothing cell, ΩC illustrated in Fig. 2 with boundary ΓC =∪b=1
nb  ΓC

b, 

where Γ𝐶
𝑏is the boundary segment of ΩC, and nb is the total number of edges of each smoothing cell. 

The relationship between the smoothed curvature field and the nodal displacement is written by 

 

2 This applies only to meshfree methods that are based on a noda integration. 
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 (21) 

The smoothed element bending stiffness matrix is obtained by 

 (22) 

where nc is the number of smoothing cells of the element, see Fig. 3. 

Here, the integrands are constant over each ΩC and the non-local curvature displacement matrix 

reads 

 (23) 

We use Gauss quadrature to evaluate (23) with one integration point over each line segment Γ𝐶
𝑏 : 

 (24) 

where xb
G and lb

C are the midpoint (Gauss point) and the length ofΓb
C, respectively. 

The smoothed curvatures lead to high flexibility such as arbitrary polygonal elements, and a slight 

reduction in computational cost. The element is subdivided into nc non-overlapping sub-domains 

also called smoothing cells. Fig. 3 illustrates different smoothing cells for nc = 1, 2, 3 and 4 

corresponding to 1-subcell, 2-subcell, 3-subcell and 4-subcell methods. The curvature is smoothed 

over each subcell. The values of the shape functions are indicated at the corner nodes in Fig. 3 in the 

format (N1, N2, N3, N4). The values of the shape functions at the integration nodes are determined 

based on the linear interpolation of shape functions along boundaries of the element or the 

smoothing cells. 

Therefore the element stiffness matrix in (12) can be modified as follows: 

 (25) 

It can be seen that a reduced integration on the shear term Ks is necessary to avoid shear locking. 

We will denote these elements by SC1Q4, SC2Q4, SC3Q4 and SC4Q4 corresponding to subdivision 

into nc =1,2,3 and 4 smoothing cells, Fig. 3. However, we will show that these elements fail the patch 

test and they exhibit an instability due to rank deficiency. Therefore, we employ a mixed 
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interpolation as in the MITC4 element and use independent interpolation fields in the natural 

coordinate system [4] for the approximation of the shear strains: 

 (26) 

where 

 (27) 

where J is the Jacobian matrix and the midside nodes A, B, C, D are shown in Fig. 1. Presenting γξ
B,γξ

D 

and γη
A, γη

C based on the discretized fields uh, we obtain the shear matrix: 

 (28) 

where 

 (29) 

with ξi∈{-1, 1, 1, -1}, ηi∈{-1, -1, 1, 1} and (i, M, L)∈{(1, B, A);(2, B, B);(3, D, C);(4, D, A)} . Note that 

the shear term Ks is still computed by 2 x 2 Gauss quadrature while the element bending stiffness Kb 

in Eq. (12) is replaced by the smoothed curvature technique on each smoothing cell of the element. 

3.2. HU-WASHIZU VARIATIONAL FORMULATION 

We use a modified Hu-Washizu variational formulation [58] given for an individual element by  

 

where M is the moment tensor. Partitioning the element into nc sub-cells such that the sub-cells are 

not overlapping and form a partition of the element Ωe, Ωe= ∪ic=1
nc Ωic

e , the functional energy, ΠHW
e , 

can be rewritten as 



Published in : Computer methods in applied mechanics and engineering (2008), vol. 197, pp. 

1184-1203 

DOI: doi:10.1016/j.cma.2007.10.008 

Status : Postprint (Author’s version)   

 

 

 (31) 

where 

 (32) 

with Aic is the area of the smoothing cell, Ωic
e . 

To reduce Π𝐻𝑊
𝑒  from a three-field potential to a two- field potential, we need to find a strict condition 

on the smoothing cells ΩC for the orthogonality condition [52,53]:  

 (33) 

is satisfied. By substituting M through the constitutive relation 𝑀 = 𝐷𝑏
�̃�, we rewrite the 

orthogonality condition: 

 (34) 

where ΩC⊂Ωe is a smoothed curvature field defined for every k̃ = 
1

AC 
∫ΩC

k(x)dΩ  and the smoothed 

k̃ curvature does not depend on the integration after processing a smoothed operator, i.e., 

 

with 

 (35) 
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If ΩC coincides with Ωic
e , the orthogonality condition (33) is met and the three-field potential is 

reduced to a two-field potential: 

 (36) 

Now we show that the proposed total energy approaches the total potential energy variational 

principle (TPE) when nc tends to infinity. Based on the definition of the double integral formula, 

when 𝑛𝑐 → ∞, 𝐴𝑖𝑐 → 𝑑𝐴𝑖𝑐  - an infinitesimal area containing point xic, applying the mean value 

theorem for the smoothed strain, 

 (37) 

where k(x) is assumed to be a continuous function. Eq. (37) states that the average value of k(x) over 

a domain Ω𝑖𝑐
𝑒 approaches its value at the converged point xic. 

