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1. Abstract
This paper is dedicated to a comparative evaluation between two methods of optimization to realize the
structural optimization of flexible components in mechanical systems modeled as multibody systems. A
nonlinear finite element method based formalism is considered for the dynamic simulation of the flexible
multibody system. The first method is the Equivalent Static Load method which enables to transform a
dynamic response optimization problem into a set of static response optimization problems. The second
method treats directly the dynamic optimization problem in an integrated manner where the optimization
process is carried out directly based on the time response coming from the multibody system approach.
However, the first method proposed by Kang, Park and Arora was developed under the assumption that
the multibody system is described using a floating frame of reference. Therefore, in order to carry on the
comparison using a unique multibody system approach, a method is first proposed to derive the equivalent
static loads when using a nonlinear finite element method based formalism. The comparative evaluation
is then carried out on the simple academic example of the mass minimization of a two-arm robot subject
to tracking deviation constraints. Conclusions are finally drawn for future work and stringent comparison.
2. Keywords : Structural optimization, dynamic loading, flexible multibody systems, nonlinear finite
element method, 2-dof robot.

3. Introduction
Since the early sixties, many works and efforts have been realized in the field of structural optimiza-
tion. The achieved developments enable to employ sizing and shape optimizations for solving industrial
problems while topology optimization is often more employed as a pre-design tool in the industry.
To obtain an optimal design, the most common way is to use a component-based approach and to consider
(quasi-)static loading conditions or vibration design criteria. Indeed, even though the majority of loads
are dynamic in the real world, a lot of difficulties arise when dealing with system dynamic response
optimization.
In Ref. [13], the component-based approach was used to optimize some components of mechanical system.
The candidate components were first isolated from the system and then multiple static configurations
were selected for the optimization process. This approach can be contested for several reasons. The
selection of a few configurations cannot represent the overall system motion of a high-speed system.
Moreover, the coupling between rigid and elastic motions are omitted which causes an inaccuracy on the
displacements and on the stresses. Another point is that the multiple static postures do not account
for the time-dependency of the constraints. Finally, the static postures are chosen in a non-rational and
non-automatic way.
In order to better capture the behavior of the whole system, the component-based approach has been
recently extended towards a system-based approach which relies on a multibody system (MBS) simula-
tion [3, 6, 8, 9, 10, 11, 14]. This extension is important because Bendsøe and Sigmund [2] pointed out
that the optimal design may be very sensitive to the support and loading conditions. The MBS system
simulation offers a global approach of the mechanical system dynamics and enables to account precisely
for the dynamic loading exerted on the components.
Using this system-based approach, two main optimization methods can be adopted to realize the dynamic
response optimization of the mechanical system. The first method is based on the reformulation of the
dynamic response optimization problem as a set of static problems in a two-step approach. First, a MBS
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simulation precomputes the loads applied to each component and then, each component is optimized
independently using a quasi-static approach. A set of equivalent static load cases must thus be defined
in order to mimic the precomputed dynamic loads. A possibility is to introduce a set of static loads that
gives the same deformation as the one given by the dynamic simulation [10]. The reformulation of the
optimization problem allows using the robust and well-established methods of static response structural
optimization. Several works have been realized using this two-stage method [8, 9, 11].
The second method considers an integrated approach of the optimization problem where the components
are optimized with the response coming directly from the MBS simulation. It has been validated by
Brüls et al. [3] and they showed that, in order to obtain an integrated approach, it is convenient to
work with an optimization loop directly based on the dynamic response of the flexible multibody system.
Indeed, the dynamic effects are naturally taken into account with this approach. Other studies on this
integrated approach showed that the optimization of MBS is not a simple extension of structural opti-
mization [6]. The coupled problem between vibrations and interactions within the components generally
results in complex design problems and convergence difficulties. The design problem is complicated and
naive implementations lead to fragile and unstable results. It turns out that the formulation of the
optimization problem is essential to obtain good convergence properties.
The paper is dedicated to a comparative evaluation between these two methods based on the mass
minimization of a two-arm robot subject to tracking deviation constraints.
Concerning the flexible multibody system simulation, different formalisms can be adopted to analyze the
system dynamics. Recently, a strong tendency to merge both finite element analysis and MBS simulation
into an unified code has been followed [7]. The integrated simulation tools resulting from this tendency
allow analyzing the deformations of mechanism undergoing fast and large joint motions. This formalism
based on the nonlinear finite element method is adopted since a development code based on this formalism
has been fully implemented in Matlab c© by researchers of our department. The first part of the paper
introduces the flexible MBS modeling and the time integration scheme.
In Ref. [10], the Equivalent Static Load method was developed under the assumption that the flexible MBS
dynamics is described using a floating frame of reference formulation. This formalism is suitable to derive
the equivalent static loads notably as this formulation deals with body reference. In order to realize a
comparison between both optimization methods, it is preferable to use a unique MBS approach. However,
the method proposed by Kang, Park and Arora can not be directly used with the other formalism.
Therefore, the second part of the paper is dedicated to the derivation of equivalent static loads consistent
with the nonlinear finite element method based formalism.
The following part introduces the general framework of the dynamic response optimization problem and
the different approaches to solve these optimization problems. The comparative evaluation is then per-
formed on the numerical application of a two-dof robot proposed in [10, 11]. Conclusions and perspectives
close the paper.

