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ABSTRACT

Many information hiding techniques have recently been an-
alyzed as they could help manage part of the digital rights.
Among the general framework of information hiding, the
focus has been put on steganography and on watermarking
techniques.
This paper proposes an entropy based technique for data
embedding in images with a specific target, sometimes re-
ferred to as feature location: inclusion of a maximum amount
of information instead of robustness against attacks.
After an introduction, we analyze the error that results from
a modification of the least significant bits. Then we describe
our embedding technique. Finally we examine the upper
bound of information that can be embedded in the least sig-
nificant bits by means of our technique and we conclude.

1. INTRODUCTION

Digital representation of media has the undesirable effect to
increase the opportunity for violation of copyright or illegal
copying. In order to counter this effect, providers of digital
content have stimulated the development of techniques that
protect some digital rights. Some people believe that data
hiding could solve the question of content protection, but
according to the current state of the art there is no definitive
answer yet (see [2]).
Data hiding techniques are processes that embed data, such
as copyright information, with a minimum amount of degra-
dation to the host signal, called cover and denoted � here-
after. For images, the embedded data should be invisible.
Psychovisual metrics have intensively been used to ensure
that a modified image remains visually identical to the orig-
inal image. Amongst others, MASRY et al. [3] proposed a
technique based on a wavelet decomposition. It is worth
mentioning that data embedding does not necessarily intro-
duce irreversible degradations of an image. HONSINGER et
al.[4] and FRIDRICH et al. [5] have proposed lossless data
embedding techniques that allow the recovery of the origi-
nal image.
Possible additional requirements for data hiding could be
robustness to image modifications –this is the domain of the

sometimes confusingly called watermarking techniques–, un-
detectability, etc. As long as the embedded signal remains
invisible there is no upper bound to the amount of embed-
ded information but the larger the amount of information the
easier it is to detect the presence of an embedded signal; this
might be undesirable when dealing with watermarking [6].
In this paper we propose a technique that insert a maximum
amount of information in a raster image. Our technique has
the following properties:

� The modified image is subjectively identical to the
original image. Although we did not perform an ex-
haustive set of tests, we encountered no case where a
difference was noticeable.

� The data is directly embedded in the image, rather
than into a header.

� The embedded data is self -detectable. This means
that there is no need to put any specific information
in the header or elsewhere.

� The embedding technique allows the inclusion of a
maximum amount of information with respect to the
image content. The principle is that, in practice, the
amount of information will depend on the random-
ness of the image. The higher the randomness the
higher the amount of information that can be embed-
ded in the image.

� The embedded information offers a service to the user.
Therefore there is no reason to remove or alter the
embedded information.

These properties are similar to the properties of feature lo-
cation techniques as defined by BENDER et al. [7] with one
major difference in that we want to put a maximum amount
information in an image.

2. EMBEDDING INFORMATION IN THE LEAST
SIGNIFICANT BITS: ERROR ANALYSIS

We suppose that the information is exclusively embedded in
the least significant bits of each pixel value by substitution.
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It is well known that least significant bitplanes of natural
images tend to look random; this is illustrated on Lena in
Figure 1. In higher bitplanes neighboring pixels are statisti-
cally highly correlated.
Techniques that substitute bits generally assume that val-
ues are uncorrelated in least significant bitplanes in order to
hide or embed a signal. However, as pointed by FRIDRICH

et al.[8], it is possible to reliably detect the presence of a
pseudo-random signal embedded in the least significant bits
of a color image due to the existence of typical distributions
of color values in natural or artificial images. The detection
mechanism is especially efficient when bitplane values are
more correlated than the embedded signal.

Figure 1: Lena and her bitplanes ( ���������������
	 ) starting from
the most significant bit.

We now examine the impact of modifying bitplane values
for a given error function. Let � �
� ����� denote the 8-bits value
of pixel

��� ����� of the cover. The image resulting from data
embedding is denoted � �
� ����� . We define the error as the
function � �
� ��������� ��� ��������� ��� ����� . As mentioned in the
introduction, the highest bitplanes exhibit some similarities
with the gray level image, but the least significant bitplanes
look random. In the following, bitplanes are supposed to be
independent and to be the realization of a stationary ergodic
process.
We can not assume that the probabilities of a � or a � of bits
in each bitplane of the cover, denoted respectively �! � �"� and
�# � �$� , are equal to %& . However the probabilities of a � or a
� of the embedded data ' ��� ����� , denoted ��( � �)� and �#( � �$� ,
should be equal to %& in order to maximize the amount of
bits of information put inside the cover. For convenience,
we use the probabilities as provided in Table 1.
Thanks to the assumptions of stationarity, ergodicity and

Probability �* � �"� �# � �$� �#( � �)�+�#( � �$�
Value , �-�., %& %&

Table 1: Summary of notations and assumptions concerning
the probabilities for � s and � s.

bitplane independence, the error can be written as a random
variable �/�0�1	!243�� % 265"� & 27�����)�

� �
	8�9':	��"243 � � % �9' % �)25 � � & �;' & �#2������ where �=< represents the error in bitplane > .
The mean, variance, and Mean Square Error (MSE) of �?<
are respectively equal to (after some calculation):

@8ACB � %& �.,�� D &A B �E�F, & 2G,H2 %I �JEKML < �0D &A B 2 @ & A B �N%&
These functions are drawn in Figure 2.
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Figure 2: @ A B , D &A B and
JEKML < as functions of , .