Taking the limit of Π𝐻𝑊
𝑒  when the number of subcells tends to infinity, 

 

The above proves that the total potential energy variational principle is recovered from the 

proposed variational formulation as nc tends to infinity. 
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4. Numerical results 

We will test our new element for different numbers of smoothing cells and call our element MISCk 

(mixed interpolation and smoothed curvatures) with 𝑘 ∈ {1,2,3,4} smoothing cells for the bending 

terms. For instance, the MISC1 element is the element with only one smoothing cell to integrate the 

bending part of the element stiffness matrix. We will compare our results to the results obtained with 

the reduced/selective integrated quadrilateral element (Q4-R), the MITC4 element and with several 

other elements in the literatures. 

4.1. PATCH TEST 

The patch test was introduced by Bruce Irons and Bazeley [7] to check the convergence of finite 

elements. It is checked if the element is able to reproduce a constant distribution of all quantities 

for arbitrary meshes. It is important that one element is completely surrounded by neighboring 

elements in order to test if a rigid body motion is modelled correctly, Fig. 4. The boundary deflection 

is assumed to be 𝑤 =
1

2
 (1 + 𝑥 + 2𝑦 + 𝑥2 + 𝑥𝑦 + 𝑦2) [18]. The results are shown in Table 1. While 

the MITC4 element and the MISCk elements pass the patch test, the Q4-R element and the SC1Q4, 

SC2Q4, SC3Q4, SC4Q4 elements fail the patch test. Note that also the fully integrated Q4 element 

(on both the bending and the shear terms) does not pass the patch test. 

4.2. A SENSITIVITY TEST OF MESH DISTORTION 

Consider a clamped square plate subjected to a center point F or uniform load p shown in Fig. 5. The 

geometry parameters and the Poisson’s ratio are: length L, thickness t, and ν= 0.3. Due to its 

symmetry, only a quarter (lower-left) of the plate is modelled with a mesh of 8 x 8 elements. To study 

the effect of mesh distortion on the results, interior nodes are moved by an irregularity factor s. The 

coordinates of interior nodes is perturbed as follows [40]: 

 (39) 

where rc is a generated random number given values between — 1.0 and 1.0, s ∈ [0,0.5] is used to 

control the shapes of the distorted elements and Δx, Δy are initial regular element sizes in the x- and 

y-directions, respectively. 

For the concentrated center point load F, the influence of the mesh distortion on the center 

deflection is given in Fig. 6 for a thickness ratio of (t/L = 0.01 and 0.001). The results of our presented 

method are more accurate than those of the Q4-R element and the MITC4 element, especially for 

extremely distorted meshes. Here, the MISC1 element gives the best result. However, this element 

contains two zero-energy modes. In simple problems, these hourglass modes can be automatically 

eliminated by the boundary conditions. However, this is not in general the case. Otherwise, the 
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MISC2, MISC3 and MISC4 elements retain a sufficient rank of the element stiffness matrix and give 

excellent results. 

Let us consider a thin plate with (t/L = 0.001) under uniform load as shown Fig. 5a. The numerical 

results of the central deflections are shown in Table 2 and Fig. 7 and compared to other elements. 

For the case s = 0, it can be seen that the MISCk elements yield similar or slightly more accurate 

results than the other elements. Moreover, all proposed elements lead to slightly better results than 

the elements used for comparison, especially for distorted meshes, s >0. 

4.3. SQUARE PLATE SUBJECTED TO A UNIFORM LOAD OR A POINT LOAD 

Figs. 5a and 13 are the model of a square plate with clamped and simply supported boundary 

conditions, respectively, subjected to a uniform load p = 1 or a central load F = 16.3527. The material 

parameters are given by Young’s modulus E = 1,092,000 and Poisson’s ratio ν = 0.3. Uniform meshes 

with N = 2, 4, 8, 16, 32 are used and symmetry conditions are exploited. 