4. Flexible multibody systems approach
4.1. Equations of motion of flexible multibody systems
In this paper, a formulation based on the nonlinear finite element method is employed to model the
flexible multibody system dynamics as suggested by Géradin and Cardona [7].
The formulation is based on an inertial frame approach. The vector q gathers absolute nodal coordinates
which correspond to the displacements and the orientations of each node of the finite element mesh.
If the multibody system is not constrained, the motion is governed by the following equation:

M(q)q̈ = g(q̇,q, t) = gext − gint − ggyr (1)

where M is the mass matrix, q̈, q̇ and q are respectively, the accelerations, the velocities and the
displacement, and where g gathers the external, the internal and the complementary inertia forces. It
should be noted that the mass matrix can also depend on the generalized coordinates.
The multibody system is generally constrained and kinematic constraints, denoted by Φ(q, t), are added
to Eq. (1), which typically insure the connection of the different bodies. The kinematic constraints
introduce a set of nonlinear equations between absolute nodal coordinates.
The resolution of this constrained dynamic problem is based on a Lagrange multiplier method. The
product between the derivatives of the constraints ΦT

q and the Lagrangian multipliers λ are introduced
in the equations of motion in order to impose the constraints. Finally, the equations of motion take the
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general form of a differential algebraic system (DAE) as follows

M(q)q̈ + ΦT
q (q, t)λ = g(q̇,q, t)
Φ(q, t) = 0,

(2)

with the initial conditions
q(0) = q0 and q̇(0) = q̇0. (3)

4.2. Time integration
Géradin and Cardona suggested using the generalized-α method developed by Chung and Hulbert [5] to
solve the set of nonlinear differential algebraic equations (2). Arnold and Brüls [1] demonstrated that,
despite the presence of algebraic constraints and the non-constant character of the mass matrix, this
integration scheme leads to accurate and reliable results with a small amount of numerical damping.
At the time step n+1, the variables q̈n+1, q̇n+1, qn+1 and λn+1 have to satisfy the system of equations (2).
According to the generalized-α method, a vector a of acceleration-like variables is defined by the following
recurrence relation

(1− αm) an+1 + αman = (1− αf ) q̈n+1 + αf q̈n, (4)

with a0 = q̈0. The vector a is an auxiliary variable used by the algorithm and has no physical meaning.
The integration scheme is obtained by employing a in the Newmark integration formulae:

qn+1 = qn + hq̇n + h2
(

1

2
− β

)
an + h2βan+1 (5)

q̇n+1 = q̇n + h (1− γ) an + hγan+1, (6)

where h denotes the time step. If the parameters αf , αm, β and γ are properly chosen according to [5],
second-order accuracy and linear unconditional stability are guaranteed.
Going a time step further requires to solve iteratively the dynamic equilibrium at time tn+1. This is
performed by using the linearized form (7) of equations (2) and by employing the Newton-Raphson
method. The iterations try to bring the residual r = Mq̈ + ΦT

qλ− g and Φ to zero.

