
1 INTRODUCTION 

Because of their high flexibility, long span bridges can exhibit unacceptable dynamic behav-
iours. More exactly the very low natural frequencies (~0.5 Hz to 2 Hz) of suspended and cable-
stayed bridges make them very sensitive to the wind loading, whose frequency content is also in 
the very low frequency range. During erection stages, the final restraints to which the bridge 
will be subjected aren’t present yet. This reduction of stiffness results generally in even lower 
natural frequencies. In this case, the stability conditions at erection stages consist in critical cri-
teria. It is thus important to cautiously study the fulfilment of these conditions. 

As an important point attention has to be dedicated to a special dynamic phenomenon: the 
modal coupling, which is frequently neglected. It is often thought that this kind of coupling just 
occurs in case of closely spaced natural frequencies, which is wrong. After a short recall of the 
main stages of a stochastic analysis, this paper will present the conditions under which modal 
coupling can be significant. Thanks to usual assumptions that are made in the context of wind 
loaded structures, it will indeed be shown that the modal coupling can occur in other contexts. 
As a final point the effects of modal coupling will be illustrated on the dynamic response of a 
bridge. These effects will be enlightened by comparing the results obtained with both methods 
(with or without neglecting the modal coupling). 

 
2 STOCHASTIC ANALYSIS 

The dynamic analysis of large structures is commonly performed in a modal space. This projec-
tion into a subspace is beneficial since it allows (REF CLOUGH): 

• a reduction of the number of unknowns (from the n of dofs of the structure to the m ge-
neralized coordinates); 

• the uncoupling of the equations of motion (provided the damping is proportional) 
The basic idea of this modal decomposition lies in the fact that the displacements of the struc-
ture { }x  are expressed by a linear combination of mode shapes { } [ ]{ }x η= Φ  in which a few 
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mode shapes (m<<n) are collected in the mode shape matrix [ ]Φ  and { }η  represents the vector 
of modal amplitudes (or generalized coordinates).  
This subspace reduction can be useful in a deterministic analysis since the equation of motion in 
each mode can be solved independently from the others. In stochastic analysis, this subspace 
projection is also interesting since it gives a diagonal transfer matrix (see Table 1). 

Table 1 summarizes the main stages of a stochastic analysis. At this stage, it is supposed that 
the power spectral density (PSD) matrix of the applied forces is known. In case of a wind loaded 
structure subjected to buffeting forces this quantity can be expressed as a function of the PSD of 
the wind velocity and of the aerodynamic characteristics of the structure (REF, REF). By pre- 
and post-multiplication by the mode shapes [ ]Φ , the PSD matrix of the generalized forces can 
be obtained (see Table 1, line 1). 

Then the equations motion can be solved very easily by pre- and post-multiplying by the di-
agonal transfer matrix (see Table 1, line 2). Each component of the PSD matrix of the genera-
lized coordinates can be expressed as a function of the corresponding element of the PSD matrix 
of the generalized forces only. 

As a final step the PSD matrix of the structural displacements can be estimated by pre- and 
post-multiplying again by the mode shapes. The computation of this matrix is the main objec-
tive of a stochastic analysis. 

 
Table 1. Summary of the progress of a stochastic analysis. 
Stage         Operation 

Projection of the forces 
in the modal space 

( ) [ ] ( )[ ][ ]*
T

FFS Sω ω⎡ ⎤ = Φ Φ⎣ ⎦  

Resolution in the modal 
space 

( ) [ ] ( ) [ ]*
,T conj

FS H S Hη ω ω⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  

Come back to displace-
ments of structure 

( )[ ] [ ] ( ) [ ]TxS Sηω ω⎡ ⎤= Φ Φ⎣ ⎦  
 

T,conj stands for transposed conjuguate.  Note that [H] is a diagonal matrix. 
 
3 STOCHASTIC ANALYSIS OF LARGE STRUCTURES 

The design of structures is based on extreme displacements and internal forces. In this context, 
“extreme values” means maximum values that can be expected on a certain life time or duration 
of observation. For Gaussian processes the extreme value of a quantity can be estimated by the 
product of its variance and a peak factor (REF REF). Even if a rigorous value for the peak factor 
can be computed, for reasons of simplicity and computation time, the peak factor is often esti-
mated by simplified relations (REF REF). This indicates that the main objective of a stochastic 
analysis can be reached once the covariance matrices of the structural displacements and inter-
nal forces are computed. 