For a clamped case, Fig. 8 illustrates the convergence of the normalized deflection and the 

normalized moment at the center versus the mesh density N for a relation t/L = 0.01. Even for very 

coarse meshes, the deflection tends to the exact solution. For the finest mesh, the displacement 

slightly (.06%) exceeds the value of the exact solution. The bending moment converges to the 

analytical value. The rate of convergence in the energy norm is presented in Fig. 9 and is for all 

elements equal to 1.1 but the MISCk elements are more accurate than the MITC4 element in energy. 

Tables 3 and 4 show the performance of the plate element for different thickness ratios, t/L = 10-1-10-

5. No shear locking is observed. In addition, it is observed that the MIS- Ck elements improve the 

solutions with coarse meshes while for fine meshes all elements lead to very similar results. 

Next we consider a sequence of distorted meshes with 25, 81, 289 and 1089 nodes as shown in Fig. 

10. The numerical results in terms of the error in the central displacement and the strain energy are 

illustrated in Fig. 11. All proposed elements give stable and accurate results. Especially for coarse 

meshes, the MISCk elements are more accurate than the MITC4 element; a reason for this may be 

that for our finest meshes, fewer elements are distorted in comparison to coarse meshes. 

Now we will test the computing time for the clamped plate analyzed above. The program is compiled 

by a personal computer with Pentium(R)4, CPU - 3.2 GHz and RAM - 512 MB. The computational cost 

to set up the global stiffness matrix and to solve the algebraic equations is illustrated in Fig. 12. The 

MISCk elements and the MITC4 element give nearly the same CPU time for coarse meshes where the 

MISCk elements are more accurate. From the plots, we can conjecture that for finer meshes, the 

MITC4 element is computationally more expensive than the MISCk element, and the MISCk elements 

are generally more accurate. The lower computational cost comes from the fact that no 

computation of the Jacobian matrix is necessary for the MISCk elements while the MITC4 element 

needs to determine the Jacobian determinant, the inverse of the Jacobian matrix (transformation 

of two coordinates; global coordinate and local coordinate) and then the stiffness matrix is 

calculated by 2 x 2 Gauss points. Previously, the same tendency was observed for the standard (Q4 

element), see [40] for details. 
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For a simply supported plate subjected to central concentrated load, the same tendencies as 

described above are observed. Exemplarily, we will show the results of the normalized deflection in 

Fig. 14a for the uniform meshes and in Fig. 14b for the distorted meshes illustrated in Fig. 10. 

The numerical results for a simply supported plate subjected to a uniform load are presented in 

Tables 5 and 6 and Figs. 15 and 16 for a regular mesh. We note that the MISCk elements are more 

accurate than the MITC4 element but show the same convergence rate in energy. We also see that 

no shear locking occurs with decreasing thickness. Also, for all elements presented, the 

displacement results do not seem to be influenced by the value of the thickness ratio, at least in the 

range t/L ∈ [10-5,10-3]. The moments remain accurate throughout the range of thickness ratios that 

we considered. 

4.4. SKEW PLATE SUBJECTED TO A UNIFORM LOAD 

4.4.1. RAZZAQUE’S SKEW PLATE MODEL 

Let us consider a rhombic plate subjected to a uniform load p = 1 as shown in Fig. 17a. This plate was 

originally studied by Razzaque [51]. Dimensions and boundary conditions are specified in Fig. 17a, 

too. Geometry and material parameters are length L = 100, thickness t = 0.1, Young’s modulus E = 

1,092,000 and Poisson’s ratio ν = 0.3. The results in Table 7 show that the accuracy of the presented 

method is always better than that of the MITC4 element. Fig. 18 illustrates the contribution of the 

von Mises stresses and the level lines for Razzaque’s skew plate with our MISC4 element. 

4.4.2. MORLEY’S SKEW PLATE MODEL 

The set-up of a skew plate is shown in Fig. 17b. This example was first studied by Morley [45]. The 

geometry and material parameters are length L = 100, thickness t, Young’s modulus E = 1,092,000, 

Poisson’s ratio ν = 0.3 and a uniform load p = 1. The values of the deflection at the central point are 

given in Fig. 20 for different plate thicknesses. The MISCk elements show remarkably good results 

compared the MITC4 element. The distribution of the von Mises stresses and the level lines are 

illustrated in Fig. 19. It is evident that this problem has a corner singularity. An adaptive approach 

might be useful to optimize the computational cost. 