M∆q̈ + Ct∆q̇ + Kt∆q + ΦT
q∆λ = ∆r

Φq∆q = ∆Φ
(7)

where Ct = ∂r/∂q̇ and Kt = ∂r/∂q denote the tangent damping matrix and the tangent stiffness matrix
respectively.

5. Equivalent Static Load approach
5.1. Introduction and definition.
One of the main problems encountered in structural dynamic response optimization is the problem of
dealing with dynamic constraints. The purpose of introducing equivalent static loads is to remove the
time component of the problem and to transform the dynamic response optimization problem into a set of
static problems [4]. Indeed, all the advantages of static response optimization and all the well-established
methods can then be exploited while the problems related to time-dependent constraints are avoided.
A definition of the equivalent static loads can be found in Ref. [10]: When a dynamic load is applied to a
structure, the equivalent static load is defined as the static load that produces the same displacement field
as the one created by the dynamic load at an arbitrary time.
In order to introduce the concept of the equivalent static loads, let us consider the following equilibrium
equation of a linear structure∗ subject to a dynamic load

M(x)ÿ(t) + K(x)y(t) = s(t), (8)

where s is the applied dynamic load, x is the design variable vector, y and ÿ are respectively the
displacement and the acceleration, and where the damping effect is neglected. Eq. (8) can be rearranged
as

K(x)y(t) = s(t)−M(x)ÿ(t). (9)

∗The difference is made between a multibody system and a structure as the latter is composed of only one body. This
enables a simplification of the equations for this introductory section.
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Eq. (9) has a similar layout as the static equilibrium equation of a structure. By identification and
according to the previous definition, the equivalent static load at time t is defined as

feq(t) = s(t)−M(x)ÿ(t). (10)

It should be noticed that the equivalent static load feq(t) is an implicit function of the design variables
and that it involves the external loads and inertia forces. From an analysis point of view, the equivalent
static loads seem useless but they are developed in order to deal with a static response optimization
problem. Instead of considering a dynamic loading, they offer the possibility of considering a set of static
loads that gives at each time step the same displacement field as the one given by the dynamic loading.
Therefore, the optimization problem is turned into a multiple static load cases optimization problem,
with a load case for each integration time step.

5.2. Derivation of the Equivalent Static Loads using a nonlinear finite element method formalism.
In Ref. [10], the authors derive the equivalent static loads for a multibody system which is described using
a floating frame of reference formalism. Unlike the nonlinear finite element method based formalism, the
stiffness matrix is constant in the body reference during all the motion. Therefore, independently of the
system configuration, only one stiffness matrix per body can be used in the optimization process for all
the time step. Furthermore, the deformation of the components are computed in the body reference and
can easily be extracted for the computation of the equivalent static loads.
These features are lost when using a nonlinear finite element method based formalism. The equations
of motion are developed in an inertial frame and no term is expressed in a body reference with this
formalism. However, as our development code for MBS simulation is based on this formalism, our goal
is to solve the optimization problem by using it. The method we propose hereafter does not modify the
MBS approach but it derives the equivalent static loads in a post-processing step of the MBS simulation.
Let us consider the linearized equations (7) of the equations of motion. At a converged time step ti, the
equilibrium equation is

M(ti)∆q̈(ti) + Ct(ti)∆q̇(ti) + Kt(ti)∆q(ti) + ΦT
q (ti)∆λ(ti) = 0. (11)

As realized in section 5.1, by rearranging the terms, we get

Kt(ti)∆q(ti) = geq(ti). (12)

While this expression has a similar layout as Eq. (9), several problems are encountered.
Firstly, the tangent stiffness matrix is related to the whole system and it evolves with the system con-
figuration. This would lead to a storage of the matrix for each time step and also an update of each
matrix during the optimization process iterations. In order to keep a unique matrix for all the time step,
only a tangent stiffness matrix of a reference state Kt(tref ) should be kept. When considering another
time step, this implies that appropriate transformations have to be applied to the vector q in order to
bring it back to the reference configuration. While the tangent stiffness matrix is related to the whole
system, it is possible to extract for each body its tangent stiffness matrix by selecting suitable generalized
coordinates.
Secondly, the formalism gives a displacement vector q where there is no decoupling between rigid body
motions and deformations, which is generally an advantage of the FEM approach. However, to carry on
the optimization process, the deformations are needed. To obtain a measure of the component deforma-
tion, we propose to introduce a corotational frame for each body. This corotational frame also enables to
define the transformation in order to switch from the actual configuration to the reference configuration
and vice-versa.
Let us introduce the corotational frame definition adopted in this study for each robotic arm. Several
definitions of the corotational frame are available and for instance, a definition can be based on the
minimization of the strain energy. In the present approach, a tangent frame definition is used instead. In
order to apply the boundary conditions related to the multibody system definition in the optimization
process, Kang, Park and Arora considered each robotic arm as a fixed free beam [10]. According to this
idea, the corotational frame is defined at the fixed beam extremity as follows