 
If structural displacements are considered, the extreme values, needed for the design, can thus 

be estimated thanks to the variances of the displacements. 
The computation of the elements of the PSD matrix of the structural displacements consists in 

the main objective of a stochastic analysis. For large structures, the estimation of the whole PSD 
matrix of the displacements is however too expensive in terms of computation time. Two solu-
tions are thus generally considered: 

• to compute the diagonal elements of this matrix only; this can be also realized for the 
most important degrees of freedom only 

• to integrate the last expression of Table 1 along frequencies and to estimate directly 
the covariance matrix of the displacements as a function of the covariance matrix of 
the modal amplitudes : 

[ ] [ ] [ ]cov cov T
x η⎡ ⎤= Φ Φ⎣ ⎦  (1) 

 



4 MODAL COUPLING 

There are several kinds of modal coupling depending on the matrix whose off-diagonal terms 
are considered. In this paper we will just focus on the influence of the cross-correlations be-
tween the generalized coordinated, i.e. the off-diagonal terms of the covariance matrix of the 
modal amplitudes. Since these quantities come from the off-diagonal terms of the corresponding 
PSD matrix it should rather be spoken of modal coherence instead of modal coupling. 

The covariance matrix of the modal amplitudes covη⎡ ⎤⎣ ⎦  is a full matrix obtained by integra-
tion (along frequencies) of the corresponding PSD matrix: 

( )cov S dη η ω ω
+∞

−∞

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫  (2) 

Its diagonal elements represent the variance of the modal amplitudes and the off-diagonal terms 
represent the cross-correlations between the amplitudes in different modes. 

In civil engineering application it is often supposed that the modal amplitudes are indepen-
dent random processes and thus that these off-diagonal terms are all equal to zero. It is generally 
accepted that this condition is valid in case of well-separated natural frequencies. It is however 
less commonly known that this condition is not sufficient. In the following, we will see that a 
second condition has to be fulfilled for the assumption of modal uncoupling. 

The variance of the displacement at degree-of-freedom i (see Equation 1) is expressed by: 
2
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in which the first double summation has been rewritten in such a way to introduce a first term 
corresponding to the diagonal elements of the covariance matrix (of the modal amplitudes) and 
another double summation based on off-diagonal terms only. An interesting way to judge the 
importance of modal cross-correlations is thus to estimate the relative importance of the second 
double summation compared to the result of the single summation. 

A first sight shows quickly that the second term can be negligible if the correlation coeffi-
cients 

mnηρ  between different modes are small. In the next paragraph this condition will be stu-
died in the context of wind loading. Note that discussions about Equation 3 have to be related to 
the differences between the famous SRSS and CQC combinations that are commonly used in 
seismic engineering (REF). 

5 MODAL COUPLING AND WIND LOADING 

Even if modal coupling has already been studied in many references (REF ?) it is interesting to 
understand what happens in case of structures subjected to turbulent wind loading. Indeed in 
this domain some hypotheses (concerning the integration along frequencies leading to Equation 
1) that are often formulated allow giving an interesting physical meaning to modal coupling. 

The aim of this paragraph is present the most useful hypothesis and to establish the condi-
tions under which the cross-correlations can be neglected or not. As exposed before the discus-
sion will concern the estimation of the correlation coefficients of the modal amplitudes: 

mn

mn

m n

vη
η

η η

ρ
σ σ

=  (4) 

Because of the very low frequency content of the wind loading, the covariance matrix of the 
modal amplitudes is rarely computed by numerical integration (see Equation 1). The frequency 
content of modal amplitudes of a structure subjected to buffeting forces is composed of two im-
portant bands corresponding to the very low frequency of the loading on the one hand, and to 
the natural frequency of the considered mode on the other hand. It can thus generally be as-
sumed quite accurately that:  
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where Bm and Rm stand respectively for the background (quasi-static) and resonant contributions. 
Concerning the cross-correlations, in the most general case the covariance between modal 

amplitudes in different modes 
mn

vη  presents a quasi-static component and two frequency bands 
corresponding to resonance in each mode. It is thus difficult to justify the use of the same sim-
plified procedure for the estimation of the covariances. We propose however to continue using 
one single term for both resonance peaks and thus: 

( ) ( ) ( )* * *

,mn mn mn

m

F F m F n
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If the natural frequencies are well-separated, ( ),m nα ω ω is very small and the estimation of the 
second factor of Rmn. is useless. In this case, there is no coupling due to the resonant term. The 
estimation of the second factor just has to be realized accurately when ( ),m nα ω ω  is approach-
ing unity, i.e. for close natural frequencies. Supposing that: 

( ) ( )* *
m mF m F nS Sω ω≈ , ( ) ( )* *

n nF m F nS Sω ω≈ , ( ) ( )* *
n nF m F nω ωΓ ≈ Γ  (8) 

(which is true in the limit case) the resonant contribution can be written as: 