As we prove mathematically and show numerically in a short communication to be published in 

Computer Methods in Applied Mechanics and Engineering, in the context of continuum elements, 

the smoothed finite element method yields solutions comprised between the standard, 

displacement based FEM and equilibrium, stress based elements. The equilibrium method is 

recovered when one smoothing cell is used and the displacement method is found in the limit where 

the number of smoothing cells tends to infinity. It appears like this property could also be verified in 

the context of plate analysis. At least, the results in Fig. 20 tend to indicate that the higher the 

number of smoothing cells, the closer the solution is to the MITC4 elements, with almost identical 

behaviour for 4 smoothing cells. On the contrary, it is interesting to note that the one-subcell 

element (MISC1) overestimates the energy (similarly to equilibrium methods). 
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4.5. CORNER SUPPORTED SQUARE PLATE 

Consider a corner supported plate subjected to a uniform load p = 0.03125 with edge length L = 24 

and thickness t = 0.375. This example is often studied to test the existence of spurious energy modes. 

The material parameters are Young’s modulus E = 430,000 and Poisson’s ratio ν = 0.38. The shear 

correction factor was set to a value of k = 1000. A symmetric model with an initial mesh of 8 x 8 

elements is shown in Fig. 21. Table 8 shows the convergence of the center deflection. We note that 

even our rank-deficient MISC1 element gives stable and very accurate results. 

We have also carried out a frequency analysis. The mass density is chosen to be ρ = 0.001 and the 

normalized frequencies are �̅� = 𝜔𝐿2(𝐷/𝑡𝜌)−1/2. The results are illustrated in Table 9 for two mesh 

densities (6 x 6 and 32 x 32). It can be seen that all proposed elements give stable and accurate 

solutions. 

4.6. CLAMPED CIRCULAR PLATE SUBJECTED TO A CONCENTRATED LOAD 

Let us consider a clamped circular plate with radius R = 5 subjected to a point load F = 1 at the center. 

The material and geometric parameters are Young’s modulus E = 10.92, Poisson’s ratio ν= 0.3 and 

the thickness of the plate is 1. The analytical deflection for this problem is  

 (40) 

A discretization of this problem with 48 elements is illustrated in Fig. 22. We exploited the symmetry 

of the plate and modelled only one quarter. Because of the singularity at the center, the normalized 

central deflection is evaluated at the radius r =10 3R. The numerical results are summarized in Table 

10 and Fig. 23. The MITC4 and MISCk elements converge to the exact value with refined meshes. 

However, the convergence in the central deflection is slow due to the singularity at the center. To 

increase the convergence rate of the problem, an adaptive local refinement procedure (or XFEM-like 

enrichment) should be considered in the future. If the ratio r/R is large enough, the numerical results 

are very close to the analytical solution. 

5. Closure and opening 

A quadrilateral plate element based on a mixed interpolation with smoothed curvatures has been 

proposed. Except for the MISC1 element that exhibits two zeroenergy modes, the MISC2, MISC3 and 

MISC4 elements maintain a sufficient rank and no zero-energy modes are present. Moreover, all 

proposed elements do not exhibit shear locking in the limit to thin plates. It is also shown that the 

MISCk element passes the patch test. For regular, non-distorted meshes, in comparison to the well 

known MITC4 element, the proposed elements are slightly more accurate, for all examples tested. 

But their most promising feature is their improved performance for irregular meshes or coarse 

meshes and their lower computational cost (about 25% in our implementation. No analytical 

complexity analysis is available to date) The element with the best performance is the MISC1 
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element but it exhibits two zero-energy modes. However, for the examples tested here, no 

instabilities were observed. The elimination of the zero-energy modes of our MISC1 elements will be 

investigated in the future. The MISC2 element is almost of the same accuracy as the MISC1 element 

and it is stable but it slightly slower. 

We believe that our element is especially useful for certain types of problems where locally large 

deformations or strains occur, e.g. ductile cracking where crack initiation and propagation occurs 

under large strains and large deformation. It is important to retain accuracy in a local region before 

cracking happens in order to obtain the correct crack path [16,50]. This will be investigated in the 

future using open source XFEM libraries [15,23]. The MISCk elements can be extended to non-linear 

material models including strong discontinuities such as in the eXtended finite element method 

(XFEM) introduced by [8,9,43,44] and improved to handle complex industrial structures in [14,11] 

and, later, [60-63]. For discontinuous problems, an adaptive procedure might be useful as well, for 

instance, following the seminal work presented in [12,13,22]. We expect the h-adaptivity procedure 

to be simplified compared to standard finite element formulations, because remeshing will not be 

as severely constrained by mesh quality requirements as in standard finite element methods. 