x0 = Position of the fixed beam extremity,

a0 = Relative rotation angle of the fixed beam extremity compared to reference configuration.
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In 2 dimensions (Fig. 1), the relationship between the absolute position (xi) and orientation (Ψi) of node i
of the robotic arm and its local displacement ui and local rotation ψi with respect to the corotational
frame is given by

xi = x0 + R0 (Xi + ui) , (13)

Ψi = ψi + a0, (14)

where R0(a0) is the 2D rotation matrix. Note that this corotational frame is not used within the MBS
simulation.

Figure 1: Kinematic description of a corotational frame in 2D.

The Equivalent Static Loads gb
eq(t) for body b in a multibody system described using a nonlinear finite

element method based formalism is therefore defined as

gb
eq(t) = Kb

t(tref )ub(t), (15)

in the corotational frame.
The optimization process is then carried out using an equivalent static load at each time step for each
body, which leads to a set of multiple static load optimization problems.

6. Integrated optimization method
The integrated optimization method has been proposed by Brüls et al. [3] and it follows a natural
evolution of virtual prototyping and computational mechanics in which the aim is to define as precisely
as possible the loading conditions of the different bodies under service. The authors took advantages of
the evolution of numerical simulations and topology optimization codes in order to design optimal truss
structures loaded during the MBS motion.
The method introduces a strong coupling between the MBS simulation and the optimization process where
the optimization process is carried out directly based on the dynamic response of the flexible multibody
system. This method aims at taking properly into account the dynamic coupling between large overall
rigid-body motions and deformations. The dynamic effects appears naturally in the optimization process.
Furthermore, the objective function and the design constraints can be defined with respect to the actual
dynamic problem.
This approach seems to offers more possibilities than an isolated component optimization approach since
it is able to capture more complex and coupling behaviors. However, it has been observed that the
optimization problem must be carefully formulated to obtain a stable and robust procedure [3, 6]. The
optimization of MBS is not a trivial extension of structural optimization. Naive implementations gen-
erally lead to inaccurate and unstable results. This may explain why only a few results are available in
the literature. Indeed, the coupled vibrations between components generally result in complex design
problems and in convergence diffculties. This indicates that specific formulations are required and need
to be developed for this extended class of optimization problems.
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7. Optimization of flexible multibody systems
7.1. Formulation of the MBS optimization problem
An optimization problem is generally formulated as the minimization of an objective function ϕ (x)
subjected to some constraints cj (x), which typically insure the feasibility of the structural design and
some design requirements (Eq. 16). The design variables are gathered in the vector x. Side-constraints
limit the values taken by the design parameters and generally reflect technological considerations.

minimize
x

ϕ (x)

subject to cj (x) 6 cj , j = 1, . . . , nc,

xv 6 xv 6 xv, v = 1, . . . , nv,

(16)

where nc is the number of constraints and nv is the number of design variables.
This general formulation allows using different types of optimization algorithms to solve the problem and
there is no need to develop specific method. Moreover, this formulation provide a general and robust
framework to the solution procedure.
In multibody system optimization, the functions are structural properties and responses like mass, dis-
placements at each time step and stresses for instance. The design variables xv can be sizing, shape or
topological variables. In the paper, only sizing variables are considered.
In this study, the formulation of the functions cj (x) accounts for all the integration time steps of the
MBS simulation. The optimization problem formulation adopted is to minimize the mass of the mechan-
ical system m(x) while the constraints have to be verified at each time step, which is mathematically
formulated as follows

minimize
x

m (x)

subject to M(q)q̈ + ΦT
q (q, t)λ = g(q̇,q, t),

Φ(q, t) = 0,

cj (x, t) 6 cj , j = 1, . . . , nc,

xv 6 xv 6 xv, v = 1, . . . , nv.