( ) ( ) ( ) ( )* *
*, m n

mn

F m F n
mn m n F m

m n

S S
R

K K
ω ω

α ω ω ω= Γ  (9) 

Following the arguments presented before and despite its lack of rigor, Equation 6 gives very 
good approximations of the covariance, no matter the proximity of the natural frequencies. By 
introducing Equations 5, 6 and 9 into Equation, an approximation of the correlation coefficient 
can be obtained: 
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which gives after simplification 

( ) ( )* , ,
mn mn

F D m n m nFηρ γ ρ γ α ω ω ω ω= + Γ  (11) 

where *
mnFρ is the correlation coefficient of the generalized forces and  
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This relation shows that the correlation coefficient between the modal amplitudes can be ap-
proached by a weighted combination of (i) the correlation coefficient of the generalized forces 
and (ii) a "dynamic" correlation coefficient expressed as a function of the proximity of the natu-
ral frequencies (in ( ),m nα ω ω ) and of the coherence of the generalized forces.  Figure 1 gives a 
representation of γF and γD. It can be seen that γF, γD and γF + γD are always smaller than unity 
which indicates that the actual correlation of the generalized coordinates is smaller than the 
maximum value of *

mnFρ  and ( ) ( ), ,m n m nα ω ω ω ωΓ . Furthermore two interesting limit case can 
be considered: 



• bm and bn are both small compared to unity; γF  is thus very small and the correlation 
coefficient of the modal amplitude is governed by ( ) ( ), ,m n m nα ω ω ω ωΓ . This is un-
derstandable since the response is mainly resonant. 

• bm and bn are both much larger than unity; the response is mainly quasi-static and the 
correlation coefficient of the modal amplitude is equal to the corresponding coeffi-
cient associated to generalized forces *

mnFρ , which could also be expected since the 
response is quasi-static in this case. 

 

 
Figure 1. Weighting functions in the expression of the correlation coefficient of the generalized coordi-
nates. They are expressed as a function of bm and bm which represent the sharing out of the total energy in 
modes m and n between background and resonant components. 

 
As a conclusion Equation 11 shows clearly that the condition of proximity of the natural fre-

quencies is not enough to ensure modal coupling. These findings can be established: 
• If the natural frequencies are close but the generalized forces are not coherent in the 

vicinity of these frequencies there is no reason to account for coupling; 
• If the natural frequencies are close and the generalized forces are coherent in the vi-

cinity of these frequencies, coupling effects could have to be taken into account. 
They only have to be so if the dynamic contribution to the response is important. 
Otherwise if the response is mainly quasi-static, there is no reason to account for the 
cross-correlation; 

• If the response is rather quasi-static, this importance of the coupling terms depends 
on the correlation of the generalized forces. 

6 APPLICATION 

As an example, the influence of the modal cross-correlations will be illustrated on the famous 
Viaduct of Millau (France) during an erection stage. With its pylons dominating the Tarn valley 
about 350 m above the ground, this exceptional 7-span cable-stayed bridge (approx. 2.5 km 
long) is the highest bridge ever built. In order to limit the risks undertaken during its construc-
tion, it was decided to opt for a deck launching on temporary piers. Amongst more than six 
hundred erection stages considered by the design office (REF…), just one of them will be con-
sidered for this paper: the tip of the deck is reaching the second pile and the pylon (already in-
stalled for the deck launching) is located approximately at mid-span. 

For this particular structure, Table 2 lists the first eigen modes and the corresponding natural 
frequencies. The loading is a gusty wind with a 34.2 m/s mean wind velocity and three turbu-
lence components with a 5.4 m/s standard deviation. Thanks to PSD and spatial coherence of 
wind velocities (measured on site) and aerodynamic coefficients (measured in a wind tunnel), 
the PSD matrix of the wind forces can be established (REF XXXXX). The progress presented in 
Table 1 can thus be followed. It should be noted that in the applications of this paper all PSD 
matrices have been numerically integrated (and not using the simplified procedure of § 4). This 
simplified procedure was thus just dedicated to establish a easily understandable formulation. 



Figure 2 (a) represents the aerodynamic damping ratios inherent to any buffeting loading. 
This kind of damping must be added to the classical structural damping that is present in any 
structure. The aerodynamic damping depends on the mean wind velocity and on the aerody-
namic characteristics of the structure. It will be constant and equal to values given in Figure 2 
for the following applications. 

Figure 2 (b) is a graphical representation of the correlation matrix between the generalized 
forces ( *

mnFρ ). This correlation matrix could seem to be messy but this has to be linked together 
with the complexity of the structure. With modal descriptions given in Table 2 it can be seen 
that similar vibration modes are more correlated than pairs of modes vibrating in different direc-
tions. 