Another study will concern the shear term. By replacing 2 x 2 Gauss integration on the shear term 

with a reduced integration with stabilization, we expect the element to be even better suited to 

handle arbitrary mesh distortions 
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Figure 1. Assumption of shear deformations for quadrilateral plate element. 

 

 

Figure 2. Example of finite elements mashes and smoothing cells 

 

 

Figure 3. Division of an element into smoothing cells (nc) and the value of the shape function along the 

boundaries of cells: k-subcell stands for the shape function of the MISCk element, k = 1-4. 
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Figure 4. Patch test of elements 

 

 

Figure 5. Effect of mesh distortion for a clamped square plate: (a) clamped plate model; (b) s = 0.3; (c) s = 0.4; and 

(d) s = 0.5. 

 

Figure 6. The normalized center deflection with influence of mesh distortion for a clamped square plate subjected 

to a concentrated load: (a) t/L = 0.01 and (b) tlL = 0.001. 
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Figure 7. Comparison of other elements through the center deflection with mesh distortion. 

 

 

Figure 8. Normalized deflection and moment at center of clamped square plate subjected to uniform load. 
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Figure 9. Rate of convergence in energy norm versus with number of nodes for clamped square plate subjected 

to uniform load. 

 

 

Figure 10. Analysis of clamped plate with irregular elements: (a) 25; (b) 64; (c) 256; and (d) 1024 
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Figure 11. The convergence test of thin clamped plate (t/L = 0.001) (with irregular elements: (a) the deflection; (b) 

the strain energy). 

 

 

Figure 12. Computational cost for establishing the global stiffness matrix and solving system equations of 

clamped plate subjected to a uniform load. 
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Figure 13. A simply supported square plate subjected to a point load or a uniform load. 

 

 

Figure 14. Normalized deflection at the center of the simply supported square plate subjected to a center load. 
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Figure 15. Normalized deflection and moment at center of simply support square plate subjected to uniform load. 

 

 

Figure 16. Rate of convergence in energy norm for simply supported square plate subjected to uniform load. 
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Figure 17. A simply supported skew plate subjected to a uniform load. 

 

 

Figure 18. A distribution of von Mises stress and level lines for Razzaque’s skew plate using MISC4 element. 
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Figure 19. A distribution of von Mises and level lines for Morley’s skew plate using MISC2 element. 
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Figure 20. The convergence of the central deflection wc for Morley plate with different thickness/span ratio. 

 

 

Figure 21. Corner supported plate subjected to uniform load. 
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Figure 22. Clamped circular plate subjected to concentrated load. 

 

 

Figure 23. Clamped circular plate subjected to concentrated load.  
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Table 1. Patch test 
Element W5 Θx5 Θy5 mx5 my5 mxy5 

Q4-R 0.5440 1.0358 -0.676 - - - 

SC1Q4 0.5431 1.0568 -0.7314 - - - 

SC2Q4 0.5439 1.0404 -0.6767 - - - 

SC3Q4 0.5440 1.0396 -0.6784 - - - 

SC4Q4 0.5439 1.0390 -0.6804 - - - 

MITC4 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 

MISC1 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 

MISC2 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 

MISC3 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 

MISC4 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 

Exact 0.5414 1.04 -0.55 -0.01111 -0.01111 -0.00333 

-, no constant moments. 

 

Table 2. The central deflection wc/(pL4/100D), D = Et3/12(1 — ν2) with mesh distortion for thin clamped plate 