(17)

for all t ∈ [0, tend].

7.2. Integrated approach algorithm
When dealing with the integrated approach of the dynamic response optimization problem, the formu-
lation of the optimization problem (17) can be used as it is, except that the variables t has discrete
values due to the equation solving. Indeed, the MBS simulation and the optimization process work in an
integrated manner without any decoupling.
However, as described in section 6, the design space resulting of this approach is quite complex and the
formulation of the optimization functions is essential to obtain good convergence properties.
In this paper, to carry out the comparison, no specific formulation is used and all the time steps are
accounted for the optimization process. Indeed, the problem is rather simple and does not require
advanced formulations.

7.3. Flowchart of the dynamic response optimization process using the Equivalent Static Load method
When the equivalent static load method is used, the optimization process does not solve directly Eq. (17).
As proposed in Ref. [4], the optimization process solves repeatedly the following static response optimiza-
tion problem where the set of equivalent static loads steps in:

minimize
x

m (x)

subject to Kb
t(x, tref )ub(x, tn) = gb

eq(tn), b = 1, . . . nb,

cj (x, tn) 6 cj , j = 1, . . . , nc,

xv 6 xv 6 xv, v = 1, . . . , nv,

(18)

for n = 1, . . . , nmax and where nb is the number of optimized bodies. It can be observed that for each
body, there are as many load cases as the number of time steps.
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To solve the dynamic response optimization problem using an equivalent static load method, the algorithm
proposed in Ref. [4] is as follows:

1. Initialize the design variables and set it = 0.

2. Perform a dynamic MBS simulation.

3. Compute the equivalent static loads.

4. If it = 0, go to step 5. If it > 0 and if

tend∑
n=1
‖geq,it(tn)− geq,it−1(tn)‖

‖geq,it−1(tn)‖
< ε, (19)

then, stop. Otherwise go to step 5. Epsilon is set to 0.01 in this paper.

5. Solve the following static response optimization problem

minimize
x

m (x)

subject to Kb
t(x, tref )zb(x, tn) = gb

eq(tn), b = 1, . . . nb,

cj (x, tn) 6 cj , j = 1, . . . , nc,

xv 6 xv 6 xv, v = 1, . . . , nv,

(20)

for n = 1, . . . nmax. The iterations to solve this optimization problem are hereafter denoted as inner
iterations.

6. Set it = it+ 1 and go to step 2.

A cycle is composed of the steps from 2 to 6. During step 5, while the equivalent static loads are implicit
functions of the dynamic simulation response, they are not updated. Therefore, cycles are needed in
order to update the equivalent static loads with respect to the change of the design variables. It has
been proved that the solution obtained by this algorithm is an optimum solution of the original dynamic
response optimization problem [12].

7.4. Optimization algorithm
Mathematical programming methods which require to compute the derivatives of the design functions
are considered here. These methods have been widely employed to solve large scale structural and
multidisciplinary optimization problems with conclusive results. Their major advantages are their high
speed of convergence and the limited number of iterations and function evaluations required to obtain an
optimal solution. The inconvenient of these methods is that they provide local optima due to the local
convergence properties of gradient-based algorithms. The robustness of these methods can be a source
of difficulties when dealing with highly nonlinear behaviors.
The algorithm adopted in this study is based on the sequential quadratic programming approach.

7.5. Sensitivity analysis
Dealing with gradient-based optimization methods, a sensitivity analysis must be carried out to compute
the first order derivatives of the structural responses and to provide them to the optimization algorithm.
The sensitivity analysis is an essential step of the optimization process and the computation time can be
drastically increased if this part is neglected, especially when the number of variables is large.
While a semi-analytical sensitivity analysis requires less computational efforts in comparison to a finite
difference scheme, this second approach is considered in this study. This sensitivity analysis requires one
additional simulation per perturbed design variable. This method is easy to use and as the computation
time of the numerical applications is quite small, the choice of this method is justified to carry out the
investigations.
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8. Numerical Applications
8.1. Modeling of the 2-dof planar robot
The numerical application is based on a 2-dof planar robot inspired from Ref. [10, 11]. The material
is aluminum with a Young modulus of E=72 [GPa], a Poisson ratio of ν=0.3 and a volumic mass of
2700 [kg/m3]. The length of each arm is 600 [mm] and is modeled by beam elements whose cross section
is hollow. The beam element model employed is described in Ref. [7].
The hinge A in Figure 2.a has a mass of 2 [kg] while the end effector has a mass of 1 [kg]. The gravity
field is considered. The functions θ1(t) and θ2(t) represent the angle variations at the hinges during the
robot deployment. The initial position is θ1(t) = 120 [◦] and θ2(t) = 150 [◦]. In Figure 2.b, the ideal tip
displacement is illustrated and the trajectory equations are:

∆xtip(t) = ∆ytip(t) =
0.5

T

(
t− T

2π
sin

(
2πt

T

))
, (21)

with t ∈ [0, 0.66] [s] and where the period T is set to 0.5 [s].
The design variables are the outer diameters of the beam elements and the wall thickness of the links is
set to 0.1 × the outer diameter. Initial values of the design variables are set to 50 [mm].
A rigid-body kinematic model is used to compute the functions θ1(t) and θ2(t) resulting from the desired
trajectory since rigid-body models are free from deformations and vibrations. These functions are then
applied as imposed rotations at the hinges of the flexible robot. Concerning the integration time scheme,
a time step of 5E-4 [s] is used with a spectral radius of 0.5.
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Figure 2: (a) The 2-dof robot model with 2 beam elements per link, (b) The ideal tip displacement with
respect to time of a rigid robot.

8.2. Comparison of the optimization methods
The first numerical application considers the following optimization problem where the deviation con-
straint formulation is suggested by Ref. [10]:

minimize
x

m (x)

subject to
√
δy2a(tn) + δy2tip(tn) 6 0.001 [m], n = 1, . . . 67,

0.02 [m] 6 xv 6 0.06 [m], v = 1, . . . , 4.

(22)

where δya(tn) and δytip(tn) are respectively the vertical deflections in the inertial frame of the first link
at the hinge A and of the second link at the tip.
The optimization results are shown in Table 1 and are illustrated in Figure 3. For readability reasons of
Figure 3.c, the markers have only been printed at each 0.01 [s]. It can be observed that both optimiza-
tion methods lead rapidly to the same optimal design. The integrated approach has no inner iteration
compared to the equivalent static load (EQSL) method. However, the inner iterations are based on static
computations and one static analysis is less CPU-time consuming than one dynamic analysis. In order
to carry out a fully objective function, we should analyze if it is more interesting to realize a few more
dynamic analysis than running several static computations at each cycle.

8



Table 1: Numerical results - Formulation Eq. (22).

Mass [kg] Iterations Inner d1 [mm] d2 [mm] d3 [mm] d4 [mm]
iterations

EQSL Method 1.213 6 61 45.40 32.76 37.99 26.83
Integrated Method 1.214 13 / 45.44 32.69 38.08 26.78
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Figure 3: Optimization results - Formulation Eq. (22): Mass evolution of the optimization process and
deviation constraint with the optimal design using a MBS simulation.

8.3. Trajectory deviation constraint
Let us now consider the following optimization problem formulation Eq. (23) where the constraint limits
the trajectory error of the tip.

minimize
x

m (x)

subject to
√
δx2tip(tn) + δy2tip(tn) 6 0.001 [m], n = 1, . . . 51,

0.02 [m] 6 xv 6 0.06 [m], i = 1, . . . , 4.

(23)

where δxtip(tn) and δytip(tn) are respectively the horizontal and vertical deflections of the robot tip in
the inertial frame.
This application considers a tracking trajectory constraint. Only the extremity of the second robot link
is concerned by the optimization constraint.
When using the EQSL method, the components of the system are artificially decoupled during the
optimization process. With the tracking deviation constraint, we have to impose a maximal deflection on
the tip, which is a constraint on the global system behavior. Using constraints upon the global system
response, it is now not clear how to formulate the constraints on the component flexibility within the
EQSL method. Indeed, due to the decoupling, considering only the tip deflection would lead to consider
that the first link is not subjected to any constraints. While, it obvious that the first member flexibility
has a contribution to the tip displacement.
As the deflection of the tip depends on the flexibility of all the components, one can formulate the tracking
deviation constraint as a sum of the deflection of all the links. The deflection of the tip is defined as
follows: [