It appears that
JEKML < does not depend on the cover, but the

mean and the variance do. A general remark is that although
� bit of information has been included in the cover, the error
is not equal to � bit on average. This results from situations
where the embedded bit is equal to the original bit.
It is now possible to derive D &A from the D &A B . Indeed, as a re-
sult of the independence between the bitplane values, D &A �
D &ACP 2Q5"D &A�R 2S�1T?D &AVU 2S�����W�YX[Z]\ %<
^ 	 3 & <`_ �F, &< 2a,W<b2 %I�c
where d is the number of least significant bits that have been
substituted. In the case of �� � �"�e�f�* � �1�g�h%& , which is a
assumption usually valid on the least significant bits of a
natural image, D &A � Iji \ %k l %& � Imi \ %n . This expression
shows that D &A exponentially increases with d .

3. DESCRIPTION OF AN ENTROPY BASED
EMBEDDING TECHNIQUE

Our embedding technique is based on the modification of
the least significant bits. In order not to compromise the
overall image quality, the algorithm adapts the number of
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embedded bits to the image content. The steps of the algo-
rithm are the following (we assume that the image is defined
on � bits):

1. the image is divided in ����� pixels wide blocks.

2. for each ����� block, denoted � , compute the entropy�	� ��
 on the � most significant bits. If the entropy is
larger than 
 , then embed information in the � least
significant bits of � , else go to step 3.

3. for each block compute the entropy
�	� ��
 on the �

most significant bits. If the entropy is larger than 

then embed information in the � least significant bits
of � , else embed information in the 
 least significant
bits of � .

Because the entropy computed during step 
 is based on
the � most significant bits, there are only ��� possible values
and therefore the entropy is contained in the � ������� interval.
The threshold of 
 was chosen to be in the middle of this
interval. The entropy computed during step � is different
from that of step 
 as the computation is based on � bits;
accordingly the entropy is contained in � ������� . In all cases,
the algorithm provides a minimum of 
 embedded bits per
pixel. But in the best case, the number may raise to � bits.
At the reception side, a similar algorithm is used in order to
extract the embedded message:

1. the image is divided in ����� pixels wide blocks.

2. for each ����� block, compute the entropy
��� ��
 on

the � most significant bits. If the entropy is larger than

 , then retrieve the � least significant bits of � , else
go to step 3.

3. for each block compute the entropy
�	� ��
 on the �

most significant bits. If the entropy is larger than 

then retrieve the � least significant bits of � , else re-
trieve the 
 least significant bits of � .

Figure 3 shows images and several statistics like the original
size, the entropy per pixel

��� ��
 and the maximal size of the
message that might be embedded. The last row provides the
average number of embedded bits per pixel. In the case of
the Dice image, the upper size of the embedded image is
exactly equal to 
 bits per pixel as could be expected.
Because the algorithm adaptively determines the number of
bits to embed based on the image content, we expect no sub-
jective difference between an original image and that image
after information embedding; however, this assumption has
not been tested on an exhaustive list of image samples. Il-
lustrations on Lena and Dice are provided in Figure 4 (the
message was generated randomly).

Lena � �!����� �"� #%$'&)(�*+� Dice � �,�%��� �"� #-$.&)(/*+�

0�132�46587,9 : ; 0�132�4<5>=�9 ? @
Message =

;A:!BC=�D.E"F G%H'I)J�K+L
Message = M @!B�NAE�D�F G%H'I)J/K+L

Message =
N�9 = @"F G%OPICQ%R�OPSTJ�UVL

Message =
;WF G-O3ICQ-R�OPSXJ�UVL

Figure 3: Images and sizes of the message that can be em-
bedded.

Lena
@ :!B�:�N @"F G%H'I)J�K+L

Dice
@ :,B%:�N @"F G-H.I)J/K+L

Lena + message Dice + message

Error function Error function

Figure 4: Illustrations of our embedding technique.
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4. DETERMINATION OF THE UPPER BOUND OF
INFORMATION THAT CAN BE EMBEDDED

Real applications require to know in advance the number
of bits that can be embedded in an image. As this number
depends on the image content, it is impossible to provide a
general upper bound. One possible practical solution could
consist in the use of curves that plot the average number
of embedded bits as a function of the entropy of the cover��� ��
 , for a set of typical images (photographs, graphics,
etc). In order to provide an upper bound, we used an im-
age in which values were generated by a gaussian process��� ��
���� �!�����	 
 centered on ��
���� � . All values were rounded
to the closest integer in � ����
 �A��� .
Figure 5 shows the evolution of the number of bits that our
algorithm would embed in a gaussian generated image as a
function of �
�	 , expressed in decibels � �.��� . The link be-
tween

�	� ��
 and the upper bound is plotted in Figure 6.
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Figure 5: Link between �
�	 and the average upper bound of
embedded bits per pixel.

Both Figure 5 and 6 show the presence of 
 steps. These
steps result from our thresholding technique. If needed softer
thresholding techniques could lead to a linear behavior in
the critical zone.

5. CONCLUSIONS

In this paper we proposed a technique to embed information
based on the local entropy computed on each � � � block.
The algorithm, described in section 3, adaptively adjusts the
number of bits to be included based on a variable number of
most significant bits. At the reception side, a similar algo-
rithm extracts the embedded signal without the need of ad-
ditional information. In section 4 we have provided a prac-
tical upper bound for the amount of information that can be
embedded in an image with our technique.
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Figure 6: Link between the entropy of the cover
��� ��
 and

the average upper bound of embedded bits per pixel.
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