subjected to uniform load p 

s -1.249 -1.00 -0.5 0.00 0.5 1.00 1.249 

CRB1 [59] 0.1381 0.1390 0.1247 0.1212 0.1347 0.1347 0.1249 

CRB2 [59] 0.2423 0.1935 0.1284 0.1212 0.1331 0.1647 0.1947 

S1 [59] 0.1105 0.1160 0.1209 0.1211 0.1165 0.1059 0.0975 

S4R [1] 0.1337 0.1369 0.1354 0.1295 0.1234 0.1192 0.1180 

DKQ [33] 0.1694 0.1658 0.1543 0.1460 0.1418 0.1427 0.1398 

ANS-EC [32] - - - 0.1303 - - - 

ANS-2ND [32] - - - 0.1240 - - - 

Q4BL [65] - - - 0.1113 - - - 

NCQ [42] - - - 0.1278 - - - 

MITC4 0.0973 0.1032 0.1133 0.1211 0.1245 0.1189 0.1087 

MISC1 0.1187 0.1198 0.1241 0.1302 0.1361 0.1377 0.1347 

MISC2 0.1151 0.1164 0.1207 0.1266 0.1323 0.1331 0.1287 

MISC3 0.1126 0.1144 0.1189 0.1249 0.1305 0.1309 0.1260 

MISC4 0.1113 0.1130 0.1174 0.1233 0.1287 0.1288 0.1227 

Exact solution 0.1265 0.1265 0.1265 0.1265 0.1265 0.1265 0.1265 
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Table 3. Central deflections wc(pL4/100D) for the clamped plate subjected to uniform load 

L/t Elements Mesh     Exact 

[55]   2 4 8 16 32  

10 MITC4 0.1431 0.1488 0.1500 0.1504 0.1504 0.1499 

 MISC1 0.1517 0.1507 0.1505 0.1505 0.1505  
 MISC2 0.1483 0.1500 0.1503 0.1504 0.1505  
 MISC3 0.1467 0.1496 0.1502 0.1504 0.1504  
 MISC4 0.1451 0.1493 0.1502 0.1504 0.1504  

102 MITC4 0.1213 0.1253 0.1264 0.1267 0.1268 0.1267 

 MISC1 0.1304 0.1274 0.1269 0.1268 0.1268  
 MISC2 0.1269 0.1266 0.1267 0.1268 0.1268  
 MISC3 0.1252 0.1262 0.1266 0.1267 0.1268  
 MISC4 0.1235 0.1258 0.1265 0.1267 0.1268  

103 MITC4 0.1211 0.1251 0.1262 0.1264 0.1265 0.1265 

 MISC1 0.1302 0.1272 0.1267 0.1266 0.1265  
 MISC2 0.1266 0.1264 0.1265 0.1265 0.1265  
 MISC3 0.1249 0.1260 0.1264 0.1265 0.1265  
 MISC4 0.1233 0.1256 0.1263 0.1265 0.1265  

104 MITC4 0.1211 0.1251 0.1262 0.1264 0.1265 0.1265 

 MISC1 0.1302 0.1272 0.1267 0.1266 0.1265  
 MISC2 0.1266 0.1264 0.1265 0.1265 0.1265  
 MISC3 0.1249 0.1260 0.1264 0.1265 0.1265  
 MISC4 0.1233 0.1256 0.1263 0.1265 0.1265  

105 MITC4 0.1211 0.1251 0.1262 0.1264 0.1265 0.1265 

 MISC1 0.1302 0.1272 0.1267 0.1266 0.1265  
 MISC2 0.1266 0.1264 0.1265 0.1265 0.1265  
 MISC3 0.1249 0.1260 0.1264 0.1265 0.1265  
 MISC4 0.1233 0.1256 0.1263 0.1265 0.1265  

         

Table 4. Central moments Mc(pL2/10) for the clamped plate subjected to uniform load 
L/t Elements Mesh     Exact 

[55]   2 4 8 16 32  

10 MITC4 0.1898 0.2219 0.2295 0.2314 0.2318 0.231 

 MISC1 0.2031 0.2254 0.2304 0.2316 0.2319  
 MISC2 0.1982 0.2241 0.2300 0.2315 0.2319  
 MISC3 0.1974 0.2239 0.2300 0.2315 0.2319  
 MISC4 0.1930 0.2228 0.2297 0.2314 0.2319  

102 MITC4 0.1890 0.2196 0.2267 0.2285 0.2289 0.2291 

 MISC1 0.2031 0.2233 0.2277 0.2287 0.2290  
 MISC2 0.1976 0.2218 0.2273 0.2286 0.2290  
 MISC3 0.1974 0.2217 0.2273 0.2286 0.2290  
 MISC4 0.1923 0.2205 0.2270 0.2286 0.2290  

103 MITC4 0.1890 0.2196 0.2267 0.2285 0.2289 0.2291 

 MISC1 0.2031 0.2233 0.2276 0.2287 0.2290  
 MISC2 0.1976 0.2218 0.2273 0.2286 0.2289  
 MISC3 0.1974 0.2217 0.2272 0.2286 0.2289  
 MISC4 0.1923 0.2205 0.2269 0.2285 0.2289  