δxtip
δytip

]
=

2∑
k=1

R(a0,k)uext,k (24)

where k is the robot link index, uext,k is the deformation at the link extremity in the corotational frame
and R is the 2D rotation matrix. However, this does not hold when dealing with complex mechanisms
including closed-loops.
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Using the integrated optimization method, it is straightforward to consider this type of constraint. Indeed,
the generalized coordinates used in the MBS simulation are available in the optimization process and
take naturally into account the flexibility of the whole mechanism.
In order to compare the results with Ref. [11], the simulation time is set to 0.5 [s]. The optimization
results are shown in Table 2 and are illustrated in Figure 4. For readability reasons of Figure 4.c, the
markers have only been printed at each 0.015 [s].
The EQSL method converges after 5 cycles and the integrated method after 15 iterations. While the
optimal values of the objective functions are similar for both methods, Figure 4.c illustrates that the time
responses of the tracking deviation constraints are a bit different. Although the maximum value of the
constraints happens at the same time step, trajectory errors exhibit different oscillations. Considering the
same time step, the values of the constraints are different. This can be explained by the small differences
between the optimal values of the design variables.
Comparing the results with Ref. [11] is quite difficult as the analysis of the system is different. Neverthe-
less, the overall trend of the results shows agreement.

Table 2: Numerical results - Formulation Eq. (23).

Mass [kg] Iterations Inner d1 [mm] d2 [mm] d3 [mm] d4 [mm]
iterations

EQSL Method 1.411 4 38 47.88 34.51 42.11 30.08
Integrated Method 1.408 15 / 48.59 34.82 41.60 29.02

Ref. [11] 1.602 38 / 54.27 44.15 37.55 26.32
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Figure 4: Optimization results - Formulation Eq. (23): Mass evolution of the optimization process and
deviation constraint with the optimal design using a MBS simulation.

9. Conclusions and perspectives
A comparative evaluation between two methods for solving the dynamic response optimization of flexible
components within a multibody system approach has been carried out.
In this paper, a nonlinear finite element method based formalism is adopted to describe the mechanical
system dynamics. Indeed, a development code for MBS simulation based on this formalism is developed
by the researchers of our department.
The first optimization method is the Equivalent Static Load method which aims at taking advantage of
the well-established techniques of static response optimization by removing the time component from the
optimization problem [10]. The second method is an integrated method where the dynamic response op-
timization is carried out with the system dynamic response coming directly from the MBS simulation [3].
The first contribution is that we propose a definition of the equivalent static loads adapted to the nonlinear
finite element method based MBS formalism. Indeed, this method was developed under the assumptions
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that the MBS dynamics was described using a floating frame of reference which is a formalism well suited
to develop this kind of method.
The numerical application has shown that both methods can converge towards the same optimum for a
simple academic problem.
A fundamental difference is that only a single dynamic analysis per iteration is required by the optimizer
for the integrated method while a set of static analysis is necessary at each cycle with the equivalent static
load method. During the static response optimization stage, the dependence of the equivalent static loads
with respect to the design variables is neglected. Therefore, cycles are needed in order to update the
equivalent static loads with respect to the effect of the design variables on the dynamic loading. For
slowly varying body loads, the equivalent static load method normally requires less dynamic simulations
and one dynamic simulation is more CPU-time consuming than one static analysis of the inner iterations.
The formulation of global behavior constraints can become rather complex with the equivalent static load
method as the components are decoupled during the optimization process.
In order to derive the equivalent static loads, the assumption of small deformation without any non-
linearity is made. Therefore, this assumption should be kept in mind.
The comparative evaluation has been carried out on an academic example where both methods converge
towards the same optimum. Ongoing work investigates systems with design dependent loading and more
advanced cases as we expect different behaviors for the methods.
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[1] M. Arnold and O. Brüls. Convergence of the generalized-α scheme for constrained mechanical

systems. Multibody Systems Dynamics, 18(2):185–202, 2007.

[2] M.P. Bendsøe and O. Sigmund. Topology optimization: Theory, Methods, and Applications. Springer
Verlag, Berlin, 2003.
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