 
Table 2. Natural frequencies and brief description of the modes of the studied structure. 
No.  Frequency [Hz]   Description of mode 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.238 
0.324 
0.446 
0.531 
0.650 
0.708 
0.736 
0.926 
1.129 
1.327 

Out-of plane bending of the deck (I)
In plane bending of the deck (I) 
Torsion of the deck (I)  (+ out-of-plane vibration of the pylon) 
In plane bending of the deck (II) 
Bending of pile 1 
In plane bending of the deck (III) 
Out-of plane bending of the deck (II) 
Axial vibration of the deck (I) 
Out-of plane bending of the deck (III) 
In plane bending of the deck (IV) 

 

 
Figure 2. (a) Aerodynamic damping ratios and (b) Graphical representation of the correlation matrix of 
the generalized forces (c) Graphical representation of the correlation matrix of the generalized coordinates 

6.1 First example 
In this first example, let us consider the structural damping is equal to ξ=0.03 for all modes, 
which is slightly more than could be expected in this kind of structure. In this case the correla-
tion coefficients of the modal amplitudes (numerically integrated) are given in Figure 2 (c). As 
stated in § 3 it can be seen that the correlation of the generalized forces is a maximum limit for 
the correlation of the generalized coordinates. Furthermore – and also as stated before – it could 
be seen that there is less difference in Figures 2 (b) and 2 (c) for modes having a dominant 
background response (e.g. (14,15) or (17,18)). A closer look at modal coefficients bm would 
show that the coefficients are in the interval [0.6,1] for the first four modes and in [1,3] for the 
others. This means that the dynamic part of the response is important and thus that the correla-
tion coefficient of the generalized coordinates tends to be close to the product αΓ which is very 
small since natural frequencies are well separated (except mode 6 and 7). 

The numerical computation of the PSD’s of the displacements of the structure (Figure 3) have 
been realized with and without considering the cross-correlation. Noting that axes are presented 
with logarithmic scales, it can be seen that the main differences (i.e. the difference giving the 
most important differences) are in the very-low frequency range. This shows again that the ef-
fects of cross-correlation terms are the most important for the background component of the re-



sponse. The modal coupling could be considered as a background coupling and not from a re-
sonant coupling. According to developments of § 3, this kind of coupling comes from the im-
portant correlation of the generalized forces. 

As an endpoint, Figure 4 shows the standard deviations of the bending moments in the deck 
and in the piles. The coupling terms mainly affect the out-of-plane bending with a maximum ef-
fect of approx. 20% in the deck under the pylon. 

 

 
Figure 3 : PSD’s of the vertical (dashed lines) and horizontal (solid lines) displacements of the deck : (a) 
left-side end and (b) under the pylon 

 

 
Figure 4: Standard deviation of the out-of-plane (a) and in-plane (b) bending moments 

6.2 Parametric study 
In this paragraph we will show the influence of the structural damping coefficient on the modal 
coupling effect. If this coefficient is smaller the modal dynamic contributions are larger, coeffi-
cients bm are smaller and the correlation coefficients are moving away from the correlation coef-
ficient of the generalized forces; they are thus decreasing and the effects of the cross-correlation 
terms are thus reduced. As a conclusion, for slightly damped structures, the results obtained 
with and without modal coupling should be in a better agreement. 



This basic reasoning based on the very simple developments of § 3 can be illustrated with a 
more precise analysis. A rigorous approach like the one applied in § 5.1 but now with various 
damping coefficients. Figure 5 shows again that modal coupling affects much more the out-of-
plane bending moment than the in-plane ones. The expected behaviour can be checked: the dis-
crepancies are small for slightly damped structures. It must be noted that the difference can be 
as important as 30%! 

 

 
Figure 5: Parametric study - Comparison of bending moments in the bridge deck: (a) on the pile and (b) 
under the pylon 

7 CONCLUSIONS 

It is sometimes thought that cross-correlation terms must be accounted for in case of closely 
spaced natural frequencies. In this paper we have used to classical decomposition of the modal 
response into a background (quasi-static) and a resonant contribution to show that modal cross-
correlation terms can have quasi-static origin.  

This kind of effect has been illustrated on the Viaduct of Millau. It has been shown that the 
discrepancies between results obtained with and without cross-correlation could go up to 30% if 
the structural damping was high. For structures exhibiting an important quasi-static behavior 
(like “highly” damped structures) the correlation coefficient of the generalized forces can be 
considered as estimations of the correlation coefficients of the generalized coordinates. 

In the most general case, the lack of modal coupling shouldn’t be concluded without having 
inspected (i) the proximity of the natural frequencies and (ii) the correlation coefficients of the 
generalized forces. 
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