104 MITC4 0.1890 0.2196 0.2267 0.2285 0.2289 0.2291 

 MISC1 0.2031 0.2233 0.2276 0.2287 0.2290  
 MISC2 0.1976 0.2218 0.2273 0.2286 0.2289  
 MISC3 0.1974 0.2217 0.2272 0.2286 0.2289  
 MISC4 0.1923 0.2205 0.2269 0.2285 0.2289  

105 MITC4 0.1890 0.2196 0.2267 0.2285 0.2289 0.2291 

 MISC1 0.2031 0.2233 0.2276 0.2287 0.2290  
 MISC2 0.1976 0.2218 0.2273 0.2286 0.2289  
 MISC3 0.1974 0.2217 0.2272 0.2286 0.2289  
 MISC4 0.1923 0.2205 0.2269 0.2285 0.2289  
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Table 5. Central deflections wc/(pL4/100D) for the simply supported plate subjected to uniform load 

L/t Elements Mesh     Exact [55] 

  2 4 8 16 32  

10 MITC4 0.4190 0.4255 0.4268 0.4272 0.4273 0.4273 

 MISC1 0.4344 0.4290 0.4277 0.4274 0.4273  
 MISC2 0.4285 0.4277 0.4274 0.4273 0.4273  
 MISC3 0.4256 0.4270 0.4272 0.4273 0.4273  
 MISC4 0.4227 0.4263 0.4271 0.4272 0.4273  

102 MITC4 0.3971 0.4044 0.4059 0.4063 0.4064 0.4064 

 MISC1 0.4125 0.4079 0.4068 0.4065 0.4065  
 MISC2 0.4066 0.4066 0.4065 0.4065 0.4064  
 MISC3 0.4037 0.4059 0.4063 0.4064 0.4064  
 MISC4 0.4008 0.4052 0.4062 0.4064 0.4064  

103 MITC4 0.3969 0.4041 0.4057 0.4061 0.4062 0.4062 

 MISC1 0.4123 0.4077 0.4066 0.4063 0.4063  
 MISC2 0.4064 0.4064 0.4063 0.4062 0.4062  
 MISC3 0.4035 0.4057 0.4061 0.4062 0.4062  
 MISC4 0.4006 0.4050 0.4059 0.4062 0.4062  

104 MITC4 0.3969 0.4041 0.4057 0.4061 0.4062 0.4062 

 MISC1 0.4123 0.4077 0.4066 0.4063 0.4063  
 MISC2 0.4064 0.4064 0.4063 0.4062 0.4062  
 MISC3 0.4035 0.4057 0.4061 0.4062 0.4062  
 MISC4 0.4006 0.4050 0.4059 0.4062 0.4062  

105 MITC4 0.3969 0.4041 0.4057 0.4061 0.4062 0.4062 

 MISC1 0.4123 0.4077 0.4066 0.4063 0.4063  
 MISC2 0.4064 0.4064 0.4063 0.4062 0.4062  
 MISC3 0.4035 0.4057 0.4061 0.4062 0.4062  
 MISC4 0.4006 0.4050 0.4059 0.4062 0.4062  
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Table 6. Central moments Mc/(pL2/10) for the simply supported plate subjected to uniform load. 

L/t Elements Mesh     Exact [55] 

  2 4 8 16 32  

10 MITC4 0.4075 0.4612 0.4745 0.4778 0.4786  

 MISC1 0.4232 0.4652 0.4755 0.4780 0.4787  
 MISC2 0.4172 0.4637 0.4751 0.4779 0.4786  
 MISC3 0.4169 0.4637 0.4751 0.4779 0.4786  
 MISC4 0.4113 0.4622 0.4747 0.4778 0.4786  

102 MITC4 0.4075 0.4612 0.4745 0.4778 0.4786  

 MISC1 0.4232 0.4652 0.4755 0.4780 0.4787  
 MISC2 0.4171 0.4637 0.4751 0.4779 0.4786  
 MISC3 0.4169 0.4636 0.4751 0.4779 0.4786  
 MISC4 0.4113 0.4622 0.4747 0.4778 0.4786 0.4789 

103 MITC4 0.4075 0.4612 0.4745 0.4778 0.4786  
 MISC1 0.4232 0.4652 0.4755 0.4780 0.4787  
 MISC2 0.4171 0.4637 0.4751 0.4779 0.4786  
 MISC3 0.4169 0.4636 0.4751 0.4779 0.4786  
 MISC4 0.4113 0.4622 0.4747 0.4778 0.4786  

104 MITC4 0.4075 0.4612 0.4745 0.4778 0.4786  

 MISC1 0.4232 0.4652 0.4755 0.4780 0.4787  
 MISC2 0.4171 0.4637 0.4751 0.4779 0.4786  
 MISC3 0.4169 0.4636 0.4751 0.4779 0.4786  
 MISC4 0.4113 0.4622 0.4747 0.4778 0.4786  

105 MITC4 0.4075 0.4612 0.4745 0.4778 0.4786  

 MISC1 0.4232 0.4652 0.4755 0.4780 0.4786  
 MISC2 0.4171 0.4637 0.4751 0.4779 0.4786  
 MISC3 0.4169 0.4636 0.4751 0.4779 0.4786  
 MISC4 0.4113 0.4622 0.4747 0.4778 0.4786  

 

Table 7. Central defection and moment of the Razzaque’s skew plate 

Mesh MITC4 MISC1 MISC2 MISC3 MISC4 

(a) Central defection wc/104 

'eflection wc/10' 

4 
2 x 2 0.3856 0.3648 0.3741 0.3781 0.3816 
4 x 4 0.6723 0.6702 0.6725 0.6725 0.6724 
6 x 6 0.7357 0.7377 0.7377 0.7370 0.7364 
8 x 8 0.7592 0.7615 0.7610 0.7604 0.7598 
12 x 12 0.7765 0.7781 0.7776 0.7772 0.7769 
16 x 16 0.7827 0.7838 0.7834 0.7832 0.7830 
32 x 32 0.7888 0.7892 0.7891 0.7890 0.7889 
Ref. [51,6]     0.7945 

(b) Central moment My/103 

aoment My/10 2 x 2 0.4688 0.4688 0.4688 0.4688 0.4688 
4 x 4 0.8256 0.8321 0.8301 0.8284 0.8269 
6 x 6 0.8976 0.9020 0.9005 0.8994 0.8984 
8 x 8 0.9242 0.9272 0.9260 0.9254 0.9245 
12 x 12 0.9439 0.9454 0.9448 0.9445 0.9442 
16 x 16 0.9510 0.9518 0.9515 0.9513 0.9511 
32 x 32 0.9577 0.9580 0.9579 0.9578 0.9578 
Ref. [51,6]     0.9589 
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Table 8. The convergence of center defection for corner supported plate. 

Elem. per side 8 16 24 48 96 

DKQ [33] 0.11914 0.11960 0.11969 0.11974 0.11975 

G/W [27] 0.11862 0.11947 0.11963 0.11973 0.11975 
MITC4 0.11856 0.11946 0.11963 0.11973 0.11975 
MISC1 0.11873 0.11950 0.11965 0.11973 0.11975 
MISC2 0.11867 0.11949 0.11964 0.11973 0.11975 
MISC3 0.11864 0.11948 0.11963 0.11973 0.11975 
MISC4 0.11861 0.11947 0.11963 0.11973 0.11975 
Theory     0.12253 

 

Table 9. Three lowest frequencies for corner supported plate. 

Element 6 x 6 mesh 

iesh 

 32 x 32 mesh 

2 mesh  �̅�1 �̅�2 �̅�3 �̅�1 �̅�2 �̅�3 

DKQ [33] 7.117 18.750 43.998 - - - 

G/W [27] 7.144 18.800 44.105 - - - 
MITC4 7.135 18.795 44.010 7.03

6 

18.652 43.16

3 MISC1 7.136 18.799 44.011 7.07

5 

18.661 43.55

3 MISC2 7.141 18.800 44.065 7.07

5 

18.661 43.55

5 MISC3 7.143 18.800 44.092 7.07

5 

18.661 43.55

6 MISC4 7.145 18.800 44.119 7.07

6 

18.661 43.55

7 Theory [38]    7.12

0 

19.600 44.40

0  

Table 10. The normalized defection at center for circular plate. 

Mesh 2 4 8 16 32 

MITC4 0.7817 0.8427 0.8874 0.9278 0.9671 

MISC1 0.8011 0.8492 0.8893 0.9284 0.9673 
MISC2 0.7910 0.8457 0.8883 0.9281 0.9672 
MISC3 0.7880 0.8448 0.8880 0.9280 0.9672 
MISC4 0.7854 0.8439 0.8877 0.9279 0.9672 
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